АКАДЕМИЯ НАУК СССР

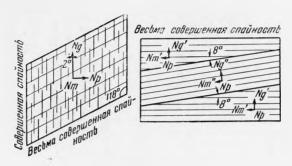
ТРУДЫ МИНЕРАЛОГИЧЕСКОГО МУЗЕЯ

Выпуск 9

Редактор д-р геол.-мин. наук Γ . Π . Барсанов

м. д. дорфман, д. л. рогачев, з. и. горощенко, е. и. успенская

КАНАСИТ — НОВЫЙ МИНЕРАЛ


При изучении щелочных пегматитов, генетически связанных с ийолитуртитовой интрузией в Хибинских тундрах, одним из авторов статы, М. Д. Дорфманом, был обнаружен хорошо индивидуализированный невый минерал — щелочной силикат кальция. Этот минерал по составумы называем канаситом (canasite).

Пегматитовое тело, в котором найден канасит, прослеживается горным выработками на 550 м. Оно обнаруживает зональное строение. Крайня (внешняя) зона, мелко- и среднезернистая, сложена главным образом нефелином, эгирин-авгитом и микроклином. Размер зерен минералов по мере удаления от границы с вмещающими породами возрастает от 2—6 мм до 8—10 мм; увеличивается при этом также и содержание полевого шпата от 5-6 до $10-14\,\%$. Ширина зоны колеблется от 10 до 16 м. Вторая зона крупнозернистого пегматита постепенно, сменяет первую и отличается от нег лишь размером зерна. Среди более или менее одинаковых по размеру зерен нефелина и микроклина, имеющих в поперечнике 10—12 см, выделяются различно ориентированные темные кристаллы эгирин-авгита, длиної до 30—40 см. Эта зона развита широко и ширина ее составляет 45—50 см. Микроклин в ней обычно зеленого цвета, амазопитоподобный. Третья зопа грубозернистого пегматита, блоковая, сложена преимущественно нефелином, эгирин-авгитом и адуляром. Она не прослеживается на всем протяжении и образует центральную часть пегматитового тела в виде двух разрозненных участков неправильной формы: размеры одного из них по выработке достигают 40 м, другого — 100 м. Пегматит в этой блоковой зоне содержит значительное число различных минералов, среди которых п встречен канасит.

Канасит, видимо, образуется после прозрачного адуляра, так как постоянно ассоциирующийся с ним щелочной силикат железа, названный нами фенакситом (см. настоящий выпуск), приурочен к секущим трещнам в адуляре. Фенаксит, в свою очередь, выделяется после нефелина, эгирии-авгита, сфена, эвдиалита, так как сечет и цементирует выделения минералов всего этого комплекса. В канасите наблюдаются иногда мелкие и тонкие пластинки лампрофиллита, которые приурочены к трещинам, секущим спайность канасита под острым углом.

Канасит образует ксеноморфные зерна размером до 3 см в поперечникс. Минерал прозрачный и полупрозрачный, цвет его зеленовато-желтый. Блеск стеклянный. Черта бесцветная. Имеется спайность в двух направлениях. Спайность по одному направлению весьма совершенная, по ней ми-

нерал легко колется на топкие пластинки; вторая совершенная спайность расположена по отношению к первой под углом около 118°. Минерал по плоскостям спайности распадается на длинные остроугольные, тонкие или клиновидные обломки. Хрупкий. Излом занозистый. При истирании оп обнаруживает повышенную сопротивляемость, которая постепенно возрастает с уменьшением размера частиц настолько, что дальнейшее истирание становится почти невозможным. При этом вместо пудры образуется нечто вроде асбестовидного войлока. В пламени паяльной трубки, и даже спиртовки, легко сплавляется в прозрачное стекло. В кислотах растворяется с выделением кремнезема.

 $\begin{array}{c} {\rm Puc.} \ \ \, 1. \\ a-{\rm Оптическая} \ \, {\rm ориентировка} \ \, {\rm канасита}; \ \, \delta-{\rm полисинте-} \\ {\rm тические} \ \, {\rm двойникn} \ \, {\rm в} \ \, {\rm сечениn} \ \, {\rm \pm Np} \end{array}$

Удельный вес, определенный с помощью пикнометра, равен 2,707. Плоскость оптических осей (010), Nm=b; $2v=-58^\circ$. Показатели преломления: Ng=1,543; Nm=1,538, Np=1,534, Ng-Np=0,009. Измерения сделаны с помощью микрокристаллрефрактометра в желтом свете ($\hbar=589,3~m\mu$). Угол погасания минерала 2° по отношению к совершенной спайности (рис. 1), что позволяет относить его к моноклинной сингонии. Принадлежность канасита к моноклинной сингонии подтверждается также и данными рентгено-структурного анализа.

Nm совпадает с осью b и располагается по удлинению спайных обломков по оси b. В сечении, перпендикулярном Np, видны характерные срастания типа тонких полисинтетических двойников с плоскостью срастания под углом 8° к совершенной спайности. Этим, по-видимому, объясняется возникновение острых клиновидных осколков при дроблении минерала. Оптическая индикатриса обоих индивидов повернута относительно друг

друга на 8°.

ХИМИЧЕСКИЙ СОСТАВ

Спектральным путем в минерале установлены следующие элементы: Si, Ca — очень сильные линии; Na, K — сильные линии; Mg, Mn, Fe, Al, Sr — средние линии; Ni, Cu — слабые линии; Ti — очень слабые линии; P — следы; Be— ничтожные следы.

Химический анализ двух образцов минерала из одного пегматитового тела и его пересчет приведены в табл. 1.

Пересчет анализов приводит к следующей формуле минерала:

(Na, K, Ca)₅(Ca, Mn)₄[Si₂O₅]₅(F, OH)₃¹

¹ Характер вхождения воды в минерал не ясен.

Химический состав канасита и пересчет анализа Образец I

	образоц 1											
Компо- ненты	Bec. %	Молеку- лярное количе- ство, X 1000	Атомное количе- ство катионов, X 1000	Магнетит, атомное количе- ство	Адуляр, атомное количе- ство	Атомное количе- ство	Атомное количе- ство кислорода	Кратные	Расчет			
$\begin{array}{c} {\rm SiO_2} \\ {\rm TiO_2} \\ {\rm Al_2O_3} \\ {\rm Fe_2O_3} \\ {\rm FeO} \\ \\ {\rm MgO} \\ {\rm CaO} \\ {\rm MnO} \\ {\rm Na_2O^1} \\ {\rm K_2O} \\ {\rm H_2O^-} \\ {\rm H_2O^+} \\ {\rm F} \\ {\rm Cl} \\ {\rm CO_2} \\ \end{array}$	56,08 0,10 0,55 1,41 0,71 0,05 20,95 0,38 8,01 8,47 0,49 1,11 2,21 0,22 0,20	9337 12 54 88 98 12 3736 53 1292 899 616 1162 62	9337 12 108 176 98 12 3736 53 2584 1793	12 176 98	324 108	9013 12 3736 53 2584 1690 17088	12 3736 53 1292 845 616 581 31 [25192]	Si = 10				
$P_{2}O_{5}$ Сумма $O = F_{2}$	$ \begin{array}{c c} 0,04 \\ 100,98 \\ -0,96 \\ \hline 100,02 \end{array} $								(Na, K)4,74 (Ca, Mn, Mg)4,20 8,94 [Si ₂ O ₅] ₅ ·(OH, F) ₃ .			

Таналитик Е. П. Успенская ¹ Определение Na вызывает сомнение.

Hanssen II

				1			1	1	T	
11 Труды	Компо- ненты	Bec, ⁰ / ₀	Молеку- лярное количе- ство, X 1000	Атомное количе- ство катионов, X 1000	Магнетит, атомное количе- ство	Алуляр, атомное количе- ство	Атомное количе- ство	Атомное количе- ство кислорода	Кратные	Расчет
Минералогич. музея, в. 9	$\begin{array}{c} {\rm SiO_2} \\ {\rm TiO_2} \\ {\rm Al_2O_3} \\ {\rm Fe_2O_3} \\ {\rm FeO} \\ {\rm MgO} \\ {\rm CaO} \\ {\rm MnO} \\ {\rm Na_2O} \\ {\rm K_2O} \\ {\rm H_2O^-} \\ {\rm H_2O^+} \\ {\rm F} \\ {\rm Cl} \\ {\rm CO_2} \\ {\rm P_2O_5} \\ {\rm Cymma} \\ {\rm O} = {\rm F_2} \\ \end{array}$	55,71 0,06 0,20 0,72 0,36 0,26 20,39 0,41 7,08 10,63 0,60 1,25 2,17 — 0,08 99,92 0,91 99,01	9284 7 19 45 50 64 3641 57 1141 1128 338 694 1142	9284 7 38 90 50 64 3635 57 2282 2256	7 90 50	38 38	9170 64 3635 57 2282 2218 17426	64 3635 57 1141 1109 694 571 25611	Si = 10 Mg Ca Mn Na K $= 4,91$	$\frac{\text{«O»}}{\text{M}} = \frac{25611}{17426} = 1,47 = 28:19$ $\frac{\text{Si}}{\text{M} - \text{Si}} = \frac{9170}{17426 - 9170} = 1,112 = 10:9$ Тин эмпирической формулы: M_9Si_{10} (O, OH, F) ₂₈ Формула минерала: $ (\text{Na, K})_{4,91} [\text{Ca, Mn, Mg})_{4,09} _9\text{Si}_{10}\text{O}_{25} \text{(OH, F)}_3$ или $ (\text{Na, K})_{4,91} (\text{Ca, Mn, Mg})_{4,09} _9 \text{(Si}_2\text{O}_5)_5 \text{(OH, F)}_3.$

Аналитик З. И. Горощенко

II

XJ

В настоящее время под руководством академика Н. В. Белова прводится рентгеноструктурное изучение канасита, которое и позволю уточнить предварительно выведенную формулу минерала.

РЕНТГЕНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ

Рентгенографическое исследование канасита было проведено Д. Л. Регачевым для определения симметрии, параметров элементарной ячейи и пространственной группы минерала. В соответствии с этим изучени велось как методом порошка, так и методом монокристалла 1.

Съемка методом порошка производилась в камере с эффективным даметром 91,1 мм. Для съемки использовалось неотфильтрованное медик излучение электронной рентгеновской трубки типа БСВ, которая работам

при режиме 35 kv и силе тока 20 mA.

При расчете использовались следующие длины волн: $\lambda \kappa_{x_{1,2}} = 1,5393$ Å, $\lambda \kappa_{\beta_{1,2}} = 1,3893$ Å. Образец был помещен в целлулоидный капиляр с внутренним диаметром 0,5 мм. Промер пленки производился при помощи компаратора ИЗА-2. Интенсивность линий оценивалась визуально.

Tаблица 2 Межплоскостные расстояния канасита

1	$\frac{\mathrm{d}_{\alpha}}{\mathrm{n}}$	$\frac{d\beta}{n}$	i	$\frac{d_{\alpha}}{n}$	$\frac{d\beta}{n}$
2	5,90	(5,32)	3	2,276	(2,054)
1	(5,33)	4,81	4	2,065	(1,864)
1	(5,21)	4,70	4	(2,010)	1,814
6	4,80	(4,34)	2	1,951	(1,761)
7	4,68	(4,22)	2	(1,872)	(1,689)
4	4,264	(3,848)	9	(1,814)	(1,638)
5	4,191	(3,782)	2	1,760	(1,588)
1	3,872	(3,494)	1	(1,716)	1,549
1	3,687	(3,327)	1	(1,666)	1,504
3	3,474	(3,135)	8	1,638	(1,478)
3	(3,400)	3,069	2	1,573	(1,420)
3	3,317	2,994	3	1,539	(1,389)
2	(3,211)	2,899	2	1,511	(1,364)
3	3,116	(2,812)	2	1,465	(1,323)
.0 ш*	3,074	(2,774)	3	1,427	(1,288)
8	2,901	(2,619)	2	1,397	(1,261)
1	2,734	(2,468)	1	1,310	(1,183)
3	2,645	(2,387)	1	1,291	(1,166)
2	(2,598)	2,345	1	1,160	(1,047)
1	2,504	(2,260)	1	1,140	(1,028)
6	2,354	(2,125)	2	1,114	(1,005)
4	2,319	(2,093)	2	1,090	(0,9838)

^{*} ш — широкая линия.

¹ Исследование монокристалла проводилось в лаборатории рентгенографии хими ческого факультета Ленинградского государственного университета. При выполнении работ авторы пользовались консультациями А. И. Заславского.

Поправки вносились по дополнительному снимку смеси минерала с хлористым натрием. В табл. 2 приводятся межплоскостные расстояния и интенсивность линий рентгенограммы порошка канасита.

Определение симметрии кристалла, а также параметров элементарной ячейки производилось путем исследования монокристалла минерала ме-

тодами Лауэ, вращения и Де-Ионга.

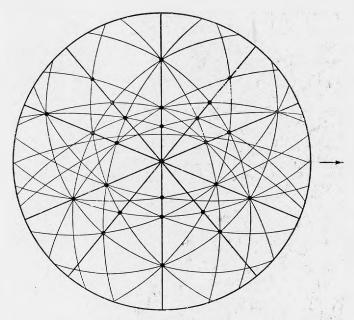


Рис. 2. Стереографическая проекция капасита, построенная по пятнам лауэграммы, снятой на цилиндрическую пленку

Достаточно крупный прозрачный обломок, вытянутый по спайности в одном направлении, был установлен на гониометрической головке рентгеновской камеры типа S-25 производства Кембриджского университета. Ввиду отсутствия в минерале кристаллографических форм, по которым можно было бы ориентировать кристалл в нужном для исследования положении (при съемке рентгенограммы вращения и разверток слоевых линий) была снята лауэграмма, при произвольной установке обломка кристалла. Лауэграмма была получена на пленку в цилиндрической кассете. По данным лауэграммы составлена стереографическая проекция, по которой определена ориентировка кристалла, установленного на гониометрической головке, и его симметрия. На рис. 2 видна плоскость симметрии и перпендикулярная к ней ось в второго порядка. С осью в совпадает удлинение кристалла.

Канасит относится к моноклинной сингонии, лауэ-классу $C_{2h}=2/m$. Для последующих работ кристалл был установлен на гониометрической головке таким образом, что его главная ось (ось b) совпадала с осью вращения. По рентгенограмме вращения, снятой в данном положении кристалла, определяется период идентичности вдоль оси b (рис. 3).

Для определения размеров осей a и c, а также угла β были сняты но истоду Де-Ионга развертки нулевой, первой и второй слоевых линий на

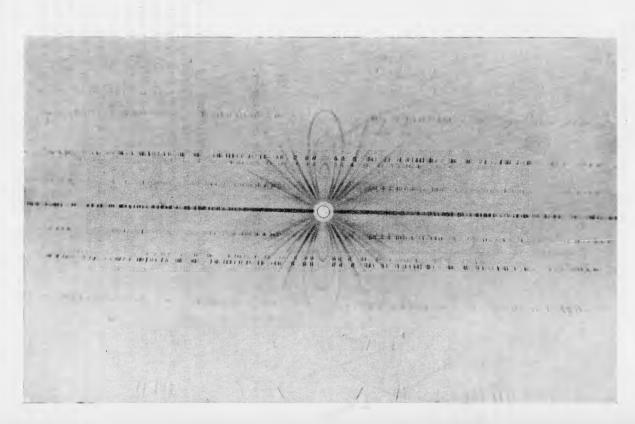


Рис. 3. Рептенограмма вращения канасита вокруг оси «b»

Таблица 3

Интенсивность и индексы рефлексов на развертках (развертки вдоль оси *b*, излучение медное, неотфильтрованное, расстояние кристалл — пленка 50 мм)

H	улев	ая слоевая		Пе	слоевая		Вторая слоевая				
j	hkI	i	hk!	i	hkl	i	hkl	i	hkl	i	hkl
Средн.	002	Оч. я	803	я.	112	Слаб.	913	Оч. я.	022	Средн.	823
Слаб.	003	Средн.	804	Я.	114	»	914		023	Я.	824
R	004	Слаб.	806	Я.	115	»	915	» »	024	Я.	825
0ч. слаб.	слаб. 005 »		807	Оч. слаб.	116	0ч. я.	916	» »	025	Я.	820
0ч. я.	006	R	10.00	Я.	117	Я.	917	» »	026	Слаб.	827
Слаб.	007	Оч. слаб.	10.01	Оч. слаб.	310	Средн.	11.10	Средн.	027	Я.	10.20
Я.	203	» »	10.02	Я.	311	Я.	11.11	Я.	222	Оч. слаб.	10.21
Я.	204	» »	10.03	Оч. слаб.	312	Слаб.	11.12	0ч. я.	223	Слаб.	10.22
Я.	205	» »	10.04	Я.	313	Я.	11.14	Слаб.	224	»	10.23
0ч. я.	206	Средн.	10.05	0ч. я.	314	Я.	11.15	Оч. я.	225	Оч. слаб.	10.24
0ч. я.	207	Оч. сл.	10.06	0ч. я.	315			» »	226	Я.	10.25
0ч. слаб.	400	Среди.	12.02	Я.	316			Средн.	420	Я.	12.22
0ч. я.	401	Оч. я.	12.03	Оч. слаб.	317			Слаб.		Оч. слаб.	12.23
0ч. слаб.	402	Средн.	12.04	Оч. слаб.	318			Средн.	422	Я.	12.24
» »	403			Слаб.	510			»	423		
Я.	404			0ч. я	511			Оч. слаб.	424		
Слаб.	405			Я.	512			Слаб.	425		
>>	406			Средн.	513			Я.	426		
>>	407			Оч. слаб.	514			Я.	427		
>>	408			Средн.	515			Средн.	428		
0ч. я.	600			»	516	1	ļ	Оч. слаб.	620		
Слаб.	601			Оч. слаб.	517			Оч. я.	621		
>>	602			Средн.	710			» »	622		
0ч. я.	603			Оч. слаб.	711			Оч. слаб	623		
» »	604			Средн.	712			Я.	624		
0ч. слаб.	605			Слаб.	713			Я.	625		
Слаб.	606			Я	714			Я.	626		
>>	607			Средн.	715			Средн.	627		
Я.	608			Слаб.	717			»	628		
Cp.	800			»	910			Оч. я.	820		
0ч. я.	801			Оч. слаб.	911			Среди.	821		
» »	802			Я	912			Я.	822		

Примечание: оч. сл. — очень слабое, сл. — слабое, ср. — среднее, п- яркое, оч. я. — очень яркое отражение.

пониометре конструкции химического факультета Ленинградского государственного университета. По разверткам были определены параметры базоцентрированной элементарной ячейки канасита a_0 и c_0 . Полученные параметры элементарной ячейки следующие: $a_0=18,87$ Å; $b_0=7,24$ Å; $c_0=12,60$ Å; $\beta=112^\circ$; $a_0:b_0:c_0=2,606:1:1,740$.

Индицирование разверток показало отсутствие рефлексов типа hkl при вечетном значении h+k и наличие всех остальных типов рефлексов. Это позволяет сделать вывод, что кристалл обладает диффракционным

166

символом 2/mС—/—, который включает следующие пространствены группы:

$$C_{2h}^3 = C_2/m; \quad C_2^3 = C_2; \quad C_s^3 = C_m.$$

Однозначно определить пространственную группу в пределах указани выше групп не представляется возможным, так как на основании даны только рентгеновского излучения нельзя сделать заключения о налишили отсутствии центра инверсии.

Индексы присутствующих рефлексов, а также их интенсивности пре-

ставлены в табл. 3.

Так как изученный нами минерал по химическому составу и физическим свойствам не отождествляется ни с одним из описанных в литературеминералов, мы выделяем его в новый минеральный вид — канаси.