АКАДЕМИЯ НАУК СССР

ТРУДЫ МИНЕРАЛОГИЧЕСКОГО МУЗЕЯ

Выпуск 11

Редактор д-р геол.-мин. наук Г. П. Барсанов

л. к. яхонтова

поведение кобальта в зоне окисления дашкесанского железорудного месторождения

Геологическое строение и минералогический состав Дашкесанского месторождения, представленного мощной магнетитовой залежью в гранатовом и эпидот-гранатовом скарнах, сменяющихся в лежачем и висячем боку роговиками и ороговикованными юрскими породами, достаточно хорошо известны. Особенностью его следует считать проявление в скарнах и рудах кобальтовой минерализации в виде кобальтина и кобальтсодержащих сульфидов (в основном пирита), связанных главным образом с поздним иневматолитово-гидротермальным этапом формирования месторождения.

Скарновый тип Дашкесанского месторождения, резко подчиненная роль в нем сульфидов, локальный характер распределения кобальтина и, наконец, различные формы проявления кобальта (сульфоарсенидная и сульфидная) придают особый интерес поведению этого элемента в усло-

виях зоны окисления.

Хотя зона окисления на месторождении изучена очень слабо, вопрос о судьбе кобальта в ней ставится не впервые. Первая характеристика гипергенных процессов в Дашкесане была дана Г. А. Крутовым (1937), описавшим в числе главных минералов, фиксирующих кобальт в зоне окисле

ния, эритрин и гетерогенит.

В специальной работе М. А. Карасика (1946) роль кобальта в зоне окисления Дашкесанского месторождения оценивается исключительно с точки зрения фиксации его в виде эритрина. Возможность других форм его проявления в этих условиях (например, в составе гидроокислов марганца) отрицается. Гетерогенит рассматривается в числе гипергенных продуктов, имеющих исключительно минералогический интерес.

В последнее время, в связи с эксплуатационными работами, проводимыми в Дашкесане, возникла возможность получения новых материалов по зоне окисления северных участков месторождения (северо-западного и северо-восточного). Южные участки, как мало вскрытые, в этом отно-

шении специально не изучались.

Процессы окисления скарноворудной залежи Дашкесанского месторождения наблюдаются главным образом в местах выходов рудного горизонта на поверхность. Таковы обнажения по бортам речных долин и участки висячего бока магнетитовой толщи, оказавшиеся близ поверхности в силу эрозионных процессов.

Гипергенные продукты обычно накапливаются в относительно небольших количествах и в большинстве случаев распространяются на глубину 1-2 м. Лишь в отдельных разрезах можно наблюдать более интенсивное

и глубокое (на глубину 15—20 м) развитие процессов выветривания, которое обусловили следующие особенности геолого-тектонического строе-

ния района и минералогического состава скарнов и руд:

1. Наличие в висячем боку магнетитовой залежи брекчированных ороговикованных пород, содержащих прожилки скарновых минералов и обильную вкрапленность халькопирита и пирита. Таков северо-западный участок месторождения, где в висячем боку рудного горизонта наблюдается значительное накопление продуктов выветривания силикатных и рудных минералов.

2. Широкое распространение в рудном поле даек, зальбанды которых осложнены трещинами, в ряде случаев несущими сульфидную и кобальтиновую минерализацию. Вдоль таких даек (например, Урдыаринской дайки северо-восточного участка) процессы окисления распространяются

на значительную глубину.

3. Существование крупных нарушений — разломов и связанных с ними оперяющих трещин — путей для миграции поверхностных вод. Таковы интенсивно окисленные участки близ Джебрадзорского разлома и вдоль трещин в обнажениях горы Каначкар на северо-западном участке.

4. Локальный характер распространения кобальтина, определяющий места образования гипергенных минералов кобальта, а также других сульфидов (пирита, халькопирита, сфалерита), присутствие которых 'уве-

личивает интенсивность гипергенных процессов.

С точки зрения поведения кобальта в зоне окисления месторождения большой интерес представляет, с одной стороны, выветривание силикатно-магнетитовой части скарновой толщи (граната, эпидота и особенно амфиболов), в которой кобальт находится в рассеянном состоянии, и с другой — окисление сульфидов и кобальтина — главных носителей этого элемента. Особое внимание было уделено характеру окисления следующих первичных минеральных ассоциаций:

1) почти мономинерального гранатового скарна в висячем боку рудной толщи на горизонте 1700—1710 м северной части северо-западного

участка;

2) выделений скарновых силикатов (граната, эпидота) и магнетита в виде прожилков среди брекчированных ороговикованных пород с вкрапленностью халькопирита и пирита в висячем боку залежи на северо-западном участке;

3) концентраций пирита и особенно халькопирита в крупных разду-

вах $(0.5 \times 0.5 \times 1 \text{ м}^3)$ прожилков;

4) массивного магнетита с вкрапленностью кобальтсодержащего пирита, обнаженного в бортах р. Джебрадзор на северо-западном участке;

5) выходов сульфидно-магнетитовых руд в обнажениях горы Каначкар на северо-западном участке, находящихся в условиях современного истечения грунтовых вод, приуроченных к зоне тектонических трещин;

6) выделений кобальтина в роговиках и вдоль Урдыаринского разлома

на северо-восточном участке;

7) кобальтина в ассоциации с кобальтсодержащим сфалеритом, халь-копирилом и пиритом в кальцит-эпидотовом скарне, приуроченном к контактам дашкесанитового скарна и роговиков висом 4000 дама магнетитовой

толщи северо-восточного участка (горизонт 1620—1630 м).

В результате проведенных исследований был изучен минералогический состав зоны окисления, оказавшийся сложным и разнообразным. Общий список гипергенных минералов расширился более чем вдвое. В него вошли следующие минералы и их разновидности (вновь обнаруженные виды набраны курсивом):

I. Самородные элементы и сульфиды: I) медь, 2) ковеллин, 3) халькозин.

II. Окислы и гидроокислы: 4) мартит, 5) гётит, 6) гидрогётит, 7) гидрогематит, 8) лампадит, 9) псиломелан, 10) гетерогенит, 11) кварц, 12) опал.

III. Карбонаты: 13) кальцит (кобальтсодержащий), 14) сферокобаль-

тит, 15) арагонит, 16) малахит, 17) азурит.

IV. Сульфаты: 18) мелантерит, 19) халькантит, 20) ярозит.

V. Арсенаты: 21) эритрин, 22) адамин.

VI. Силикаты: 23) каламин, 24) галлуазит (купро- и ферригаллуазит),

25) хризоколла, 26) нонтронит, 27) соконит и 28) аллофан.

Как видно, большинство минералов в списке — новые для Дашкесанского месторождения. Среди них есть такие (лампадит, соконит, гетерогенит и др.), о которых имеется мало сведений и в литературных источниках. Поэтому результаты детальных исследований этих минералов представляют большой интерес. Ниже приведена краткая характеристика гипергенных минералов в соответствии с принятой выше систематикой.

Самородная медь, ковеллин и халькозин, характерные для слабо окисленного халькопирита, были обнаружены лишь в аншлифах и специально не исследовались.

Окислы и гидроокислы железа своим образованием в зоне окисления месторождения обязаны выветриванию скарновых силикатов, а также

окислению магнетита, гематита и сульфидов.

Детальные исследования с применением минераграфического, химического и термического методов изучения показали, что гётит характеризует ранний этап процесса окисления магнетита и сульфидов, особенно пирита. Минерал наблюдается в виде темно-коричневых корок типа «бурой стеклянной головы», а также преобладает в составе кирпично- или вишнево-красных масс пористой или землистой текстуры.

Выветривание переменных по составу рудных скарнов приводит к образованию очень непостоянных по физическим признакам светло-коричневых или бурых охристых и плотных продуктов, в основном, г и дрогёт и тового состава со значительной примесью ферригаллуазита, остаточных силикатов и кварца.

Гидрогематит, представленный охрами густого вишневого

цвета, очень редок и образуется при окислении гематита.

Спектральные и химические исследования окислов и гидроокислов железа показали постоянное присутствие в их составе примесей Си и Мп. Примеси Со, Ті и V распределены очень неравномерно и зависят от содержания в первичном материале пирита, граната и магнетита. Кобальт особенно сильно рассеян и обычно обнаруживается в количестве от следов до сотых долей процента.

Особый интерес вызывает обнаруженный в зоне окисления лам падит, образующийся главным образом за счет одновременного изменения халькопирита и скарновых силикатов, выполняющих раздувы магнетитгранатовых прожилков в роговиках висячего бока рудной толщи северозападного участка. Обычными спутниками его служат кварц, малахит и

хризоколла.

Лампадит принадлежит к числу минералов, изученных очень слабо, и обычно рассматривается как высокомедистая разность псиломелана с общей формулой $n(Mn,Cu)O \cdot mMnO_2 \cdot pH_2O$. По литературным данным (Бетехтин, 1950; Дэна, 1951), содержание в нем CuO и H_2O колеблется соответственно в пределах 1—21 и 13—20%. Иногда присутствует CoO.

Химические апализы минералов (в весовых процентах)

Окнены	Лампадит			Купрогадлуазит						Кобальтсодержа- щий кальцит		-	
	агрегат массивцо го сложе- ния	- землистый агрегат	Гетеро- генит	голубой	зеленый	Нонтро- нит	Секонит	хризо- колла	Аллофан	анализ 1	инализ	Эри-	Адамин
850	1,80	2 20	0.55	40.75	27.40	11. 11.	14 26	20.40	27,38	II.om	Hom		TIam
$\sin 0_2 \dots \dots \dots$,	2,20 3,02	0,55	40,75	37,10	44,14	41,36	39,40	,	Нет	Пет		Пет
d_2O_3	2,26	, ,	0,15	39,18	14,97	3,59	1,12	5,53	33,87	7,7	2.5	0.20	7,7
e_2O_3	3,23	9,98	0,51	0,21	0,15	27,66	Следы	0,10	0,54	Следы	FO 22	0,26	Следы
laO	2,31	3,08	4,07	Пе опред.		5,95	2,32	1,25	2,16	52,02	50,32	2,42	He onpe;
lgo	0,60	0,47	0,79	11 11 TT	1,72	2,15	1,51	0,12	0,62	4,33	5,27	1,31	11 11 TT.
InO	Her	8,26	0,30	Her	Нет	Следы	Her	Нет	Нет	0,06	0,01	Her	Her
InO_2	37,15	29,91	0.40	0.77	")) TT	4.07	,,,	11	→ TT.		-	0.05
luO	27,66	15,41	0,19	2,74	26,18	Нет	1,07	41,42	1,15	Нет	Her	Следы	
nO	Нет	Her	Нет	Her	Следы	9.9	32,09	Нет	Нет	,,	11	Нет	49,17
00	1,26	Следы	14,61	7.7	Her	11	4,15	11	2.1	0,85	0,54	35,61	1,84
Co_2O_3	_	-	56,81	,,	2.1	3 3		,,	1.1			_	
ViO	0,12	Следы	0,88	2 3	2.3	1 >	Следы	9.1	2.3	Нет	Нет	Следы	
O_2	Нет	Не опред.	0,66	7)	, ,	1 1	Нет	Не опред.	7.1	43,25	43,07	Нет	Her
$_{1}S_{2}O_{5}$	3.3	Her	Нет	7.3	, ,	1 2	3 3	Нет	11	Нет	Нет	38,21	37,24
O_3	1 2	1 2	, ,	2.2	11	1 2	0,69	, ,	, ,	,,	7 7	Нет	Нет
I_2O	14,48	16,44	18,64	14,15	14,47	16,40	14,47	12,25	34,93	0,20	0,15	23,18	6,28
Герастворимый остаток	10,00	8,96	Нет	_	Bary		2,00	_		Нет	Нет	Нет	1,02
Сумма	100,87	97,73	98,16	97,03	99,40	99,89	100,78	100,07	100,65	100,71	99,36	100,99	98,66

Химическая лаборатория кафедры Минералогии МГУ; апалитики А. Н. Букипа, В. А. Кудрякова, В. В. Бон и Р. Л. Тимофесва Количества MnO, MnO $_2$, CoO и Co $_2$ O $_3$ рассчитаны по валовому содержанию MnO и CoO и активному кислороду.

Дашкесанский лампадит обладает следующими физическими признаками: сложение массивное или землистое; окраска черная; черта темно-коричневая; твердость изменяется от 1 до 3; блеск матовый; в соляной кислоте растворяется полностью с выделением пузырьков хлора. Спектральными анализами в составе образцов определены высокие концентрации Мп и Си, средние количества Al, Si, Fe, Ca, Mg и Со, небольшие примеси Ni и Ag. Данные двух химических анализов, приведенных в табл. 1, соответствуют водным окислам Мп и Си с небольшой примесью SiO_2 , Al_2O_3 и Fe_2O_3 , наличие которых обусловлено присутствием в продуктах окисления гидроокислов железа, кварца и галлуазита.

Результатам анализов соответствуют следующие формулы, очень близ-

кие к приведенным в литературных источниках 1:

Для плотного агрегата ($Cu_{0,85}Ca_{0,1}Co_{0,05}$) О· MnO_2 · $2H_2O$, Для рыхлого образца 1,1 ($Cu_{0,5}Mn_{0,4}Ca_{0,1}$) О· MnO_2 ·2,7 H_2O .

Исследованные образцы лампадита принадлежат к кобальтсодержащим разновидностям этого минерала. При этом образцы массивного сложения содержат марганец исключительно в виде ${\rm MnO_2}$ и сильнее обогащены медью и кобальтом. Очевидно, образование их происходит в условиях более интенсивного процесса окисления и повышенного количества

сульфидов в первичном материале.

Для лампадита были получены термограммы, одна из которых приведена на рисунке, но при отсутствии в литературе подобных данных для этого минерала сравнить эти термограммы пришлось с кривой нагревания, записанной для музейного образца состава (Сu, Co) О·MnO₂·ЗН₂О. (Минералогический музей АН СССР, обр. № 24842). Дифференциальные кривые оказались подобными (см. рисунок).

Рентгеновские исследования показали, что дашкесанский лампадит

(как и музейный) является рентгеноаморфным.

Вторым черным минералом зоны окисления служит п с и л о м е л а н, который в виде тончайших пленок и дендритов иногда наблюдается на выветрелых скарновых породах. Медь менее характерна для него (качественные испытания), но следы кобальта в нем обнаруживаются постоянно.

Третьим черным продуктом окисления на Дашкесанском месторождении является собственно кобальтовый минерал — гетерогенит, впервые описанный Г. А. Крутовым (1937), но не исследованный в свое время из-за недостатка материала. Новые сборы позволили провести эти

исследования.

Известно, что гетерогенит принадлежит к группе гидроокислов кобальта, изученных в настоящее время очень слабо. Обнаруженный впервые в Шнееберге и исследованный Френцелем (Hintze, 1904), он имеет состав ${\rm CoO} \cdot 2{\rm Co}_2{\rm O}_3 \cdot 6{\rm H}_2{\rm O}$. Позднее в результате работ главным образом Линхира (L. de Leenheer, 1950), возникла возможность рассматривать гетерогенит в виде главного представителя группы гидроокислов Со и Си с общей формулой ${\rm n(Co}, {\rm Cu}){\rm O} \cdot {\rm mCo}_2{\rm O}_3 \cdot {\rm pH}_2{\rm O}$, включающей такие минералы как триёнт, миндигит и стениерит. Описания новых находок детально изученного гетерогенита в минералогической литературе отсутствуют.

На Дашкесанском месторождении гетерогенит образуется при окислении кобальтина и ассоциируется только с эритрином, по сравнению с которым отлагается позднее. Минерал был обнаружен в значительном коли-

 $^{^1~{\}rm MnO}$ и ${\rm MnO_2}$ были определены по общему содержанию марганца и активному кислороду.

честве на северо-восточном участке в глубоко окисленном материале по Урдыаринскому нарушению, несущему кобальтиновую минерализацию.

По физическим признакам, рентгеноаморфному состоянию и легкости растворения в HCl этот минерал напоминает лампадит, от которого,

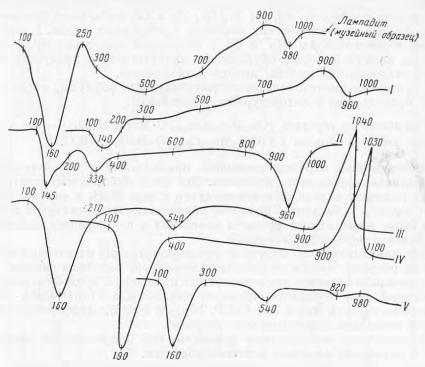


Рис. Кривые нагревания лампадита (I), гетерогенита (II), купрогаллуазита (III), аллофана (IV) и нонтронита (V)

помимо присутствия в ассоциации с ним эритрина, отличается высокой концентрацией кобальта. Для большинства его образцов характерна твердость 2.5-3 и смолистый блеск.

В табл. 1 приведен химический анализ одного образца гетерогенита, которому соответствует формула $CoO \cdot 1,7Co_2O_3 \cdot 9H_2O$. При этом количество CoO и Co_2O_3 было вычислено по валовому содержанию CoO (65,93%) и активному кислороду (5,48%). Полученная формула оказалась довольно близкой к составу гетерогенита из Шнееберга и отличается преимущественно по содержанию воды.

На рисунке приведена кривая нагревания дашкесанского гетерогенита, содержащая три четких эндоэффекта (145, 330 и 960°). Вид ее целиком соответствует дифференциальным кривым, полученным Линхиром (L. de Leenheer, 1950) для других минералов гетерогенитового ряда — для триёита и миндигита. Следовательно, не только по составу и виду формул, но и по характеру термограмм все три минерала могут входить в одну группу.

Остальные окислы — к в а р ц и о п а л — постоянно обнаруживаются в зоне окисления в том или ином количестве. Оба характерны для процессов выветривания силикатных минералов и обычно примешиваются к продуктам гётит-гидрогётитового состава (иногда до $25-30\,\%$), к лампадиту и нонтрониту. Самостоятельная роль кварца и опала в зоне окис-

ления невелика. В участках накопления гипергенных кобальтовых ми-

цералов особого значения они не имеют.

Значительно шире распространены гипергенные карбонаты. Среди них малахит и азурит являются обычными продуктами разложения сульфидов, главным образом халькопирита, и в образцах обычно чередуются друг с другом, с хризоколлой и, реже, с лампадитом. Оба интересны тем, что содержат примеси кобальта — от следов до сотых долей процента (по данным спектральных анализов).

Процесс карбонатизации продуктов окисления, т. е. процесс образования кальцита и арагонита, очень широко распространен на месторождении. Карбонаты кальция возникают при выветривании главным образом безрудных скарнов и ороговикованных пород. При этом арагонит в заметных количествах наблюдается исключительно в местах изменения почти мономинеральных скоплений граната, где ассоцируется

с нонтронитом. Кобальт в нем не фиксируется.

Особый интерес представляет к о б а л ь т с о д е р ж а щ и й к а л ь ц и т, обнаруженный на обоих северных участках в связи с окислением пирита, заключенного вместе с гипогенным кальцитом в массе магнетита (особенно в обнажениях по р. Джебрадзор на северо-западном участке), и сульфидно-кобальтиновой ассоциации (пирит и кобальтсодержащий сфалерит) и кальцит-эпидотовом скарне (на северо-восточном участке).

Во всех случаях описываемый карбонат развивается на месте гипогенного кальцита путем образования в нем пятен или оторочек, постепенно

затухающих в стороны от рудных минералов.

Наиболее близким спутником описываемого минерала является сферокобальтит, который, как правило, образуется в непосредственном контакте сульфида с вмещающим карбонатом. На северо-восточном участке, где, кроме пирата, исходными минералами являются кобальтин, хальконирит и сфалерит, в ассоциации с кобальтсодержащим кальцитом появляются каламин, соконит, эритрин, адамин и другие минералы. Но они обычно обособлены от кальцита, так как отлагаются на месте окисленных и выщелоченных сульфидов. В этой ассоциации обращает на себя внимание преобладание кобальтовых карбонатов над арсенатом кобальта — эритрином.

Окраска кобальтсодержащего кальцита розовая, чаще неравномерно распределенная. Наблюдались густо-сиреневые, бледно-розовые и яркомалиновые участки, сосредоточенные в одном и том же зерне карбоната. Другие свойства, если не считать повышенный показатель преломления

(N₀ до 1,668) и слабый плеохроизм, — обычные для кальцита.

Качественной реакцией в описываемом минерале легко открывается кобальт. Спектроскопически дополнительно в нем обнаружены Mn, Sr, Cu, Zn, Fe и Ni (от следов до 0,1% каждого). Испытания на содержание

анионов $(SO_4)^{-2}$ и $(AsO_4)^{-3}$ дали отрицательные результаты.

При нагревании наиболее однородных по окраске образцов кобальт-содержащего кальцита до $120-150^\circ$ они теряют около 0.2% воды и приобретают голубовато-серый цвет. Потеря слабо связанной воды обычно фиксируется и на термокривой минерала в виде небольшого эндоэффекта около 100° .

В шести образцах розового кальцита кобальт был определен количественно; оказалось, что содержание его равно от 0.1 до 1.0%. Для двух образцов равномерной густо-сиреневой окраски были выполнены полные химические анализы, приведенные в табл. 1. Интерес представляет не только содержание в образцах CoO, но и повышенная их магнезиальность (MgO — 4—5%).

⁹ Труды Минералогического музея, вып. 11

Преобладающая форма нахождения кобальтсодержащего кальцита (пятна и зоны в гипогенном карбонате) дает основание предполагать, что образование его происходило в условиях «пропитывания» первичного кальцита растворами, содержащими кобальт. Состав растворов не вполне ясен, но есть основания считать их карбонатными (самостоятельное отложение гипергенного кальцита в трещинах; отсутствие в составе минерала других анионов; тесная ассоциация его со сферокобальтитом; возможность миграции кобальта в углекислых водах — см. А. Смуров, 1938). Можно также предполагать частичное замещение кобальтом магния в составе кальцита, тем более что последний принадлежит к числу высоко магнезиальных разновидностей.

Последний среди карбонатов — с ферокобальтит является минералом, новым для месторождения. Образование его, как уже отмечалось, происходит при окислении кобальтсодержащего пирита и кобальтина, заключеных в кальците. При этом сферокобальтит обычно отлагается на кобальтсодержащем кальците со стороны рудных минералов и образует с ним очень тесные срастания. Кальцит в этом случае несет следы

интенсивного выщелачивания вдоль плоскостей двойникования.

Окраска минерала малиновая. Характерны зопальные округлые агрегаты, состоящие из тесно сросшихся удлиненных зерен. В иммерсионных жидкостях сферокобальтит окрашен в розовый цвет с плеохроизмом от бесцветного до бледно-сиреневого. Величины N'g и N'p, измеренные у ряда образцов, лежат соответственно в пределах 1,820—1,840 и 1,609—1,620. Значительное отклонение этих величин от литературных данных (у Винчелла No = 1,855 и Ne = 1,600) можно объяснить трудностями получения ориентированных разрезов.

Из-за невозможности полностью отделить сферокобальтит от кальцита была проанализирована карбонатная смесь, обогащенная описываемым минералом. Содержание CoO в смеси оказалось очень высоким (около 42%),

что подтверждает преобладание в ней сферокобальтита.

Сульфатные соединения мелантерит, халькантит и ярозит, обнаруженные в зоне окисления месторождения (на северовосточном участке), интересны в том отношении, что они свидетельствуют об участии сернокислых растворов в гипергенных процессах. Диагностика этих минералов была проведена на основании качественных испытаний и

оптических исследований.

Особый интерес представляет халькантит, образующийся по существу и в настоящее время. Его голубые и зеленоватые зернистые агрегаты вместе с белым полупросвечивающим аллофаном составляют основную массу давно известных зеленых корок в обнажениях горы Каначкар, где по трещинам происходит постоянное истечение вод. Халькантит легко растворяется в воде и обладает обычными для него оптическими свойствами: он двуосный, отрицательный, $N'g = 1,541 \pm 0,002$, $N'p = 1,513 \pm 0,002$.

Реже встречающийся мелантерит был обнаружен в виде волокнистых агрегатов буроватой окраски среди продуктов выветривания пиритизированного гранатового скарна. Минерал двуосный, с положительным удлинением: c/Ng кристаллов равно нулю; $N'g=1,484\pm0,002$, $N'p=1,481\pm0,002$; частично окислен и обохрен.

В осоих сульфатах спектроскопически открыты кобальт и никель

(0.001-0.01% каждого).

Я розит очень редок; он был установлен в составе охристого бурожелезнякового материала, образующегося погранат-магнетитовому скарну. Арсенаты на месторождении представлены эритрином и адамином.

Эритрин характерен для северо-восточного участка как продукт окисления кобальтина. В свое время Г. А. Крутов (1937) довольно подробно описал характер выделения этого минерала в дашкесанской зоне окисления и отметил свойственные ему близкие связи с гетерогенитом, образующимся позднее.

Здесь следует остановиться лишь на несколько необычных условиях образования эритрина в случаях окисления кобальтина, находящегося в ассоциации со сфалеритом, и на некоторых особенностях состава эрит-

рина.

Обычно когда окисляется кобальтин, то даже при наличии пирита и халькопирита эритрин образуется в достаточном количестве и, не считая гетерогенита, является единственным кобальтовым гипергенным мине-

ралом.

Но при окислении кобальтин-сфалеритовой ассоциации из кальцит-эпидотового скарна северо-восточного участка в Дашкесане, несмотря на высокую концентрацию в ней кобальтина, наблюдается заметное подчинение эритрина другим минералам — адамину (кобальтовая разность), Сосокониту, каламину, Со-кальциту и сферокобальтиту. При этом эритрин отчетливо обособляется от перечисленных продуктов окисления, отлагаясь на месте кобальтина, на эпидоте и гидроокислах железа.

Описанное явление, очевидно, можно объяснить меньшей растворимостью арсената цинка (адамина) по сравнению с арсенатом кобальта — эрит-

рином.

Один образец эритрина северо-восточного участка, образовавшегося при окислении кобальтина в роговиках висячего бока рудной толщи, был проанализирован (табл. 1). В нем было обнаружено повышенное содержание кальция и магния. Оптические свойства эритрина, по-видимому в связи с указанными особенностями состава, несколько отличаются от описанных в литературе заниженным значением Ng (1,680—1,682) и повышенной величиной угла угасания (до 42—45°).

В указанной выше ассоциации гипергенных минералов, образовавшихся при окислении кобальтина и сфалерита, был обнаружен а дамин, выделяющийся в полостях выщелачивания сфалерита в виде округлых мелкокристаллических агрегатов зеленоватой, ярко-зеленой и сиреневой окраски. Чаще адамин отлагается на слоистых корочках соконита и

сверху покрывается каламином.

Зеленый адамин принадлежит к медьсодержащей разновидности, к купроадамину. Медь в нем легко открывается качественными испытаниями, а оптические свойства очень близки к описанным в литературе: слабый плеохроизм в зеленоватых тонах, прямое угасание, положительное удлинение, $Ng=1,755\pm0,002$, $Nm=1,730\pm0,002$, $Np=1,715\pm0,002$.

Сиреневый адамин является кобальтсодержащим. Состав его в соответствии с выполненным анализом (табл. 1) отвечает следующей формуле: 4 (Zn, Cu, Co)O·As₂O₅·2H₂O или (Zn, Cu, Co)₂·AsO₄·(OH). Показатели преломления кобальт-адамина ниже, чем у медистой разновидности (Ng = 1.739 и Np = 1.740).

Значительная роль в зоне окисления принадлежит силикатам, среди которых каламин, Со-соконит, хризоколла и купрогаллуазит своим образованием обязаны совместному выветриванию силикатов и сульфидов

месторождения.

Каламин был обнаружен только в выше описанной ассоциации, образующейся при окислении сфалерита и кобальтина в кальцит-эпидотовом скарне северо-восточного участка. Этот минерал, диагностированный по оптическим свойствам и данным спектрального анализа, обычно

отлагается на адамине, соконите и непосредственно на сфалерите в виде белых игольчатых кристалликов и их сростков. Кроме главных элементов — цинка и кремния, содержит небольшие примеси Fe, Cu, Mn и Co (каждого менее 1%).

Соконит, встреченный на месторождении в виде кобальт-содержащей разновидности, не описанной до сих пор в литературе, представляет особый интерес. Этот минерал наблюдался в виде корочек розовой окраски толщиной до 1 мм, покрывающих поверхность пустот выщелачивания в сфалерите. Для корочек характерны трещины усыхания и изогнутые сферические поверхности отдельных сегментов, на которые они легко распадаются. На корочках соконита отлагаются каламин, адамин и кварц.

Блеск соконита матовый, твердость его около 2. В HCl минерал разлагается при нагревании с выделением порошковатого кремнезема и окра-

шиванием раствора в синий цвет.

Под микроскопом соконит слегка желтоватый, в виде зерен с тонко волокнистым строением, затрудняющим измерение оптических констант. Плеохроизм не наблюдается. Угасание волоконец близко к прямому, удлинение положительное. Двупреломление сравнительно высокое (око по 0,025). С большим трудом удалось измерить наибольший показатель преломления зерен, оказавшийся близким к 1,545.

Следует отметить, что особенно слабо соконит изучен в отношении оптических свойств. В соответствии с немногочисленными исследованиями (Винчелл, 1953), Ng его колеблется в пределах 1,592—1,615, а величина двупреломления указывается равной около 0,035. Есть также данные о том, что двупреломление Zn-монтмориллонита низкое, а среднее значение

N. близко к 1,560 (Воробьев и Бадалов, 1955).

Характер оптических констант описываемого минерала, очевидно, за висит от его состава, который, как у всей группы монтмориллонита, довольно сложный. Изучение дашкесанских образцов (см. химический анализ в табл. 1) показало, что в дашном случае имеется неизвестная до сих пор разновидность почти безглиноземистого и в то же время кобальтсо-держащего соконита, формула которой 3 ($Zn_{0.85}$ $Co_{0.12}$ $Cu_{0.03}$) $O \cdot 4,4SiO_2 \cdot 5H_2O$ по величине отношения между ZnO и SiO_2 оказалась очень близкой к теоретическому составу Zn-монтмориллонита $3ZnO \cdot 4SiO_2 \cdot nH_2O$.

Принадлежность исследованного материала к сокониту подтвердили результаты рентгеновского изучения. В табл. 2 приведена дебаеграмма дашкесанского соконита, многие линии которой вполне удовлетворительно

совпадают с приводимыми в литературе..

Хризоколла описывается также впервые. Она была обнаружена на обоих северных участках (особенно на северо-западном), как продукт окисления халькопирита, заключенного в скарновых и ороговикованных породах. Вместе с хризоколлой обычно встречаются малахит и лампадит.

Хризоколла была определена по оптическим свойствам (Ng колеблется в пределах 1,556—1,595, двупреломление меняется от 0,018 до 0,025), по виду дебаеграмм и, наконец, по результатам химического анализа (табл. 1), отвечающего формуле $0.1 \text{Al}_2 \text{O}_3 \cdot \text{CuO} \cdot 1,2 \text{SiO}_2 \cdot 1,3 \text{H}_2 \text{O}$, очень близкой к теоретическому составу этого минерала. Спектроскопическим исследованием установлены следы кобальта.

Остальные гипергенные силикаты — нонтронит, галлуазит и аллофан являются продуктами выветривания, главным образом силикатов. Тем не менее в составе их в той или иной степени отразилось присутствие сульфидов в скарнах и вмещающих их породах.

Нонтронит в заметных количествах распространен исключительно на северо-западном участке и образуется в результате выветривания

Таблица 2

Дебаеграмма соконита

Дашкесана*	Образец из	ературные данные (Faust, 1951)	
d/n	I	d/n	I
		2,67	3
2,59	4	2,59	3
1,50	5 щ	1,55	4
_	_	1,50	1
1,32	2 ш	1,33	2
— —	_	1,29	1
1,15	1	1,13	1
1,03	1	1,02	1
0,90	1	0,89	1
0,86	1	0,82	2

* Си — антикатод; $d=57,3\,$ мм; экспозиция 16 час.

почти мономинеральных скоплений граната в висячем боку рудной залежи. Вместе с ним обнаружены более поздний ферригаллуазит и арагонит.

Образование понтронита по гранату в гипергенных условиях не явдяется чем-то необычным. Ряд авторов отмечали нонтронитизацию гранатового скарна, высказывая предположение о связи этого процесса с действием сульфатных вод на силикатные минералы (Гинзбург и Рукавишникова, 1951; Сердюченко и Искюль, 1933).

Макроскопически нонтронит тонко-чешуйчатый, жирный на ощунь, довольно мягкий (твердость 1-1,5), луково- или фисташково-зеленой окраски. Оптические константы его обычные: цвет под микроскопом светло-желтый, плеохроизм слабый, двупреломление умеренное, близко к 0.012-0.015. Несколько удлиненные зерна нонтронита в скрещенных николях обнаруживают волокнистое строение. Максимальный показатель преломления равен 1.578 ± 0.002 , минимальный 1.565 ± 0.002 .

Термограмма нонтронита, представленная на рисунке, по температурному положению второго эндоэффекта (540°) оказалась типичной для высокожелезистой разновидности этого минерала, что подтвердилось и результатами химического анализа (табл. 1).

Состав проанализированного образца, выражающийся общей формулой (Fe, Al)₂O₃·4SiO₂·0,8 (Ca, Mg)·5H₂O, характеризуется не только высоким содержанием Fe₂O₃ (27,66%), но и присутствием значительного количества CaO (5,95%) и MgO (2,15%). Примесь последних элементов обычна для нонтронита, образующегося при выветривании железо-известковистых скарнов гранатового состава. В литературе известны случай находок нонтронита, содержащего до 10% CaO и 8% MgO (Гинзбург и Рукавишникова, 1951).

Спектральным анализом в нонтроните из Дашкесана были установлены, по существу, те же примеси, что и в гранате (Ti, V, Mn, Ba, Sr, Zr и Ga). Это в значительной мере определяется теми генетическими вза-имоотношениями, которые существуют между обоими минералами.

Галлуазит в зоне окисления месторождения распространен шире, чем понтронит. По сравнению с последним он образуется в более «кислых» условиях — при выветривании ороговикованных пород и скарновых силикатов, содержащих обильную вкрапленность сульфидов, особенно халькопирита.

На северо-западном участке было обнаружено несколько разновидностей галлуазита: 1) обыкновенный; 2) ферригаллуазит и 3) купрогаллуазит, диагностированные при помощи оптического, термического, рентге-

новского и химического методов исследования.

Обыкновенный галлуазит в виде опаловидных белых и кремовых корочек встречается главным образом среди ороговикованных пород, подвергшихся выветриванию. Содержание кобальта в его составе не фикси-

руется.

Ферригаллуазит присутствует в массе гидрогётит-лимонитового материала, образовавшегося при выветривании гранат-магнетитовых скарнови в составе глинок трения многочисленных трещин в породах скарновой залежи. В некоторых его образцах спектроскопически определены примеси кобальта — от следов до сотых долей процента. Свойства ферригаллуазита не отличаются чем-либо от указанных в литературе для этого минерала (Бетехтин, 1950).

Наибольший интерес вызывает купрогаллуазит — голубой или зеленый опаловидный минерал, иногда очень сильно напоминающий хризо-

коллу.

Медистый галлуазит распространен исключительно в рудных скарнах, содержащих сульфиды. Скопления его в виде тонких корочек нередко выделяются на контакте халькопирита и вмещающих силикатов. Обычные спутники этого минерала — лампадит, малахит, хризоколла и аллофан. С последними он образует постепенные переходы соответственно в сторону сульфидов и в сторону выветривающихся силикатов, а с лампадитом и малахитом нередко переслаивается.

По характеру термограмм (см. рисунок), оптическим свойствам (очень слабое двупреломление и N, равное в среднем 1,520—1,528), а также дебаеграммам (табл. 3) описываемый минерал соответствует галлуазиту.

В табл. 1 приведены два химических анализа купрогаллуазита — голубой и яркой зеленой окраски, которым отвечают соответственные формулы:

1) 0,1CuO·Al₂O₃·1,8SiO₂·2H₂O;

2) $3(Cu, Ca, Mg)O \cdot Al_2O_3 \cdot 4SiO_2 \cdot 5,4H_2O$, что при возможной замене 3CuO на Al_2O_3 составляет $Al_2O_3 \cdot 2SiO_2 \cdot 2,7H_2O$.

Химические анализы галлуазита показывают особенно высокое содержание CuO (до 26%) в зеленом образце минерала. Галлуазит с таким высоким содержанием меди в литературе до сих пор не описывался. В сильно медистом галлуазите из Казахстана, по данным Ф. В. Чухрова (1955), количество CuO достигает только 15%. Не исключена возможность влияния меди на степень раскристаллизации образца, о чем свидетельствует характер полученных дебаеграмм с широкими линиями (табл. 3).

В некоторых образцах купрогаллуазита спектральным анализом фик-

сируется кобальт (следы -0.05%).

Близкий спутник галлуазита а л л о ф а н отличается от него полупрозрачностью и гелевидными формами выделений. Кроме уже описанной ассоциации, этот минерал распространен в обнажениях горы Каначкар, где он тонко переслаивается с халькантитом.

Окраска аллофана белая или голубая. Твердость около 2. Под микроскопом минерал бесцветный, полностью изотропный. Показатель прелом-

Таблица 3

Дебаеграммы купрогаллуазита (Си — антикатод; эквпозиция 12 час.; $2R=57.3\,$ мм)

Галлуазит по справочнику (Михеев В. И., 1957)		Дашнесанские образцы -						
		гол	убой	зеленый				
I	d/n	I	d/n	I	d/n			
8	10,4			general ful				
7	9,7	_	_		-			
10	4,41	5	4,50	5 m	4,37			
6 ш	3,62	1	3,72					
2 ш	2,82	1 m	2,83	3 ш	2,88			
7	2,57	3	2,58	3 111	2,56			
	_	3	2,48					
3	2,33							
2	2,23	1	2,23		_			
4 111	1,67	3	1,63	2 ur	1,61			
10	1,48	5	1,48	4	1,47			
5	1,29	3	1,29	2	1,31			
6	1,24	3	1,22	_				
1 ш	1,10	_			_			

ления его близок к 1,486, что соответствует литературным данным. В иммерсионных препаратах и шлифах в аллофане обнаруживается мелкозернистая примесь неравномерно распределенного кальцита.

Известно, что состав аллофана очень сложный и непостоянный. Содержание главных элементов в нем обычно колеблется в следующих пределах (в процентах): $SiO_2 = 22-39$; $Al_2O_3 = 24-40$; $H_2O = 39-44$. Характерна также примесь CaO (2% и более), MgO (до 1%) и CuO (1,5% и более). Отношение между Al_2O_3 и SiO_2 в большинстве случаев лежит в интервале 1: 1,1 — 1: 1,8.

Химический анализ одного образца, помещенный в табл. 1, дал общую формулу 0.1 (Ca, Cu)O $\cdot 0.7$ Al₂O₃ $\cdot SiO_2 \cdot 4.2$ H₂O, которая по соотношению главных компонентов соответствует аллофану. Кобальт в его составе отсутствует.

Очень своеобразна дифференциальная кривая нагревания описываемого минерала, содержащая один крупный эндоэффект (потеря воды) и не менее крупный экзопик, очевидно связанный с образованием нового кристаллического вещества (см. рисунок). Непрокаленные образцы аллофана аморфны — дебаеграммы их не содержат ни одной линии.

В результате детальных исследований минералогического состава зоны окисления Дашкесанского месторождения были выявлены особенности гипергенного изменения различных первичных минеральных ассоциаций. Среди них наметились три основные группы:

1) безрудные скарны (гранатовые, эпидотовые и др.) и ороговикованные породы висячего бока магнетитовой залежи — преимущественно силикатная ассоциация:

2) рудные скарны с преобладанием магнетита и с рассеянной сульфидной минерализацией (в основном с пиритом) — магнетитовая ассоциация;

3) рудные и безрудные скарны, а также ороговикованные породы, в которых значительная роль принадлежит сульфидам (в основном пириту и халькопириту), а иногда кобальтину — сульфидная ассоциация.

В первых двух ассоциациях кобальт находится исключительно в рассеянном состоянии. Примеси его обнаруживаются в некоторых силикатах, особенно в эпидоте и амфиболах, и в меньшей степени в магнетите

(главным образом за счет рассеянного пирита).

Среди вторичных продуктов в этом случае главное место занимают окислы Si, Fe и Mn (кварц, мартит, гидрогётит, псиломелан), карбонаты Са (кальцит и арагонит) и ряд силикатов Fe и Al (нонтронит, галлуазит и аллофан). Кобальт в большинстве из них отсутствует и лишь гидроокислы Fe и Mn иногда содержат незначительные примесп этого элемента.

Иную картину представляет окисление сульфидной минеральной ассоциации, в которой в различных соотношениях находятся пирит, халькопирит, реже сфалерит, в ряде случаев (на северо-восточном участке) кобальтин и, наконец, силикатные минералы и магнетит. Пирит и кобальтин являются главными носителями кобальта (среднее содержание Со в пирите 0,3—0,5%), незначительную роль в этом отношении играет мало распространенный сфалерит, в котором содержится до 0,2% Со.

В процессе окисления скарнов и руд, содержащих только сульфиды, возникают разнообразные гипергенные минералы — сульфиды, окислы, сульфаты, карбонаты и силикаты, фиксирующие в своем составе Fe, Cu, Co, Mn и Zn. Среди них особый интерес вызывают минералы, новые дли месторождения, — лампадит, хризоколла, купрогаллуазит, соконит, халькантит, каламин, сферокобальтит и кобальтсодержащий кальцит.

Главная масса кобальта при этом рассеивается. Только небольшая часть его задерживается в составе гидроокислов Mn и Cu (в лампадите и псиломелане), в карбонатах (в кальците и в виде сферокобальтита) и

в некоторых силикатах (например, в соконите).

Когда вместе с сульфидами или самостоятельно появляется кобальтин, возникают новые формы вторичной концентрации кобальта — арсенатная и окисная. Первая представлена на месторождении эритрином и кобальтсодержащим адамином, вторая — гетерогенитом, отвечающим конечной стадии окисления кобальтина.

Минералогический состав зоны окисления месторождения, характеризующийся преобладанием карбонатов и слабораскристаллизованных, подчас коллоидных минералов (гидрогётит, галлуазит, аллофан, хризоколла и др.), свидетельствует о высокой роли в процессах гипергенеза карбонатных и коллоидных растворов. Подчиненное значение имеют сульфатные

и арсенатные воды.

Во всех случаях кобальт может легко мигрировать. Перенос кобальта в виде бикарбоната экспериментально доказал А. А. Смуров (1938). Основным условием устойчивости кобальтсодержащих карбонатных растворов является избыток в них углекислоты. Механизм отложения кобальта в случаях коллоидной миграции связан прежде всего с коагуляцией растворов. Этому механизму соответствует неравномерное распределение кобальта в образующихся гипергенных продуктах — от следов до целых процентов (в лампадите, соконите).

При любом способе переноса кобальт может рассеяться или сконцентрироваться в составе различных минералов. Большое значение в обоих случаях имеют адсорбционные явления, связанные с присутствием тонкодисперсных систем — гидроокислов Fe, Mn, Si и силикатов. Адсорбция кобальта глинами и гидроокислами марганца широко известна в литературе (Гинзбург и Рукавишникова, 1951; Смирнов, 1951; Чухров, 1955).

На Дашкесанском месторождении большая часть рассеянного кобальта фиксируется, очевидно, в виде адсорбированного. Возможно, в такой форме он присутствует в составе ферригаллуазита, лампадита, хризоколлы, исиломелана и других минералов.

Большое значение для осаждения кобальта имеют также карбонаты,

что не раз отмечалось С. С. Смирновым в его монографии (1951).

В условиях Дашкесанской зоны окисления подобную роль карбонатов можно наблюдать на примере образования сферокобальтита и кобальтсодержащего кальцита, постоянно связанных с гипогенным кальцитом. Интенсивное растворение последнего по плоскостям двойникования и спайности перед образованием указанных кобальтовых минералов свидетельствует о возможной роли в этом процессе бикарбонатных растворов, насыщенных углекислотой, которые способны легко растворять кальцит.

Потеря водами CO₂ приводит к осаждению CoCO₃ (сферокобальтита) или способствует диссоцнации бикарбоната кобальта по схеме, предложенной А. А. Смуровым: Co(HCO₃)₂ \rightleftharpoons CO⁺⁺+ 2(HCO₃)⁻ (1938). В последнем случае кобальт может попадать в состав кальцита путем замещения в нем магния. Так, очевидно, возникают неравномерно распределенные в гипогенном карбонате кобальтсодержащие участки.

Арсенатная форма гипергенной концентрации кобальта (образование эритрина) — обычное явление при окислении кобальтина. В условиях Дашкесанского месторождения удалось наблюдать отчетливое влияние

на ее характер одновременно присутствующего сфалерита.

Совместное окисление сфалерита и кобальтина, с одной стороны, способствует высокой интенсивности этого процесса, а с другой — приводит к заметному вытеснению эритрина адамином. Эритрин почти отсутствует среди образующихся вторичных продуктов, а кобальт или попадает в состав адамина и соконита или отлагается в виде сферокобальтита и кобальтсодержащего кальцита. Мышьяк охотнее соединяется не с кобальтом, а с цинком.

В результате изучения поведения кобальта в процессе окисления четырех главнейших минеральных ассоциаций, фиксирующих этот элемент на Дашкесанском железорудном месторождении (силикатно-магнетитовой с рассеянным кобальтом, сульфидно-магнетитовой с Со-пиритом и халькопиритом, кобальтиновой и сульфидно-кобальтиновой с халькопиритом и сфалеритом) установлено следующее:

1) сильное рассеяние кобальта в основном в составе гидроокислов железа и марганца при окислении магнетитовых руд и скарновых силика-

тов, несущих следы этого элемента;

2) возможность локального образования самостоятельных кобальтсодержащих гидроокислов меди и марганца (лампадита) и карбонатов (кальцита и реже сферокобальтита) в случаях повышенного количества в рудах пирита и халькопирита, т. е. при увеличении содержания кобальта в них до 0,03—0,05% (при среднем 10%-ном содержании в рудах пирита с 0,3— 0,5% кобальта);

3) арсенатную (эритрин) и позднее гидроокисную (гетерогенит) фориы гипергенной концентрации кобальта при окислении кобальтина и затем рассеяние его в более поздних гипергенных продуктах (окислы и гид-

роокислы марганца и железа);

4) влияние на характер гипергенной фиксации кобальта присутствия совместно с кобальтином сфалерита, выражающееся в заметном подчинении эритрина арсенату цинка (адамину) и карбонатам кобальта (кальциту и сферокобальтиту), а также в появлении новых кобальтсодержащих минералов (соконита, адамина и др.).

В связи с тем, что собственно кобальтовые гипергенные минералы (эритрин, сферокобальтит, гетерогенит) обычно концентрируются близ окисляющегося кобальтина (или Со-нирита), при проведении геохимических поисков указанного оруденения приходится сталкиваться с формами главным образом рассеянного кобальта. В этих случаях особое внимание следует уделять участкам с проявлением гидроокислов железа и особенно марганца (псиломелан, лампадит) и с накоплением прочих тонкописперсных продуктов (например, галлуазита, монтмориллонита, иногда хризоколлы).

Вызывает интерес установление следов кобальта в составе некоторых дашкесанских сульфатов (например, в халькантите) и даже в карбонатах меди (в малахите и азурите). Эти факты, хотя они и требуют дополнительной проверки на материалах других месторождений, близких к Дашкесанскому, следует также учитывать при проведении поисковых работ геохимическими метолами.

ЛИТЕРАТУРА

- Бетехтин А. Г. Минералогия. Госгеолиздат, 1950.
 Винчелл А. П. Оптическая минералогия. ИЛ, 1953.
- 3. Воробьев А. Л. и Бадалов С. Т. Некоторые данные о силикатах цинка группы монтмориллонита. Труды Среднеаз. ун-та, вып. 63, 6, 1955.
- 4. Гин з бург И. И. и Рукавишникова И. А. Минералы древней коры выветривания Урала. Изд-во АН СССР, 1951.
- 5. Дэна Д. Д. и др. Система минералогии, т. 1, полутом 2. ИЛ, 1951. 6. Карасик М. А. Поведение кобальта в зоне окисления сульфидных месторождений. В кн. «Вопросы минералогии, геохимии и петрографии». Изд-во АН СССР,
- 7. Крутов Г. А. Минералогия и генезис кобальтового оруденения в Дашкесанском контактово-метасоматическом месторождении (Закавказье). Труды МГРИ, т. 10, 1937.
- 8. МихеевВ. И. Рентгенометрический определитель минералов. Изд. научнотехн. лит-ры, 1957.
- 9. Сердюченко Д. П. и Искюль Е. В. Нонтрониты из месторождений Балтатарак и Саменбет в Казахстане. Зап. Всес. Минер. об-ва, ч. 62, вып. 1, 1933.
- 10. Смирнов С. С. Зона окисления сульфидных месторождений. Изд-во АН CCCP, 1951.
- 11. С м у р о в А. А. Растворимость бикарбонатов никеля и кобальта в условиях существования грунтовых вод и кислых гидротерм. Зап. Всес. Минер. об-ва, ч. 67, вып. 3, 1938.
- 12. ЧухровФ. В. Коллоиды в земной коре. Изд-во АН СССР, 1955.
 13. Faust G. T. Thermal analysis and X-ray studies of sauconite. Am. Miner., v. 36, N 11—12. 1951.
- 14. Hintze C. Handbuch der Mineralogie. Bd. I, Abt., 2, 1904.
- 15. L. de Leenheer. Les minéraux du groupe de l'hétérogénite avec une Contribution à leur genèse au Katanga. Ann. du service du mines, t. 15, 1950.