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ABSTRACT

A new Earth Scientist’s Periodic Table of the Elements and Their lons presents the
naturally occurring charged species commonly encountered by geoscientists, as well as
elemental forms, and it is organized by charge. The new table therefore shows many
elements multiple times, unlike the conventional table. As a result, trends, patterns, and
interrelationships in mineralogy, soil and sediment geochemistry, igneous petrology, aque-
ous geochemistry, isotope geochemistry, and nutrient chemistry become apparent in this
new table. The new table thus provides a more effective framework for understanding
geochemistry than the conventional, and purely elemental, periodic table.
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INTRODUCTION

The Periodic Table of the Elements formulated by de Chancour-
tois, Meyer, and Mendeleev (Farber, 1969; Courtney, 1999) has clearly
been of great utility in explaining and predicting relationships in chem-
istry. It has been of less utility, however, in the earth sciences. For
example, it does not arrange lithophile, siderophile, and chalcophile
elements into distinct groups, and it does not group elements into nat-
urally occurring sets (e.g., elements concentrated in the mantle, in sea-
water, or in soil). Elements critical for biological processes are likewise
not grouped in useful ways by the conventional periodic table. In these
respects, the conventional periodic table has not provided a good
framework for understanding the chemistry of Earth and its life.

Application of the conventional periodic table of the elements to
the earth sciences has been disadvantaged because most matter at or
near Earth's surface is not in elemental form. Instead, most atoms of
the matter encountered by earth scientists carry charge. Si is a very
good example: every earth scientist has encountered Si as Si“4*, where-
as few earth scientists are even aware that a very small amount of
natural elemental Si is known to exist (Gaines et a., 1997). The use-
fulness of any document summarizing chemistry for the earth sciences
would clearly be enhanced by inclusion of charged matter in addition
to elemental forms.

With that view in mind, this paper presents an Earth Scientist’s
Periodic Table of the Elements and Their lonst. In this table, natural
groupings and trends in geochemistry, marine chemistry, and nutrient
chemistry become apparent, allowing a more genera synthesis of the
chemistry of the earth sciences. The result is an integrated view of
geochemistry applicable from the mantle to soil to seawater. One fun-
damental concept in rationalizing these geochemical patternsis the dif-
ference in bonding exhibited by hard and soft cations, which favor O%-
and S%-, respectively. The other is the extent to which charge of cations
is sufficiently focused (i.e., ionic potential is sufficiently high) to pro-
vide strong bonds to O%- without causing repulsion between those
cations. Thus bonding and coordination with oxygen, Earth’'s most
abundant element in the mantle and crust (McDonough and Sun, 1995),
dictate many of the trends discussed in the following sections.

*E-mail: risbk@gly.uga.edu.

1GSA Data Repository item 2003109, sources of information used in con-
structing table, and explanatory notes, is available online a www.geosociety.org/
pubs/ft2003.htm, or on request from editing@geosociety.org or Documents Secre-
tary, GSA, RO. Box 9140, Boulder, CO 80301-9140, USA.

DESCRIPTION OF THE TABLE

Chemical entities are arranged according to charge in the Earth
Scientist’s Periodic Table of the Elements and Their lons (Fig. 1)2.
Thus, B, C, and N, which are conventionally on the right side of the
periodic table, appear on the left in the | eft-to-right horizontal sequence
Li+, Be2+, B3+, C*, and N>+, Al, Si, P and S similarly appear on the
left and within the left-to-right horizontal sequence Nat, Mg+, Al3+,
Si4+, Po*, and S+, A more striking result of organizing the table ac-
cording to charge is that many elements appear multiple times, because
different natural conditions cause those elements to assume different
charges. Many elements (e.g., P and U) thus appear twice, afew appear
three times (e.g., V, Fe, C, and N), and a few appear four times (most
notably S, as $%, L, $*+, and S5+).

The table is broken from left to right to separate noble gases, hard
or type A cations (those with no outer-shell electrons), intermediate to
soft or type B cations (those with at least some outer-shell cations),
elemental (uncharged) forms, anions, and the noble gases again (Fig.
1). The significance of the division of cations is that hard cations bond
strongly to F~ and O%~ but not to S?-, whereas the soft cations bond
strongly to S*~ and the larger halides, Br- and |- (Stumm and Morgan,
1996) (Fig. 1, Inset 8). These patterns are exemplified in nature by the
absence of sulfide minerals of Ca2* and of the other hard cations, but
the existence of oxides and sulfates of those cations (Fig. 1). The nat-
ural occurrence of sulfides, but not oxides, of the platinum group ions
provides a converse example (Fig. 1). The differences between hard
and soft cations are further illustrated by insets 3 and 6, which show
that melting temperatures of oxides of cations of intermediate ionic
potential decrease from hard to intermediate to soft cations. Inset 8
likewise shows that the relative solubility of halide compounds can be
predicted from the division of hard and soft cations, in that solubility
of halides of hard cations increases from F- to |-, whereas solubility
of halides of soft cations increases from |- to F~. In igneous geochem-
istry, the failure of Cu* to bond with O2- and substitute for Na* in
plagioclase (Ringwood, 1955) provides an example of the different
behavior of soft and hard cations, respectively. The failure of TI+ to
substitute for K*, despite the similar size and charge of those two
cations, is another example.

Another difference between the new table and its conventional
predecessors is that the new table includes the naturally occurring ac-

2| oose insert: Figure 1. An Earth Scientist's Periodic Table of the Ele-
ments and Their lons. Sources of information used in constructing table and
related notes are available in Appendix DR1 in GSA Data Repository (see text
footnote one).
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Figure 1. An Earth Scientist’s Periodic Table of the Elements and Their Ions. An earth scientist’s periodic table of the elements and their ions
Sources of information used in constructing table and related notes are available in L. Bruce Railsback
Appendix DR1 in GSA Data Repository (see text footnote one). Figure 1
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tinides with the hard cations. Th#+ thus falls below Hf4+, and U%+ falls
below W6+, Trends in the symbols described in the next section extend
across this unconventional but geochemically useful arrangement (Fig.
1).

The table also shows the atomic numbers, atomic masses, natu-
raly occurring isotopes, and naturally occurring decay paths of the
different elements. Names of elements and ionic forms are shown—
e.g., ‘“Sulfur as sulfate (S03°)" for S8+. Sizes of chemical symbols are
scaled to abundance of the elements in Earth’s crust; seven of the nine
most abundant elements conveniently fall together in one part of the
left side of the new table. Contours of equal ionic potentia (charge
radius, i.e., z/r) highlighted in blue and brown extend across the table
and paralel trends in natural occurrences, as discussed in the next
section.

PATTERNS AND TRENDS IN THE TABLE

Symbols in the Earth Scientist’s Periodic Table of the Elements
and Their lons show natural occurrences or enrichments in minerals,
natural waters, soils and sediments, igneous rocks, the mantle, and the
atmosphere, and as critical nutrients (Fig. 1). These symbols fall in
swaths that follow contours of equal ionic potential across the table,
as one would expect from Cartledge (1928a, 1928b), Goldschmidt
(1937), and Mason (1958). As a result, the new table makes apparent
patterns of geochemistry that do not emerge from the conventional
table. For example, many ions with ionic potential between 3 and 10
make oxide minerals, are concentrated in soil and ferromanganese nod-
ules, enter early-forming igneous phases, and are least depleted the
mantle. The result is a red-and-brown swath across the hard and inter-
mediate cations in the new table (Fig. 1). The same swath of hard
cations includes those that make oxides with the highest melting tem-
perature, lowest solubility, greatest hardness, and greatest bulk modu-
lus (insets 1-4 and 6).

On the other hand, hard cations with ionic potential <4 make
fluoride minerals, include ions abundant in river water and seawater,
and include ions important as nutrients. Cations with ionic potential
>8 likewise include ions abundant in seawater, ions important as nu-
trients, and ions that form oxysalts, such as sulfates and arsenates. The
results are blue-and-green swaths across the new table. Those swaths
extend from the hard cations (which coincide with the lithophile ele-
ments) to the intermediate to soft cations (which coincide as a whole
with the siderophile and chal cophile elements).

Contours of ionic potential continuing from the hard cations to
the intermediate cations (e.g., Mn** and Fe3*) continue the red-and-
brown swath across the table, in that intermediate cations with ionic
potential of 3-8 also make oxide minerals, are concentrated in soils,
enter early-forming igneous phases, and so on. On the other hand, the
contours for lowest ionic potential (1-2) set off the soft cations, which
include the coinage metals (Cu, Ag, and Au) and form the center of a
region characterized by yellow diamonds that mark ions forming sul-
fide, bromide, and iodide minerals.

The coinage metals and their neighbors are also shown in a section
of the table highlighting elemental forms (the true * Table of the Ele-
ments”’ within the new table). Symbols and colored fields show that
groups of these elements make alloys. For example, elements alloying
with Os form a small distinct group, and elements aloying with Fe
form a group overlapping little with elements alloying with Cu and
Au.

On the right side of the table, patterns among the anions match
those on the left side. Among the anions of low ionic potential, a blue-
and-green swath of symbols pertaining to solutes mirrors that found in
cations of low ionic potential. From top to bottom is the transition
from anions coordinating with hard cations (resulting in fluorides and
oxides of Na*, K+, and Al3*) to those coordinating with soft cations
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(resulting in sulfides, bromides, iodides, and tellurides of Ag* and
Au*). From right to left, or from CI- and F to 02~ to C*, is the
transition from anions making minerals with hard cations of low ionic
potential (e.g., K+ and Na*) to those making minerals with hard cations
of higher ionic potentia (e.g., AI3* and Si**). Minerals exemplifying
this transition are carrobite (KF), sellaite (MgF,), gibbsite (Al,Os),
quartz (Si0,), and moissanite (SiC).

Speciation of hard cations in aqueous solution also follows easily
recognized trends in the new table (bold black lines in Fig. 1). From
lower left to upper right across the hard cations, speciation progresses
from hydration (e.g., K*) to hydroxo complexes [e.g., Al(OH)3" and
Si(OH)J] to oxo-hydroxo complexes (e.g., COOOH- and POOOOH-,
more familiar as HCO3 and HPO37-) to oxo complexes (e.g.,, CO%-,
NOsz, and SOF") (Stumm and Morgan, 1996; Shock et al., 1997). A
trend that isinscrutable in the conventional periodic table thus becomes
readily apparent in the new table. This pattern of coordination, when
extended from solution to solids, places in context the mineralogical
existence of oxysalt minerals such as carbonates, nitrates, and sulfates,
but no ““calciates,” or ““sodiates”’, and the existence of aluminate only
as an aqueous species (Pokrovskii and Helgeson, 1997).

Many of these patterns can be explained by consideration of bond
strength and shielding of charge in mineral structures, as is shown
schematically in inset 7. Cations of low ionic potentia (e.g., K+, Na*,
Sr2+) bond only weakly to O%-, so they do not form oxide minerals
and are not retained in oxide-forming and hydroxide-forming environ-
ments like soils. Instead, they are soluble in aqueous solution, entering
natural waters and crossing cell membranes and root sheaths as nutri-
ents. Their weak bonds to O2- result in their incorporation into igneous
minerals only at relatively low temperatures and thus relatively late in
the crystallization sequence. Cations of intermediate ionic potential
(e.g., Al3+, Ti4+) form relatively strong bonds with O2-, and their tet-
rahedral to cubic coordination allows shielding of the cations' positive
charges from each other. They thus form stable oxides and hydroxides
in oxidizing environments, and many of them bond in igneous minerals
at high temperatures and thus early in the crystallization sequence.
Their stability as oxides and hydroxides results in low solubility and
low concentration in natural waters and thus leads to their irrelevance
as nutrients. Cations of high ionic potentia (e.g., P5*, N5+, $5+) form
very strong bonds with O2 in radicals like PO3-, NO3, and SO3-, but
their intense concentration of incompletely shielded positive charge and
resultant repulsion preclude formation of oxides or hydroxide minerals.
Thus, like cations of low ionic potential, they are soluble in aqueous
solution, abundant in natural waters, and cross cell membranes and
root sheaths as nutrients. Their concentration of positive charge causes
them to enter igneous minerals so late that they are among the ““in-
compatible’” ions in crystallization of silicate magmas.

These considerations help explain the existence, and nonexistence,
of oxysat minerals (inset 6). Simple silicates (silicates without OH-
and/or H,O) built around Si4+ can accommodate 1+ to 4+ cations.
Simple borates and phosphates, built around cations of higher ionic
potential (B3+ and P5*), can only accommodate 1+ to 3+ cations,
presumably because residual positive charge from borate and phosphate
groups repels 4+ cations. Simple carbonates and sulfates, built around
cations of even higher ionic potential, accommodate only 1+ and 2+
cations. Finaly, simple nitrates, built around the tiny highly charged
N5+, only accommodate 1+ cations, presumably because the unshield-
ed positive charge from nitrate groups repels any cations of 2+ or
greater charge. The same trends, with shifted thresholds, exist in anal-
ogous minerals with OH- and/or H,O (e.g., hydrous nitrates accom-
modate 1+ and 2+ but not more highly charged ones, and OH-bearing
sulfates and carbonates accommodate 1+ to 3+ but not 4+ cations).
The result is a predictive model of the existence and nonexistence of
oxysalt minerals of various cations.
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GENERAL INSIGHTS

Perhaps the most general insight apparent in the new table is that
chemical weathering at Earth’s surface and the evolution of Earth to
separate the mantle and continental crust are geochemically much the
same process. the segregation of hard and intermediate cations of low
and high ionic potential from those of intermediate ionic potential. The
result is (1) concentration of many of the cations of intermediate ionic
potential in the mantle and, at Earth’s surface, in soil (the red-and-
brown swaths in the table) and (2) the ultimate remova of ions of low
and high ionic potential to the oceans (blue swaths in the table). The
process continues in the oceans, in that cations of intermediate ionic
potential are segregated to ferromanganese nodules and have a short
residence time in seawater.

Another major Earth process—Ilife—has followed rules similar to
those dictating mantle evolution and weathering. Because life began
and largely evolved in agueous solution and because chemical entities
must be dissolved to pass through cell membranes, life has utilized
and depends on soluble chemical forms. The critical nutrients for life
(green symbols in the table) are therefore coincident with the chemical
species dissolved in natural waters (blue symbols in the table). The
evolutionary transition of some life forms to land put them in an en-
vironment in which chemical weathering removes such ions from soils.
The result is a conundrum for water-loving plant life: soils rich in
nutrients are most common in arid regions where those nutrients have
not been removed by wesathering, and soils where wet conditions favor
life are typically leached of nutrients. Utilization of =1 ions by both
plants and animals exemplifies this evolutionary challenge: modern
farmers commonly must fertilize plant growth with K+-bearing fertiliz-
ers, vertebrates frequent salt licks for Na*, and premodern societies trad-
ed NaCl as a precious substance. Modern humans continue the trend, in
that they consume |--supplemented NaCl, drink F~-supplemented water,
consume K*-bearing sports drinks, and even take Li* pills.

SIX EXAMPLES ACROSS THE PERIODIC TABLE
Special Nature of Silicon

In addition to the trends already outlined, many important special
cases in geochemistry become apparent with the new table. For ex-
ample, Si4* is unique in being very abundant (it is the second most
abundant constituent in the crust) and in having an ionic potential at
the boundary between the relatively insoluble cations of intermediate
ionic potential (e.g., Al3+, Ti4+, and Sc3* in the red-and-brown swath
of the table) and cations of high ionic potentia that form soluble rad-
icals (e.g., C*, N5+, P>+, and S5+ in the blue-and-green swath). Si4+
is thus abundant both in residua from weathering (e.g., in sands and
sandy or kaolinitic soils) and in natural waters, such as river water
(where dissolved silicais the second most abundant dissolved species)
and seawater (where it is the 11th most abundant dissolved species).

The abundance and borderline ionic potential of Si4* also have
important implications in igneous petrology. Most igneous minerals are
silicates, but some of the first phases to form in igneous rocks (e.g.,
spinel and chromite) contain no Si at all, and the first Si-bearing min-
erals to form are forsterite (where Mg is more abundant than Si) and
anorthite (where Ca and Al outnumber Si) (inset 3). Only in later-
forming phases does Si*+ become the dominant cation, and only at the
end of Bowen's reaction series (when incompatible elements enter sol-
ids) does SIO, form as quartz (inset 3). This paradox of Si** as a
somewhat incompatible ion in the crystallization of silicate magmas
arises because Si4+ is at the upper margin of ionic potentials that allow
formation of stable oxides. In fact, Si*+ is just a step away from C4+,
N5+, and P5*, which do not make any such oxide at all because of
their high ionic potential and are *‘incompatible’” in igneous petrology.

The abundance and borderline ionic potential of Si4* also lead to
an interesting feature of plant physiology. Plants take in nutrients like
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NOj3 as solutes, and the borderline ionic potential of Si** lets it be
taken up as a solute [as H,SiO, or more accurately as Si(OH)J]. How-
ever, Si** is sufficiently insoluble that some plants build masses of
opaline silica in their tissue (Meunier and Colin, 2001). These mineral
accumulations within plants, called phytoliths, exist because Si** is
sufficiently abundant and soluble to be taken up through roots in so-
lution but sufficiently insoluble to be maintained as a solid mineral
within wet plant tissue.

Extreme Nature of Gold

If Si has a specia role in geochemistry because of its abundance
and location at a threshold in ionic potential, Au is special for opposite
reasons: it is extremely rare, it has an extremely low ionic potentia as
Au*, and Au* is extremely ‘‘soft” in the spectrum from hard to soft
cations. As aresult, Au forms no oxide minerals and doesn’'t even form
a sulfide of only Au; the only analogues of a hypothetical AuS, are
two AuTe, minerals and an Au,Bi mineral. Au's fondness for large
anions is also seen in its extensive complexing with Cl- in solution,
to which is attributed much of the transport of gold to generate ore
deposits (e.g., Murphy et al., 2000). On the other hand, the indifference
of Au to oxygen is one of the reasons Au has been so valued by
humans—it continues to shine as an unoxidized metal despite centuries
of exposure to O,. In the conventiona periodic table, Au is ssimply one
of many elements in the middle of that table, but isolation by contours
of ionic potential illustrates its unique nature in the new periodic table.

Applications of Fe, Mn, and Ce as Paleoredox Indicators

The table's separation of cations and consideration of ionic po-
tential shows why some cations have been used extensively in evalu-
ation of paleoredox conditions. For example, Fe and Mn have been
used in geochemical study of oxidation and reduction (e.g., Hem, 1972)
because they are by far the most abundant elements that form nonhard
cations. They are thus the most abundant elements that can undergo
changes of one in oxidation state (e.g., between 2+ and 3+ for Fe).
In oxidizing conditions, they are highly charged (= 3+) small ions
that are insoluble because of their high ionic potential and resultant
formation of hydroxides. In reducing conditions, they are lesser
charged (2+) and larger ions that thus have lower ionic potential and
are soluble. Fe therefore behaves like the soil-forming and oxide-
forming AlI3+ ion when oxidized to Fe3*, but like the *‘weatherable”
and soluble Mg?*+ ion when reduced to Fe?+.

Ce is less abundant than Fe and Mn, but otherwise analogous in
that it precipitates in solids when oxidized to Ce** but is more soluble
as Ce3*. It thus provides an indicator of oxygenation in modern (de
Baar et al., 1988) and ancient (Wright et a., 1987) oceans. Ce3* and
Ce*+ dso exemplify patterns of coordination seen elsewhere in the
table, in that the ion with lower ionic potential forms afluoride mineral,
fluocerite-(Ce), whereas the ion with higher ionic potential forms an
oxide mineral, cerianite. The formation of those two minerals parallels
the formation of fluorides by Na* and K+ but formation of oxides by
Al3+ and Sc3+ (Fig. 1).

Uranium, Thorium, and Dating Problems

Radiometric dating using the U-series method (Edwards et al.,
1987) is a valuable means of determining the age of materials younger
than ~500 k.y. old. One problem with this method, however, is that
U at Earth’s surface is in the US+ state and thus in the soluble UO5*
oxo complex (Langmuir, 1978). Th, on the other hand, occurs as Th*+,
which is insoluble (e.g., Kaufman, 1969). As a result, parent U is
commonly lost from materials but daughter Th remains, giving incor-
rectly old ages (e.g., Dabous and Osmond, 2000). This problem is not
apparent from the conventional periodic table but is predictable in the
new table, where U%+ fdls in the blue-and-green swath of relatively
soluble hard cations of high ionic potential and Th*+ falls in the red-
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and-brown swath of relatively insoluble ions of intermediate ionic
potential.

From Silicates to Selenites

As aready discussed, Si** is located at the boundary between
cations of intermediate and high ionic potential in the new table. One
result is that Si4* is one of the few cations that make both an oxide
mineral (quartz) and oxysalt minerals (the many silicates). V5+ and
Mo®+ are hard cations with about the same ionic potential, and they
also form oxides (shcherbinaite and molybdite) and oxysalt minerals
(the vanadates and molybdates). If one follows the contour for z/r =
8 from those hard cations to the intermediate and soft cations (Fig. 1),
one arrives at Se**, which likewise forms an oxide mineral (downeyite)
and oxysalt minerals (the selenites). Like Si4*, V5+, and Mob+, Se**
is also a cation essential to vertebrate nutrition (McDowell, 1992; Sun-
de, 1997). These similarities illustrate the continuity of trends aong
contours of equal ionic potential across the table. The principal differ-
ence in the behavior of Seis that it forms cations with multiple outer-
shell electrons and thus exists as Se* as well as Se**. Seb+ also forms
oxysalt minerals (the selenates) and is important in nutrition, but, just
as one would expect after following the contour for z'r = 16 from P5+
and S5+ in the hard cations (Fig. 1), Se® does not form an oxide
mineral.

Odd Roale of Chloride—Jack of All Trades, Master of None

Cl- isnot as abundant as F~ in the crust, but Cl - is more abundant
than F~ in most natural waters. The reason for this paradox can be
seen in the new table. Cl- occupies an intermediate position among
the anions at the right of the table, in that it coordinates with hard
cations to make soluble minerals like sylvite and halite and coordinates
with soft cations to make relatively rare minerals like chlorargyrite
(AgCl) (Fig. 1). By comparison, F~ bonds with hard cations well
enough to make insoluble minerals like fluorite and so is sequestered
in them, leaving relatively low concentrations in natural waters. Cl-,
in contrast, bonds strongly with neither hard nor soft cations and so
makes only relatively soluble minerals (inset 8). It therefore can reach
high concentrations in natural waters and commonly only precipitates
when it and a weakly bonding cation, Na*, finally achieve saturation
with respect to halite.

SUMMARY

Organizing the new Earth Sientist’s Periodic Table of the Ele-
ments and Their lons according to charge yields an arrangement more
conducive to recognizing geochemical trends than that of the conven-
tional periodic table. These trends in mineralogy, agueous geochem-
istry, igneous petrology, mantle geochemistry, soil and sediment chem-
istry, and nutrient chemistry are largely controlled by coordination of
cations with O2-. This synthesis of geochemistry from mantle to soil
to seawater provides a framework for understanding Earth systems and
predicting geochemical relationships that is not recognizable with con-
ventional, elementally constructed, periodic tables.
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