АКАДЕМИЯ НАУК СССР

труды минералогического музея

Выпуск 11

Редактор д-р геол.-мин. наук Г. И. Барсанов

Ю. Л. ОРЛОВ, А. И. ГИНЗБУРГ, Н. Г. ПИНЕВИЧ

ПАРАГЕНЕТИЧЕСКИЕ ВЗАИМООТНОШЕНИЯ БЕРИЛЛИЕВЫХ МИНЕРАЛОВ В НЕКОТОРЫХ ПЕГМАТИТОВЫХ ЖИЛАХ

В пегматитах А. И. Гинзбург обнаружил образцы, в которых бериллиевые минералы: берилл, даналит, фенакит и бертрандит находятся в очень интересных парагенетических взаимоотношениях.

Берилл в описываемых пегматитовых жилах встречается в ассоциации с ранними минералами (альбит-олигоклазом, микроклином и кварцем),

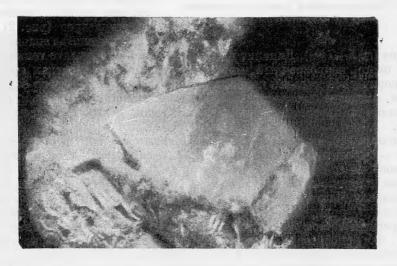


Рис. 1. Кристалл берилла, разъеденный альбитом и даналитом

слагающими эти пегматиты, а также с минералами замещающего комплекса (сахаровидным альбитом, турмалином, кварцем, даналитом и др.). Он представлен хорошо ограненными кристаллами различной величины (до 5-6 см), а также неправильными по форме кристаллами, раздробленными и сильно изъеденными при поздних процессах замещения. Берилл непрозрачный, мутный, зеленовато-голубого цвета. Показатели преломления равны: No = $1,579 \pm 0,001$; Ne = $1,573 \pm 0,001$. Спектральным анализом, кроме Be, Al и Si, в берилле установлены также следующие элементы: Na(>1,0%), Li (0,05-0,1%), Ca(0,05-1,0%), Mg(0,05-1,0%), Mn (0,01-0,1%), Fe (>0,5%), Cu (0,005-0,05%), Ti (0,05-0,5%),

V(0,005-0,05%), Ba(0,005-0,05%), Sr(0,0005-0,005%), Zr(0,005-0,05%), Cr(0,005-0,05%), Ga(0,001-0,01%) μ P(>0,1%) 1 .

Даналит в описываемых пегматитовых жилах встречается в виде единичных, хорошо выраженных кристаллов и их сростков, иногда обра-

Рис. 2. Тетраэдрический кристалл даналита в пегматите

зует неправильные по форме гнезда. Даналит находится сбычно в белом микроклине, в сахаровидном альбите и кварце вместе с черным турмалином, спессартином биотитом, а также в тесной ассоциации с бериллом, по которому он иногда развивается (рис. 1). В редких случаях встречались неполные псевдоморфозы даналита по кристаллам берилла, в которых даналит, развиваясь в отдельных участках в виде пятен, тесно ассоциировал с кварцем и слюдой. Изолпрованные кристаллы даналита, как правило, имеют форму тетраэдров (рис. 2) и достигают иногда значительных

размеров (до 5—7 см). Даналит в основной своей массе часто темно-коричневого цвета, непрозрачный, матовый; в некоторых участках среди матовой коричневой массы с неправильным изломом выделяются отдельные участки, имеющие стеклянный, несколько маслянистый блеск, раковистый излом и просвечивающие в тонких краях ясным буровато-красным цветом.

В тонких зернах даналит имеет розоватый оттенок, в более толстых зернах — буровато-коричневый. В шлифах видно, что даналит почти во всей своей массе сильно раздроблен на мельчайшие зерна (рис. 3), чем, очевидно, и можно объяснить его тусклый блеск и непрозрачность в обычных образцах. Часто в нем наблюдаются включения альбита. Показатель преломления, определенный по зернам нетрещиноватого, просвечивающего красным цветом даналита, равен N = 1.751 ± 0.002 . Согласно данным И. Ф. Григорьева, показатель преломления даналита из этого же месторождения колеблется от 1.752 ± 0.002 до 1.759 ± 0.002 .

Результаты вычисления межплоскостных расстояний по дебаеграмме, полученной от прозрачного, неизмененного дапалита, приведены в табл. 1.

Описываемый даналит (по И. Ф. Григорьеву) имеет следующий химический состав (в весовых процентах): $SiO_2-32,18$; TiO_2 — следы; $Al_2O_3-2,71$; $Fe_2O_3-0,22$; $FeO_3-34,23$; $MnO_17,35$; ZnO_182 ; $CaO_10,07$; MgO_132 ; $Roconsymbol{BeO}180$;

Кроме установленных химическим анализом элементов, полуколичественным спектральным анализом, выполненным И. П. Тоюшевым, зафиксировано присутствие Си (0,0005—0,005%) и Сd (0,005—0,05). По

¹ Все приводимые в статье данные полуколичественного спектрального анализа вынолнены в Лаборатории ИМГРЭ АН СССР И. П. Тоюшевым.

Таблица 1

	Дебаеграмм	лы да	налита		
(Си-излучение,	Ni-фильтр,	РКД	2R = 57,3;	2r = 0.6	MM)

I	d	I	d
1	3,66	2	1,444
10	3,35	1,5	1,402
4	2,86	1,5	1,358
1,5	2,58	1,5	1,323
3,5	2,35	2	1,260
1	2,03	2	1,112
8	1,92	1,5	1,039
1,5	1,82	2	1,007
1,5	1,66	1	0,892
1	1,60	1,5	0,883
1,5	1,487	1,5	0,863

данным И. Ф. Григорьева, спектральным анализом в даналите устанавливались также Pb, Ge и Sn.

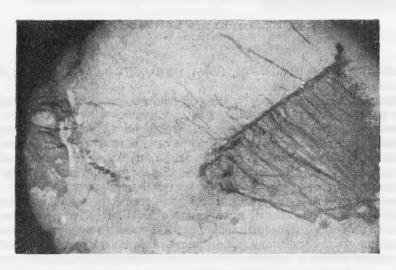


Рис.-3. Даналит в шлифе

Фенакит в описываемых пегматитовых жилах встречается в разных видах, но всегда в различной степени измененном даналите. Наибольшее количество кристаллов фенакита было обнаружено в псевдоморфозах гематита и лимонита по даналиту.

Иногда встречается неизмененный в основной своей массе даналит, в котором находятся единичные целые хорошо окристаллизованные кристаллики фенакита, но вокруг кристалликов всегда наблюдаются пустотки, частично заполненные порошковатым материалом. Порошок имеет темно-коричневый цвет и является продуктом разрушения даналита. Согласно полуколичественному спектральному анализу, порошок обо-

гащен Fe и Mn, но в нем устанавливаются также и все элементы, обнаруживающиеся в даналите, хотя и в несколько других соотношениях: по сравнению с даналитом занижено содержание Be, Si и Zn и, наоборот, несколько повышено — Al, Cu, Mg и Ca. Кроме того, в порошке фиксируются: Bi (0,0005—0,005%), V (0,005—0,05%), Co (0,005—0,05%),



Рис. 4. Псевдоморфоза окислов железа по кристалликам пирита

Ni (0,005-0,05%),Sr (0,0005-0,005%), Ba (0,005-0,05%) и P (>0,1%),не установленные в самом даналите.

Кристаллы фенакита в пустотках даналита всегда целые, нераздроб-

ленные; на гранях их коррозия не наблюдается.

Кроме того, кристаллы фенакита совершенно идентичного кристаллографического облика встречаются в оригинальных, выполненных главным образом различными окислами железа, пустотках, имеющих форму тетраэдра и образовавшихся в результате разложения кристаллов даналита. В этих пустотках кристаллики фенакита заключены в темную буровато-красную очень плотную массу, являющуюся, согласно рентгеноструктурным исследованиям, проведенным Н. Г. Пиневич, смесью гематита и гётита. Таким образом, возникает сложная псевдоморфоза различ ных окислов железа и фенакита по кристаллам даналита. Нередко гематит и гётит превращены в бурый плотный или в желтый охристый лимонит, в котором первые два минерала наблюдаются в виде реликтов. В плотной массе, а также в пустотках различных окислов железа наблюдаются иногда псевдоморфозы темно-бурого лимонита по мелким кубическим кристалликам пирита (рис. 4), в некоторых случаях тесно ассоциирующих с кристалликами фенакита. В этих случаях неизмененных кристаллов пирита мы ни разу не наблюдали; всегда это были полные псевдоморфозы окислов железа по кубическим кристаллам пирита. В пустотках наблюдаются также почковидные и более сложные натечные формы темно-бурого и коричневатого лимонита. Изредка среди бурого илотного лимонита встречаются небольшие гнезда яркого кроваво-красного гидрогётита, отделяющегося от плотного бурого лимонита желтым охристым лимонитом. Вокруг измененных кристаллов и гнезд даналита наблюдается сильное окрашивание по трещинам в черный цвет окислами марганца.

В описываемых оригинальных псевдоморфозах фенакит представлен хорошо ограненными кристалликами, единичными или в виде сростков, которые нарастают на стенки тетраэдрических полостей, заполненных окислами железа, а также находятся внутри в самих окислах железа, цементирующих кристаллики фенакита. Располагаются кристаллики

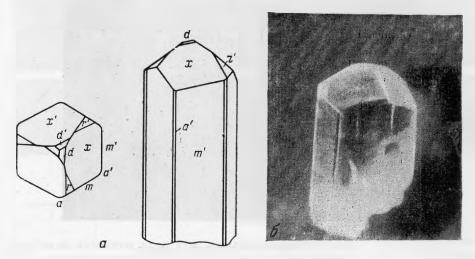


Рис. 5. Кристаллографический облик кристаллов фенакита из описываемого месторождения

а — чертеж, б — фото

фенакита беспорядочно, без определенной ориентировки и имеют различные размеры, достигая в некоторых случаях 5-6 мм в длину и 3-4 мм в поперечном сечении. Характерно удлинение кристалликов по призме; все они имеют с одной стороны ограненную головку, а с другого конца как бы обломаны. Форма кристаллов определяется развитием следующих граней (рис. 5): $a = (11\overline{2}0), m = (01\overline{1}0), x = (12\overline{3}2), d = (01\overline{1}2), r = (10\overline{1}0).$

Характерно, что грани a и m имеют, как правило, неодинаковую ширину: грань a обычно развита в виде очень узкой полоски, притупляющей ребра между гранями m. На гранях m часто наблюдается отчетливая вертикальная штриховка. На головке кристалла преимущественным развитием пользуется грань x, а мелкие грани d и r, притупляющие вершину кристалла и ребра между гранями x, иногда отсутствуют или развиты неполностью. В некоторых же случаях эти грани развиты более зпачительно и неравномерно, в связи с чем головка кристалла выглядит более сложно ограненной. Наблюдаются уплощенные формы с неравномерным развитием граней вертикального пояса.

Кристаллы фенакита бесцветные, иногда блестящие, совершено прозрачные, особенно у головок кристаллов, чаще мутные, белые. Показатели преломления, измеренные иммерсионным методом, равны: $Ne = 1,653 \pm 0,001$, $No = 1,671 \pm 0,001$. В шлифах в кристалликах фенакита наблюдаются включения мельчайших зерен даналита. Полуколичественным спектральным анализом в фенаките, кроме Be и Si, установлены: Mn (0,001-0,01%), Mg (0,005-0,05%), Fe (0,1-0,5%), Al (0,005-0,05%), Ti (0,005-0,05%), Cu (0,0005-0,005%), Na (>0,1%). Zn (0,05-0,05%) и Ca (0,005-0,05%).

Интересной особенностью кристаллов фенакита, встречающихся в окислах железа, выполняющих тетраэдрические пустоты от кристаллов даналита, является их сильная раздробленность и коррозия вдоль трещин, а также на гранях.

Рис. 6. Радиально-лучистый фенакит

Кристаллы фенакита разбиты трещинами в самых различных направлениях: одни кристаллы как бы распилены поперек на тонкие пластинки, другие — вдоль длинной оси или наискось кристалла. Иногда трещины имеют веерообразный характер. Наблюдается в некоторых случаях смещение одной части кристалла по отношению к другой или даже последовательное ступенчатое смещение нескольких пластин раздробленного кристалла. Показательно, что одна система трещин, разбивающая какой-либо кристалл, переходит на соседний кристалл, ориентированный иначе. и разбивает его уже в другом направлении по отношению к кристаллографическим элементам. Трещины в некоторых случаях заполнены бурыми и желтыми охристыми окислами железа, иногда буровато-красной гематитогётитовой массой. Кроме дробления кристалликов фенакита, ясно проявляется последующее их разъедание. Коррозия происходила по трещинам или же на поверхности граней, в связи с чем форма кристалла искажается. и на некоторых гранях появляются характерные скульптуры и каверны растворения.

Кроме тех форм, которые описаны выше, фенакит в описываемых пегматитовых жилах встречается также в виде сноповидных сростков, а иногда и в виде округлых сферолитов, образующих на плоскости скола правильные розетки с радиально-лучистым строением (рис. 6). Такого вида фенакит находится в сильно лимонитизированных и каолинизированных участках, имеющих вид неправильных по форме гнезд, развитых вокругранее существовавших выделений даналита, реликты которого иногда обнаруживаются в сильно лимонитизированной плотной темно-бурой или желтой охристой массе. Даналит, изменяясь в этих условиях, становится иногда бледно-розовым и его реликты видны макроскопически. Вместе с радиально-лучистым фенакитом в этих же гнездах находятся многочисленные очень сильно изъеденные кристаллики фенакита в виде единичных

верен или неправильных сростков. На этих кристалликах, как правило, не наблюдается граней, они представляют собой неправильные по форме верна с сильно корродированной поверхностью. В шлифах можно видеть железистую массу, в которой беспорядочно разбросаны сноповидные и

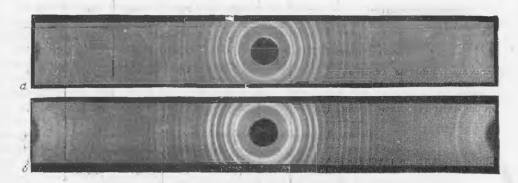


Рис. 7. Дебаеграммы бертрандита

а — из Коунрадского гранитного массива (из материала Ф. В. Чухрова);

(6 — из пописываемого месторождения

радиально-лучистые агрегаты, а также единичные или в виде неправильных сростков сильно изъеденные кристаллы фенакита. Среди последних встречаются реликты даналита как в самой железистой массе, так и в кристаллах фенакита, причем всегда в даналите наблюдаются многочисленные, в виде мельчайших капелек, зернышки фенакита.

Наряду с фенакитом в этой ассоциации встречаются пластины бертрандита. Закономерно, что сноповидные и радиально-лучистые агрегаты фенакита в этих условиях встречаются всегда только вместе с бертранди том, причем признаков развития одного за счет другого не наблюдается, наоборот, создается впечатление, что они развивались одновременно.

Бертрандит встречается в виде пластин различного размера (до 0.5-1 см), которые по плоскости 001 имеют ясный перламутровый блеск и заключены в плотную железистую массу. Иногда беспорядочно ориентированные пластинки бертрандита наблюдаются также в мелких пустотках, в лимонит-каолинитовой массе. Бертрандит бесцветный, показатели преломления, определенные в иммерсионных препаратах, равны: $Ng = 1,611 \pm 0,001$; $Nm = 1,603 \pm 0,001$ и $Np = 1,584 \pm 0,001$. Межплоскостные расстояния, согласно расшифровке дебаеграммы, выполненной Н. Г. Пиневич, соответствуют взятым за эталон бертрандитам из Коунрадского гранитного массива (Чухров и Смолянинова, 1956) (рис. 7) Полуколичественным спектральным анализом в бертрандите, кроме Ве и Si, установлены следующие элементы: P (>0,1%), Mn (0,01-0,1%), Mg (0,005-0,05%), $Fe (\sim0,5\%)$, Al (до 0,05%), V (0,005-0,05%), Ti (0,05-0,5%), Cu (0,0005-0,005%), Na (>0.1%), Zn (0,005-0,05%), Ca (>0,05%) Sr (0,0005-0,005%).

Изредка встречаются пустотки в сахаровидном альбите, образовавшиеся в результате выщелачивания кристаллов даналита (очертания пустоток имеют треугольную форму), частично выполненные беспорядочно ориентированными мелкими прозрачными кристалликами бертрандита.

Кроме описанных выше ассоциаций, мелкие пластинки бертрандита

 $T\ a\ b\ a\ u\ u\ a\ 2$ Полуколичественный спектральный анализ окислов железа и марганца, образовавшихся по даналиту (пределы содержания, в процентах)

Характер материала	Ве	P	Mn	Pb	Mg	Si	Fe
Келтый охристый лимонит	0,05—		0,01- 0,1		0,005—	0,5 и >0,5	≫0,5
Ілотные окислы жедеза темного, почти черного цвета	0 0 00		>0,5	0,001	0,005— 0,05	0,5 и >0,5	≫ 0,5
Горошок в даналите	0,05—		>0,5		0,05— 1,0	\gg 0,5	≫0,5
	0,05—	>0,1	0,5			0,5 и >0,5	0,5 > 0,
иесь гематита и гётита	0,005—		0,01—		0,005—	0,5 и >0,5	≫0,5

Характер материала	Bi	Al	v	Ti	Cu	Ag
Желтый охристый лимонит		0,005—		0,005	0,005— 0,05	
Плотные окислы железа темного, почти черного цвета	0,0005-	0,05—	0,05— 0,5		0,005- 0,05	0,0005- 0,005
Порошок в даналите	0,0005— 0,005 0,0005— 0,005	0,05— 1,0 0,05— 1,0	0,05— 0,5 0,005— 0,05		0,005— 0,05 0,005— 0,05	
Смесь гематита и гётита	3,000	0,005 0,05	1		0,005— 0,05	

Характер материала	Zn	Co	Ni	Ca	Sr	Ba
Желтый охристый лимонит	0,05—			0,005—		
Плотные окислы железа темного, почти черного цвета	0,05—	0,01— 0,5	0,05— 0,5	0,005— 0,05	0,0005—	0,005— 0,05
Порошок в даналите	0,05-	0,5		0,05	0,0005—	0,005 0,05
	0,5	0,01 0,1		0,005— 0,05		
Смесь гематита и гётита	0,05— 0,5			0,005— 0,05		

Аналитик И. П. Тоющев, лаборатория ИМГРЭ АН СССР

встречаются в некоторых случаях в измененном даналите, без кристаллов фенакита, с ярко-красным порошковидным гематитом.

Результаты исследования химического состава окислов железа и марганца, образовавшихся по даналиту, методом полуколичественного спектрального анализа приведены в табл. 2.

На основании изложенного фактического материала процесс последовательного парагенетического развития бериллиевых минералов в опи-

сываемых жилах представляется в следующем виде.

Первичным бериллиевым минералом, образовавшимся в раннюю магматическую стадию формирования пегматитовых жил, является берилл. В процессе альбитизации, очевидно, очень сильно щелочные растворы, содержащие Fe, Mn, Zn и в незначительном количестве S и другие элементы, разъедали кристаллы берилла, и бериллий осаждался в форме даналита. Об обогащенности растворов Fe и Mn свидетельствует и сингенетичная даналиту ассоциация минералов: в альбите вместе с даналитом встречаются спессартин, шерл, обогащенный марганцем биотит. При образовании псевдоморфоз даналита по бериллу избыток SiO_2 осаждался в виде кварца, чем и объясняется тесная ассоциация даналита и кварца в бериллах. Освобождавшийся из бериллов алюминий мог уходить на образование альбита и слюды, так как обогащение слюдой обычно наблюдается рядом с выделениями даналита (в случае его развития по бериллу).

Образование фенакита и бертрандита по даналиту является сложным и, судя по всему, связано с несколькими разновременными и различными по характеру и условиям процессами, которые обусловили различ-

ные формы и ассоциации этих минералов.

Образование в даналите изолированных кристалликов фенакита, приуроченных к пустоткам, частично заполнены сложным по составу, порошковатым материалом (продуктом изменения даналита), всего вероятнее, происходило при пневмато-гидротермальном процессе в результате окисления даналита. В порошке фиксируется ряд характерных элементов, не устанавливаемых в самом даналите: Bi, V, Co, Ni, Sr, Ba и P, которые были привнесены вновь во время этого процесса.

Образование сложных псевдоморфоз по даналиту плотных окислов железа — гематита и гётита, включающих кристаллы фенакита и кубической формы окислы железа, возникшие в результате псевдоморфозы по кристаллам пирита, происходило также под влиянием иневмато-гидготермальных растворов в процессе окисления даналита. При этом процесс изменения даналита протекал почти в замкнутой системе, и вновь образующиеся минералы осаждались в пределах пространства, занимаемого даналитом, так как фенакит и окислы железа за пределами измененных кристаллов даналита не встречаются.

Весь BeO и часть SiO₂ высвобождаемые в результате разложения даналита, связывались в форме фенакита. В связи с отсутствием в сложных исевдоморфозах по даналиту кварца, можно думать, что избыток SiO₂ при разложении даналита и образовании фенакита выносился во вмещаю-

щую среду.

В данном случае интересно взаимоотношение пирита и окислов железа. Нами не был обнаружен пирит в неизмененном даналите и, наоборот, псевдоморфозы по кристаллам пирита часто встречаются в измененном даналите вместе с фенакитом и окислами железа. Это служит основанием считать пирит в данном случае минералом не сингенетичным даналиту, а возникшим в результате его изменения. Очевидно, что разлагающие даналит растворы не содержали S, в связи с чем Fe из даналита только частично, на ранней стадии его изменения при сравнительно низком

кислородном потенциале, связывалось в форме пирита с S, содержащейся в самом даналите, а позднее, при повышении кислородного потенциала, весь остаток Fе выделился в виде гематита и гётита. Очевидно, при этом происходило и развитие псевдоморфоз гематита и гётита по кристаллам пирита. Высвобождающаяся сера шла на образование H_2SO_4 , которая разъедала окислы железа, в результате чего в них возникали пустоты. Марганец и цинк (содержащийся в даналите в количестве около 2%) рассеивались в окислах железа. Следы цинка иногда улавливаются в фенакитах и бертрандитах, что подробнее будет рассмотрено ниже.

В результате тектонических процессов фенакиты, заключенные в окислы железа и марганца, подвергались дроблению вместе с вмещающим их негматитом. После этого под воздействием новых растворов происходила сильная коррозия кристаллов фенакита и, возможно, переотложение окислов железа, заполнивших некоторые трещины в фенакитах. Смещение отдельных частей раздробленных кристаллов фенакита относительно друг друга свидетельствует о том, что они были заключены в пластичную сре-

ду, цементирующую отдельные кристаллы фенакита.

Образование радиально-лучистого фенакита и бертрандита происходило позднее описанных процессов разложения даналита, и условия изменения даналита в этом случае были несколько другими, что отразилось на форме кристаллов и обусловило изменение ассоциации минералов.

О более позднем образовании радиально-лучистого фенакита и бертрандита свидетельствует тот факт, что они не подвергались дроблению, и выделение пластинок бертрандита иногда происходило по уже существовавшим трещинам. Источником бериллия для этой генерации фенакита и бертрандита в некоторых случаях мог служить также и ранний фенакит, так как в ассоциации с этими минералами встречаются очень сильно корродированные кристаллы фенакита, как это отмечалось выше.

О новых условиях и новой стадии минералообразования, приведших к образованию бертрандита и второй генерации фенакита, свидетельствует не только появление бертрандита, присутствующего всегда вместе с радиально-лучистым фенакитом, но и очень сильная каолинизация вмещающих полевых шпатов. В связи с этим уже не сохраняется форма тетраэдрических пустот от кристаллов даналита, и радиально-лучистый фенакит и бертрандит развиваются в пределах каолинизированных участков, имеющих вид неправильных гнезд.

Очевидно, этот процесс происходил при высоком потенциале кислорода. Пирит не образовывался, а сера, освобождающаяся из даналита, давала H₂SO₄, которая обусловила каолинизацию полевых шпатов.

В гипергенных условиях происходила лимонитизация окислов железа и иногда переотложение их вместе с окислами марганца в виде почковидных и более сложных натечных форм. Бериллиевые минералы оставались

устойчивыми.

Таким образом, в описываемых пегматитовых жилах бериллиевые минералы развивались в следующей последовательности: берилл — данолит — фенакит₁ — бертрандит или (фенакит₂ + бертрандит). Как видно из этого ряда, Ве, переоткладываясь в виде новых минералов, в связи с изменением условий в процессе формирования пегматита последовательно концентрируется; содержание его от более ранних минералов к более поздним изменяется от 9-16 до 40-45%. Отношение SiO_2 : BeO при этом изменяется от 5-6: 1 до почти 1: 1, т. е. при развитии более поздних бериллиевых минералов за счет более ранних происходил вынос SiO_2 тогда как Ве, в период более поздних пневматогидротермальных процессов, совершенно не мигрировал. Это можно объяснить, по-видимому, от-

сутствием F, дающего легкоподвижное соединение с Ве. Действительно, никаких F-содержащих минералов в пегматитовых жилах описываемого месторождения установлено не было.

Интересно было выявить поведение цинка при разложении даналита. В связи с изоструктурностью Zn_2SiO_4 и Be_2SiO_4 , а также $Be_4[Si_2O_7]$ (OH)₂ и $Zn_4[Si_2O_7]$ (OH)₂ и $Zn_4[Si_2O_7]$ (OH)₂ и $Zn_4[Si_2O_7]$ (OH)₂ · H₂O можно было бы ожидать вхождение цинка в виде изоморфной примеси в фенакит или бертрандит, однако спектральным анализом цинк в фенаките и бертрандите устанавливается редко и в очень незначительном количестве. Отсутствие его в этих минералах связано, очевидно, с большой разницей в размере иона Be^{2+} (0,34) и Zn^{+2} (0,83). В описанных процессах изменения даналита Zn рассеивался в окислах железа вместе с Zn_2 0, во всех окислах устанавливается высокое содержание цинка и марганда.

Различный характер развития бериллиевых минералов — фенакита и бертрандита — в результате изменения даналита, свидетельствует о неспокойной тектонической обстановке в последнюю стадию формирования пегматитовых жил данного месторождения и об изменении с течением времени условий пневмато-гидротермального автометаморфического процесса, что приводило к многообразному изменению даналита.

ЛИТЕРАТУРА

Чухров Ф. В. и Смолянинова Н.И. Бертрандит из Коунрадского гранитного массива в Центральном Казахстане. Докл. АН СССР, т. 107, № 4, 1956.