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Abstract

It is now a conventional technique to determine the optimal stress from fault-slip data by inversion. However, the method is weak when
applied to heterogeneous data. A new technique is presented here to visualize the reliability of the solution. It is also shown that the technique
allows us to separate stresses from those data. The technique is simple: it is the visualization of the object function of the inversion. The
present method is compared with the conventional inverse method and the multi-inverse method using artificial and natural heterogeneous
data sets. The conventional method can determine one of the stresses, if the orientation of the faults has a large variation. It is shown that the
solutions of the method are non-unique and unstable for some data sets, indicating that they are not reliable. The present graphical method
and multi-inverse method are more robust than the conventional one for heterogeneity. The multi-inverse method seems to have better
resolution than the present method. However, unlike the multi-inverse method, the time of computation of the present method does not
increase with the number of faults, so that the method becomes favorable for processing hundreds of faults. © 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The estimation of tectonic stress is important for struc-
tural geologists to contribute to geodynamic studies
(Pollard, 2000), to foundation engineering (Amadei and
Stephansson, 1997), and to estimate subsurface fluid flow
(Nelson, 1985; Mandl, 2000). Since Carey and Brunier
(1974) and Angelier (1979), fault-striation analysis has
been a conventional tool for this purpose in sedimentary
basins and in fractured crystalline basement over the
world. Most of the inversion methods are based on the
Wallace—Bott hypothesis that slip vectors are parallel to
the resolved shear stress on the faults (Wallace, 1951;
Bott, 1959), and determines the optimal stress by an inverse
method from fault-slip data obtained from outcrops, from
shear factures in bore-hole cores (Dezayes et al., 1995;
Martin and Bergerat, 1996), or from seismic focal mechan-
ism data (McKenzie, 1969; Angelier, 1984; Gephart and
Forsyth, 1984).

However, there are serious drawbacks in this method that
are sometimes overlooked. The Wallace—Bott hypothesis
fails in interacting and closely spaced faults (Dupin et al.,
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1993; Pollard et al., 1993; Nieto-Samaniego and Alaniz-
Alvarez, 1997) and in faults with significant block rotations
(Twiss and Unruh, 1998). A macroscopic rock mass under-
goes irreversible deformation by the activity of mesoscale
faults in the mass. Faulting itself results in discontinuous
movement across the fault plane; however, we have to disre-
gard the effects of individual faults and resort to a macro-
scopic plasticity theory to describe the deformation of the
mass. Materials with such a macroscopic behavior are called
frictional plastic solids (Mandl, 2000). Palesotresses are
correctly determined from mesoscale faults if the rock
mass has linear and isotropic plasticity in macroscopic
view (Twiss and Unruh, 1998).

Given the Wallace—Bott hypothesis to be correct, are the
solutions of the inverse method reliable? The popular and
classic inverse method typified by those of Angelier (1979,
1984, 1990) and Gephart and Forsyth (1984) determines
only one stress from a given fault assemblage. The optimal
solution is determined as the maximum point of a function
in four-dimensional parameter space (Angelier, 1990). Such
a function is called the object function in inverse theory. The
reliability depends on the stability and uniqueness of the
solution. The solution is called unstable if the optimal stress
is altered completely by the subtraction of a small number of
fault-slip data from the given data set or by the addition of a
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Fig. 1. Schematic pictures showing the stability and uniqueness of the
optimal point. Inverse methods seek the optimal (maximum) point of the
object function, F(x). The pictures show the graph of the function. The
maximum point (triangle) represents the optimal solution of inversion.
(a) Uni-modal, convex function with a narrow peak. In this case, the solu-
tion is stable and unique. (b) Function with a plateau. A small variation in
the topography (smooth and dotted lines) results in shift of the peak at a
long distance. The optimal solution indicated by the peak is unstable. (c)
Multi-modal function. In this case, the solution is not unique. In addition,
the peaks have similar height, resulting in an unstable optimal solution.
Reliability of the solution is not warranted by the fact that it is the highest.

small number of them to the set (Tarantola, 1987). If the
object function is convex in the entire parameter space,
there is only one maximum and the solution is called unique.
Geologically, stability and uniqueness are far more impor-
tant than determining the precise parameters of the optimal
stress. The data is called heterogeneous if different stresses
have activated the different subsets of faults. The hetero-
geneity of fault-slip data may affect both the stability and
uniqueness.

The stability, uniqueness, and precision of the solution
depend on the topography of the object function over the
parameter space, and the topography depends on given data
set. Small variations of data may result in small variation of
the function. If the function has only one narrow peak in the
entire parameter space, the solution is unique and stable
(Fig. 1a). In contrast, if the maximum point is on a plateau,
a small change in the shape of the plateau shifts the maxi-
mum point far away (Fig. 1b). This is a case of an unstable
solution. If the function has multiple peaks with similar
height (Fig. 1c), the optimal solution that is given by the
highest one may be unstable and the physical meaning of the
solution is vague. Does the correct solution coincide with

one of the peaks? Or does the object function always have
only one, narrow peak? The purpose of this paper is, in the
first place, to answer these questions by visualizing the
topography in four-dimensional parameter space.

Natural data are often heterogeneous. For this reason,
before making use of the conventional inverse method, we
have to classify the subsets at outcrops to make the subsets
homogeneous. The separation of stresses from those data is
a major problem. The classification is possible, but usually
difficult and sometimes subjective, so that the problem is
serious. OlId terrains have experienced long and complex
tectonic histories, allowing us to acknowledge several
field criteria for the classification (Lisle and Vandycke,
1996). However, few criteria are found from young faults
in active terrains such as the faults in mid Quaternary fore-
arc basin sediments near the triple plate junction off central
Japan (Yamaji, 2000a). Numerical or automatic classifiers
are needed. To meet this demand, such methods are
proposed by several researchers (Angelier and Manoussis,
1980; Nemcok and Lisle, 1995; Yamaji, 2000b).

The second purpose of this paper, to show the visualiza-
tion technique that will be presented in the following
sections, is useful to separate stresses from heterogeneous
fault-slip data. In addition, the resolution of this graphical
technique is compared with that of Yamaji’s (2000b) multi-
inverse method. And, finally, the technique is shown to be
an extension of the right dihedral method (Angelier and
Mechler, 1977) which is able to indicate not only possible
stress orientations but also possible stress ratios.

The present technique depends on Angelier’s (1979,
1984) inverse method, which therefore is outlined in the
following section.

2. Methodology
2.1. Conventional inverse method

Stresses are determined from fault-slip data that consist of
the orientation of fault planes, the direction of slickenside
striations, and the sense of movement. Given a stress tensor,
the Wallace—Bott hypothesis allows the prediction of the
slip direction of the faults. Let d; be the angular misfit
between the predicted and observed slip directions of the
ith fault. Note that 0 = d; = 180°. The optimal stress tensor
is determined by maximizing the fit of the assumed stress to
the data:

N

F= > wd) )

=1
where N is the number of faults, and
w(d) = 1 — sin’d/2 )

is the function for the evaluation of fit used by Angelier
(1990). The shape of the function is arbitrary: the only
requirement is that it is not a decreasing function of d. If
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Fig. 2. Lower-hemisphere, equal-area projection of 300 directions of o;-
axis used as computational grid points. About the directions, o j-axis is
rotated with an interval of 18°.

the data set is heterogeneous, the influence of outliers should
be suppressed to make the inversion robust and to detect the
most significant stress. To this end, Angelier (1979) recom-
mends the function of the form:

1 —tand (0 =d = 45°
w(d) = { (3)

0 (45° < d).

The slip direction predicted by the Wallace—Bott hypo-
thesis does not depend on all stress components, but on the

Table 1

The object function, F, for data set A (Fig. 3) evaluated at the computational
grid points listed in the ascending order of F. o;- and o;-directions are
indicated by their azimuth (a) and plunge (p) angles

Relative fit Computational grid point

F — Fpin o -axis o 3-axis Dy
a P a p
0.000 194 63 63 19 0.6
0.000 194 63 63 19 0.7
0.065 182 55 63 19 0.7
0.140 174 47 63 19 0.7
0.225 182 55 63 19 0.6
0.260 187 51 59 27 0.6
39.095 85 3 184 71 0.2
39.380 271 0 1 17 0.0
39.390 268 0 358 9 0.0
39.430 88 0 178 13 0.0
39.765 264 1 4 83 0.1
39.860 85 3 184 71 0.1
39.900 270 0 0 34 0.0
39.975 89 0 179 21 0.0
40.130 90 0 180 5 0.0
40.910 264 2 164 79 0.1

direction of principal stress axes and the shape of Lamé’s
stress ellipsoid (McKenzie, 1969). The shape is represented
by Bishop’s (1966) stress ratio:

by = w, “4)

0y~ 03

where o0, 0, and o; are the principal stresses. As
0| = 0, = 03, it is seen that 0 = @y = 1. We use the sign
convention that compression is a positive stress. Axial
compression (o03=o0,<0;) and axial tension
(03 < 0y =0) are represented by @5 =0 and 1, respec-
tively. Triaxial stresses are indicated by intermediate ratios.
The direction of the principal axes is described by Euler
angles 6, ¢, and ¢ (Goldstein, 1980). Accordingly, the
inversion determines the four parameters 6, ¢, ¢, and Py
of the optimal stress by the scheme to seek the maximum
point of the function F(6, ¢, ¥, Pp) in the four-dimensional
parameter space, where F is the object function defined by
Eq. (1). In the following sections, the principal directions
are used instead of the Euler angles, because of the difficulty
of understanding the principal directions from the angles.

2.2. Visualization of the topography of F

Computer programs (main and post processors) were
developed to visualize the topography of the object func-
tion, F, over the parameter space. The main processor calcu-
lates the fit at all grid points of computational mesh in the
parameter space. The post processor projects the topography
onto a plane to visualize the topography.

The mesh was generated as follows. Rakhamanov et al.’s
(1994) algorithm was used to generate 300 directions for o3
axis with nearly equal intervals (Fig. 2), and the direction of
o axis is rotated about the o3 axis with an interval of 180°/
18 = 10°. The stress ratio, ®p, is divided into 11 grades
from O to 1 with an interval of 0.1. The total number of
grid points is 300 X 18 X 11 = 59,400. The angular distance
of neighboring o5 directions shown in Fig. 2 is not exactly
constant, and its mean is 8.3 = 1° (one standard deviation).

The main processor calculates the fit, F, at all grid points
and tabulates the results with the direction of stress axes and
stress ratio arranged in the ascending order of F. An exam-
ple is shown in Table 1. The post processor represents the
table using a couple of color stereograms: both are lower-
hemisphere equal-area plots, and the left and right stereo-
grams always indicate the direction of o; and o;-axes,
respectively. @g and F are indicated by hue and saturation
of color, respectively. Color saturation is a degree to which
a pure color of the spectrum is diluted by white. Only the
relative value of F is meaningful, so that the relative fit,
defined as F minus the minimum F, is represented by
color saturation. High and low relative fits are indicated
by pure and whitish colors, respectively.

The parameter space is four-dimensional, so that stereo-
graphic projection involves the reduction of information.
Specifically, many points with the same o3 direction but
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Fig. 3. Numerically generated fault-slip data. Lower-hemisphere, equal-angle projection. The direction of assumed stress axes is indicated by squares. The
fault-slip data A, A,, and Aj are homogeneous: the members of each set are assumed to be activated by a state of stress. The sets are combined to make a
heterogeneous data set A. The heterogeneous data set B is composed as A, but has less faults, and smaller variation of fault orientations. The orientations are
the same with data set O (Fig. 4). The members of the subsets B, B,, and B; are assumed to be activated by the same stress as A, A,, and Aj, respectively.
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Data Set O

Data Set KAM

Fig. 4. Natural, heterogeneous, fault-slip data set O and KAM. The former
set was obtained in the Otadai Formation, central Japan, by Mino and
Yamaji (1999). The number of data is 53. The data set KAM is listed by
Angelier (1990), and was collected from the Kamogawa area near the
location of data set O. The number of data is 50.

different o directions are projected on the same point
among those shown in Fig. 2. To minimize the over-
lapping projection, the plotted points were dispersed
around the points within a radius of 8°. Consequently,
the stereograms are filled with dots with various colors,
although the fit is calculated at discrete grid points. The
color plotting is executed in the ascending order of F,
so that the color dots with lower F' are hidden by those
with higher F.

2.3. Multi-inverse method

The multi-inverse method (Yamaji, 2000b) is a numerical
technique to separate stresses from heterogeneous fault-slip
data, and is based on the conventional inverse method and
on resampling statistical technique as the Jackknife and
Bootstrap methods (Quenouille, 1949; Efron, 1979). They
solve statistical problems by resampling data, and determine
optimal parameters for each subset of data. The core of the
multi-inverse method is as follows. Suppose we have N

fault-slip data, and make k-element subsets. Consequently,
we have a number of

~vCio = NVKI(N — k)! (5)

subsets, where yC; is a binomial coefficient. The second step
is that the optimal stress is determined by the classic inverse
method for each subset—we have ,C; stresses that are
represented by points in the four-dimensional parameter
space. Then, statistically significant stresses make clusters
in the space. The clusters are visualized by stereograms.
Note that the choice of combination number, &, in Eq. (5)
is arbitrary. Accordingly, we can confirm the significance of
the clusters by the convergence of clustering with the
increase of the number.

3. Test data

To test the topography of the object function through this
graphical representation, artificial and natural data sets A, B,
O were prepared. All of them are characterized by multiple
solutions and therefore are heterogeneous. The natural data
set KAM of Angelier (1990) is also used. The artificial data
were generated as follows. First, 100 fault planes were
generated with their poles being oriented with uniform
angular intervals by Rakhamanov et al.’s (1994) algorithm.
The faults were then divided into three subsets A;, A,, and
Aj to which different stresses are applied. They are a triaxial
stress (®g=0.5), axial tension and axial compression,
respectively, with different principal directions. The slip
directions were calculated on the basis of the Wallace—
Bott hypothesis. The direction of stress axes and stress
ratio of the stresses are shown in Fig. 3 with the generated
fault-slip data. Each of the resulting data sets A, A,, and A;
is homogeneous, and the heterogeneous data set A was
created by the concatenation of the three subsets.

As for the natural data set O, we use 53 faults observed
in the mid Quaternary fore-arc sediment, called the Otadai
Formation, in central Japan (Fig. 4a). They were collected
by Mino and Yamaji (1999) and Yamaji (2000a) applied
the multi-inverse method to them and detected three
stresses.

One more set of artificial and heterogeneous data was
created and will be labeled as B by use of the fault planes
of set O in the following discussions. The orientation of
faults is the same as set O. The members of set O were
divided into three subsets B;, B,, and B; to which were
applied the same stresses that were used for the subsets
Ay, A,, and A;, respectively. The heterogeneous data set B
is the concatenation of the subsets B, B,, and B; (Fig. 3).
The stresses that should be detected are the same for sets A
and B. However, the number of faults in B is about the half
of those in A. In addition, the variation of fault orientations
is smaller in B than A. Therefore, detecting the solutions
from set B is more difficult than from set A.

The natural data set KAM (Fig. 4b) consists of 50 faults
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Fig. 5. (a) Graphical representation of the object function F for the artificial
and heterogeneous data set A. The direction of stress axes is plotted on
Schmidt nets with color-coded fitness, F, and stress ratio, ®@g. Lower-hemi-
sphere projection of o (left) and o; (right) directions. Open circle, the
directions of assumed stress axes in Fig. 3. The color spots and girdles
represent peaks and ridges of the function in the parameter space. Reddish
spot on the right stereogram shows the peak at the stress state whose o73-
direction is indicated by the spot and the color indicates the state of stress
being axial tension. As it is symmetric about the axis, the corresponding o ;-
directions are indicated by reddish great-circle girdles in the left stereo-
gram. The violet spot in the left one shows that axial compression with E—
W horizontal o5 axis is another significant peak. Greenish spots in both
stereograms represent the third peak: triaxial extension with intermediate
stress ratio and NNE—-SSW o, and highly plunging o; axis to SE direction.
The color spots appear at or near the assumed stress axes with correct stress
ratios. The optimal solution determined by conventional inverse method
with the function Eq. (3) is also plotted. (b) The result of multi-inverse
method applied to data set A. Open circles indicate the direction of assumed
stress axes. Clusters of dot—bar symbols with the same color and same bar
direction represent significant stresses. Each symbol represents a state of
stress: stress ratio is represented by color, and the direction of stress axes is
indicated by the position and direction of the symbol. The directions of o
and o3 axes are indicated by dots on lower-hemisphere equal-area projec-
tions on the left and right, respectively. In the left figure, the direction of
bars extending from the dots indicates the azimuth of the corresponding o ;-
direction. The length of bar designates the plunge of the direction. On the
right equal-area net, the role of the bar and dot are assigned inversely. The
length and direction of the bar indicate the o -direction. MIM was applied
with the combination number and enhancing parameter at 4 and 7, respec-
tively. See Yamaji (2000b) for the details of the parameters.

with normal or oblique-normal sense of shear, and is taken
from Angelier (1990). He also shows the optimal stress for
the data set. Both the areas where the data sets O and KAM
were collected are in central Japan, and are about 40 km
apart. The data set KAM was obtained from ophiolitic
rocks, which are assigned to the Paleogene (Suzuki et al.,
1984; Mohiuddin and Ogawa, 1996). However, field obser-
vations allowed Angelier to select faults of a young exten-
sional event out of a lot of older faults.

The object function, F, is evaluated for data sets A, B, and
O with Eq. (3), but that for KAM is done with Eq. (2).

4. Results
4.1. Data set A

The fit, F, at the computational grid points is listed in
Table 1 for this data set in the ascending order of F, though
only the top and bottom of the list are shown. The graphic
representation was constructed and is shown by the pair of
stereograms in Fig. 5a. This figure clearly shows that the
function has multiple peaks in the four-dimensional para-
meter space. Color spots and girdles represent the peaks.
They look nebulous because the points were plotted with
the dispersion that is explained in Section 2.2. Open circles
in this figure indicate the assumed axial directions shown in
Fig. 3. There is a N-S trending girdle of violet dots in the
right stereogram. The hue indicates a low value of @y and
thus o, = ;. The state of stress is nearly axial, so that
violet spots appear in the left stereogram normal to the
girdle. The reddish girdle in the left stereogram corresponds
to the spot with the same color in the right stereogram,
indicating that an axial tension is also a state of stress
with high F. Greenish spots appear in both stereograms,
indicating that there is an additional peak in the parameter
space corresponding to a state of stress with an intermediate
®3. Fig. 5a shows that the direction and stress ratio of the
spots coincides with those of the assumed stresses that are
designated by circles in the figure. Consequently, this
graphical representation not only shows the topography,
but also allows us to separate stresses from the formidably
heterogeneous fault-slip data.

Among the spots, the reddish one is the most compact,
and thus the most precisely and stably determined stress on
this graphic representation. Principal axes are precisely
determined if slip vectors are nearly parallel to the axes
(Gephart and Forsyth, 1984). This condition holds the
most in subset A, (Fig. 3) whose members were activated
by the axial stress represented by the reddish spot, resulting
in the compact spot. Violet spots are vague and their centers
are rotated about the vertical by ~10° away from the
assumed stress axis, although the spot encompasses the
optimal stress axes. Greenish spots are vague and elongated,
and mixed with the violet ones at their borders. Therefore,
the triaxial stress represented by the greenish spots is the



A. Yamaji / Journal of Structural Geology 25 (2003) 241-252 247

Data Set B N

X
. 4 X
':-’r_""l 22 ," 90. \: —;j*;
3 4 = s
G 8. s

Fig. 6. (a) Graphic representation of the object function for data set B. Note
that the optimal solution with stress ratio at 0.1 has stress axes that coincide
with none of the assumed stress axes. (b) The result of the multi-inverse
method that was applied to the same data. See Fig. 5 for legend.

most difficult stress to detect by the conventional inverse
method.

The last line of Table 1 represents the optimal stress. This
solution has an error that is derived from the discrete
computational grid points. The representative angular inter-
val of between the points is 10° or less. The solution is
plotted in Fig. 5a, also. The optimal o -direction agrees
with the assumed direction of the axial compression within
the error. The optimal solution has @y =0.1, but the
assumed value was @ = 0. The heterogeneity of the data
has shifted the optimal solution from the assumed para-
meters of the axial compression. The color spots and girdle
patterns clearly indicate that the given fault-slip data are
heterogeneous, and the optimal solution alone does not
explain the whole fault activity. However, considering the
heterogeneity of data set A, the inversion is successful in
determining one of the assumed stresses. In this calculation,
F was evaluated with Eq. (3), which was presented for fault
analysis by Angelier (1979) to process heterogeneous data.
However, the solution is somewhat unstable, because the
color saturation of the violet spot is not so different from
that of the reddish spot. This means that the peaks repre-
sented by the spots have similar values of F.

Fig. 5b shows the result of the multi-inverse method
applied to data set A. Clusters of dot—bar symbols with
the same color and the same bar direction indicate signifi-
cant stresses determined from the data set. Insignificant
solutions were cut-off by the following procedure (Yamaji,
2000b). The method was applied with the combination

number, k, in Eq. (5) being equal to four, therefore we
have 100Cq = 3,921,225 optimal stresses. They are too
many to plot on a stereonet. Let m be the number of
solutions at a computational grid point that represents a
state of stress. The number m is an attribute of a grid
point. Then, we calculate the standard deviation, s, of the
numbers. The parameter s is used to thin out the solutions
and to enhance significant stresses by plotting only m/es
dot—bar symbols on stereograms, where the natural number
e is called enhancing parameter. If m/es < 1, no symbol is
plotted. We used a value of e =7 for Fig. 5b.

The assumed stresses are successfully detected by this
method, also. Among the clusters, the most divergent is
the one indicating axial tension, contrary to the graphical
representation (Fig. 5a). The clusters of greenish and bluish
symbols in the left stereogram are contiguous in the SW
quadrant, similar to the situation in Fig. 5a that the violet
to blue spot is mixed with the greenish spot at their border.

4.2. Data set B

This data set is more difficult than set A for stress inver-
sion, because of the smaller variation of fault orientations,
and the smaller number of faults. The topography of the
function, F, is shown in Fig. 6a. Color spots and girdle
patterns in this figure show clearly that the function is
multi-modal. The violet spot in the left stereogram should
be centered at horizontal and due west direction, but is
shifted by ~40°. The greenish spot that indicates the
assumed triaxial stress is also shifted and spread so as to
be mixed with the violet spot in the left stereogram of Fig.
6a. The greenish spot is also spread in the right stereogram
and mixed with the violet girdle. The reddish spot in the
right stereogram is also spread in comparison with Fig. 5a,
and is rotated counterclockwise by ~30° about the vertical.
However, the spreading of the red spot is smaller than the
violet and green spots in the left and right stereograms,
respectively. The reddish spot is the more compact and
has a higher saturation than the violet and greenish spots,
as for the case of data set A.

For data set B, the conventional method determines the
optimal stress that has the stress ratio at 0.1, indicating that it
is nearly an axial compression. The axis lies in the violet
spot. The optimal o -direction is different from that of the
assumed axial compression by ~30°. The similar color
saturation of the reddish and violet spots suggests the opti-
mal solution is unstable.

The same data set is processed by the multi-inverse
method, and the results are shown in Fig. 6b. The clusters
of violet, greenish, and reddish dot—bar symbols appeared
near the direction of assumed stress axes, indicating
the method successfully separated the stresses. However,
the clusters are more divergent than those of Fig. 5b. The
reddish one is most scattered. Consequently, this method
seems more robust in processing this data set than the
present graphical representation to separate stresses.
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Data Set O N

Fig. 7. (a) Graphic representation of the object function for the natural data
O. Optimal stress was determined as nearly axial, vertical compression with
@y =0.1 and NE-trending o axis. (b) The result of multi-inverse method
that was applied to the same data. See Fig. 5 for legend. Clusters of green
symbols are encircled in the four quadrants in the right figure.

4.3. Data set O

These are natural data collected from Quaternary sedi-
ments in central Japan by Mino and Yamaji (1999). Because
the data are natural, no one knows the true stress(es)
recorded in the data. The graphical representation of the
function, F, is shown in Fig. 7a. There are color spots and
girdles, indicating that the function is multi-modal. In the
left stereogram, violet and greenish spots appear commonly
at the center. A reddish girdle pattern is parallel to the
common direction, and the girdle pole is oriented in ESE—
WNW direction. This direction is indicated by reddish spots
in the right stereogram of Fig. 6a. Greenish spots overlap the
reddish ones. In addition, the directions represented by the
reddish and greenish spots are parallel to the plane indicated
by the violet girdle pattern in the right stereogram. These
observations indicate that the three states of stresses repre-
sented by the color spots and girdles have common direc-
tions of stress axes, but are different only in their stress
ratios. They are determined by NNE-SSW trending dip-
slip normal faults among the given data. The slip directions
of the faults caused by the three stresses are indistinguish-
able because the trend of the dip-slip faults is approximately
perpendicular to the oj-direction, so that the stresses are
equally possible solutions. Yamaji (2000b) calls stresses
of this relationship ‘associated stresses’.

The optimal stress determined by the conventional

method is also shown in Fig 6a. The state of stress is near
vertical axial compression. The optimal ¢ axis lies in the
direction shown by the violet spot. The overlapping color
spots and girdles indicate that this solution is not unique.
However, color saturation of the violet spot is greater than
for the greenish and reddish ones, suggesting that the solu-
tion is stable. However, the violet to blue girdle pattern in
the right stereogram of Fig. 6a suggests that the optimal o7;-
direction is much less definite and less stable than the o -
direction.

Although the optimal solution is stable, there are many
outliers that are not compatible with the solution. The verti-
cal, nearly axial compression is the optimal stress, which
activates any fault as a normal fault. However, there are
strike-slip and oblique-slip faults with sinistral and dextral
senses of shear. This means that such vertical compression
as the optimal solution is not enough to account for the
whole fault activity. The conventional method and the
present graphical representation fail to separate stress(es)
not in the association relationship.

The stability of the solution is supported by Mino and
Yamaji’s (1999) study. Following Angelier and Manoussis
(1980) and Angelier (1994), Mino and Yamaji divided this
data set into two subsets by the fact that the misfits, d;, for
the optimal stress have bimodal distribution. Accordingly,
they selected the members with smaller misfit and calcu-
lated the optimal solution for them. The solutions obtained
by the first and second inversions were identical, through the
first one was applied to the heterogeneous data. This
demonstrates the stability of the solution. The solution for
the remaining set of data was a strike-slip regime of stress
whose o;-axis lay in NE-SW trend with &5 = 0.58.

Fig. 6b shows the solution of multi-inverse method
applied to the same data set. The vertical axial compressive
and associated ESE—~WNW triaxial, horizontal extensional
stresses are detected. The former is indicated by the cluster
of bluish dot—bar symbols at the center of the left stereo-
gram. The latter is represented by the cluster of green
symbols encircled in the NW and SE quadrants of the
right stereogram. In addition to these states of stress, a
NE-SW-trending extensional stress is detected. The solu-
tion is represented by the cluster of green symbols encircled
in the NE and SW quadrants of the right stereogram. The
strike-slip and oblique-slip faults that are not compatible
with the associated stresses are explained by the NE-SW
extensional stress.

4.4. Data set KAM

The graphical representation of the function, F, for this
data set is shown in Fig. 8a. Angelier (1990) determined the
optimal stress with the function identical with Eq. (2), there-
fore, the graphical representation was composed with the
same function. In the left stereogram, dots with cold colors
make clusters at the center, indicating that the state of stress
with a vertical o; axis and low stress ratio is the most
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(a) N Data Set KAM N

Fig. 8. (a) Graphic representation of the object function for the natural data
KAM. The function was evaluated in this case with the function Eq. (2).
The optimal solution with @5 = 0.31 is also shown. (b) The result of multi-
inverse method that was applied to the same data. See Fig. 5 for legend.

probable solution. Green, yellow, and red dots are sparse
and have low saturation, so that the stresses represented by
those colors are less likely. In the right stereogram, violet to
light blue dots make a nearly horizontal, broad girdle
pattern. In addition, green to red dots make clusters at hori-
zontal, NNE and SSW directions. The spots overlap with the
girdle pattern, so the quadrants are plotted with mixed
colors.

Angelier (1990) determines the optimal stress that is
shown in Fig. 8a. The optimal stress ratio is 0.31, which
should be represented by light blue spots in the figure.
However, no such spot appeared in either stereograms.
Only a spot with mixed cold colors appeared at the optimal
o;-direction. Therefore, the peak represented by the optimal
solution is one of many peaks with different stresses: the
solution is not unique and therefore unstable. The instability
is indicated by the fact that the central spot of the left stereo-
gram consists of an equal amount of violet and light blue
dots. In addition, there are many NW—SE-trending, dip-slip
normal faults in the data (Fig. 4b) that are not explained by
the optimal stress alone. The data are heterogeneous. NNE—
SSW-trending, horizontal, extensional stress, which is
represented by the mixed color spots in the right stereogram.
is a possible solution, though the possibility is less than the
vertical nearly axial compression that is represented by the
central spot of the cold color. The extensional stress helps
explain them.

The result of the multi-inverse method applied to the data
set is shown in Fig. 8b. We recognize two stresses there:

vertical axial compression with low @5 and NE-SW-trend-
ing horizontal extension with @ = 0.5. The latter may be
divided into two clusters in NNE-SSW and E-W trends, or
a poorly resolved extensional stress in the NE quadrant.
Most of the members of this data set are nearly dip-slip
normal faults that have slip vectors trending in N-S to
NE-SW and E-W directions (Fig. 4b). The divergent
trend of the normal faults results in the horizontal green
cluster elongated from north to east in the right stereogram
of Fig. 8b.

In the SE quadrant of the right stereogram of Fig. 8b,
there are light blue dot—bar symbols of which stress ratio
and stress axes are, indeed, consistent with the optimal
solution. However, symbols with that color do not make
clusters, indicating that the optimal solution is much less
significant than the stresses that are the vertical axial
compression and NE—-SW extensional stress.

Data set KAM was collected from the Kamogawa area,
40 km away from the area where data set O was obtained.
The above two stresses are detected from both data sets.
However, the most significant stress determined from data
set O (NW-SE tension) is not obtained from set KAM.

5. Discussion

We have processed artificial and natural fault-slip data
with heterogeneity. It has been shown that the conventional
method can detect one of the correct stresses if the misfit is
evaluated by functions like Eq. (3) that minimize the effect
from outliers, and if the fault orientations have a large varia-
tion. One of the assumed stresses was detected with an error
of no less than 30° for data set B that has a smaller number
of faults with less variation in fault orientations than set A.
The method can, at best, determine one of the correct
stresses using evaluation functions like Eq. (3).

The reliability of the optimal stress is not obvious in the
conventional method. Angelier (1990) estimates the relia-
bility by a parameter called RUP, which is a measure of the
mean misfit of the predicted and observed slip directions.
However, the graphical representations in the last section
clearly show that only one parameter, not only RUP but also
any kind of parameter, is not enough at all to describe the
reliability of the optimal solution. The parameter cannot
characterize the complex topography of the function F.
Graphical representation is the most suitable method to
recognize such complex objects as Fry (1999) emphasizes.

The estimation of (paleo) stresses by the conventional
method has been done in many areas over the world,
although the heterogeneity of fault-slip data was not always
critically investigated. Those studies without the check
should be reevaluated.

It should be noted that the graphical representation is an
extension of the right dihedra method, which was put
forward by Angelier and Mechler (1977), but shows not
only the possible principal directions but also possible stress
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Fig. 9. (a) Graphic representation of the object function for a single thrust
fault. Lower-hemisphere, equal area projection. Great circles labeled as A
and F are the auxiliary and fault planes, respectively. The pole to the
auxiliary plane is oriented parallel to the slip direction shown by open
circles. (b) Possible o5 directions (black quadrants) determined by the
right dihedra method for the thrust fault. (c) The increase of @y reduces
the possible o; directions. Green regions show possible o; directions for
stresses with @p = 0.5. If &5 =0, both the green and gray regions are
possible.

ratios. This is indicated by Fig. 9a that shows the F for a
single thrust fault. The possible principal directions for the
fault are indicated by quadrants defined by the fault and
auxiliary planes by the right dihedra method, and the quad-
rants are shown by black and white quadrants on a stereo-
gram (Fig. 9b). In addition, the present method shows the
possible stress ratios. McKenzie (1969) obtained the analy-
tic solution for possible combinations of principal directions
and stress ratios for a single fault. Fig. 9c shows McKenzie’s
solution for the case of our thrust fault. Possible principal
directions for a given stress ratio is shown on a stereogram

N Data Set A1 N

©4

Fig. 10. Graphic representation of the object function for the homogeneous
data set A; whose fault orientations and slip directions are shown in Fig. 3.
Open circles indicate the direction of assumed stress axes. See Fig. 5 for
legend.

by a pattern like a stingray or a ginkgo leaf (McKenzie,
1969; Fig. 3). Such patterns are found in Fig. 9a. For
many faults, the function F of each fault is simply super-
posed by Eq. (1). Consequently, the graphical representation
of F is an extension of right dihedra method so as to show
possible stress ratios. The distribution of color dots in Fig.
9a is not bounded by the auxiliary plane, because the fit, F,
for principal axes in the white quadrants in Fig. 9b is not
always zero but varies in the quadrants. The right dihedra
method is argued to be weak for heterogeneous data (Carey-
Gailhardis and Vergely, 1992; Lisle and Vandycke, 1996).
However, this extension of the method can separate stresses
from those data if fault orientations have a large variation
and if homogeneous subsets have a similar number of faults
as for the case of set A.

If conjugate faults were activated, plotting P and T axes
on a stereogram for fault-slip data can separate principal
axes (Twiss and Unruh, 1998). However, it is not always
obvious whether observed heterogeneous faults are acti-
vated as conjugate faults in polyphase tectonics: conjugate
faulting is not the only choice of fault activity when a three-
dimensional strain is forced to the rock mass that encom-
passes the faults (Reches and Dieterich, 1983). The plotting
of P and T axes detects principal stress axes from hetero-
geneous data, but the present graphic method shows not
only principal axes, but also stress ratios.

It is interesting to apply the present graphical method to
homogeneous data. Fig. 10 shows the uni-modal function,
F, for the homogeneous data set A;.

The members of the set were activated by the triaxial
stress with NNE-SSW-trending horizontal o axis and
with o axis steeply plunging in the SW direction (Fig. 3).
The stress ratio was assumed to be 0.5, which is represented
as green in the graphical representation. Fig. 10 shows that
only greenish spots stand out at the expected principal direc-
tions, indicating that the function is uni-modal. If the given
data are homogeneous, then the conventional method is able
to detect the assumed stress. If they are heterogeneous, it
can, at best, determine the most significant solution, but a
conventional estimator such as RUP is not enough to under-
stand the reliability of the solution. It is shown that the
graphical representation of ' makes heterogeneity obvious.

The present method visualizes Fand @y by color satura-
tion and hue, respectively. The shortcoming of this method
is that saturated yellow is less prominent than saturated
violet, green, and red. There are certainly other methods
of visualization. As an example, the function F is indicated
by hue and the difference in stress ratio is shown by indivi-
dual stereograms. Contours cannot show the variations of F'
over the stereograms, because many states of stress with one
of the three stress axes in common share one point on a
stereogram. The present method is better than this one in
that the latter needs more space to draw stereograms. We
have divided stress ratio into 11 grades between 0.0 and 1.0,
so that 11 times more space is necessary. The present
method plots color dots in the ascending order of F, and
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the dots with smaller F are hidden by those with greater F.
This procedure addresses the shortcoming.

The multi-inverse method outdid the present graphical
method in the separation of stresses from heterogeneous
data. The former can detect stresses whose axes are nearly
parallel to most fault planes. However, the latter method
becomes better than the former one if we process hundreds
of fault data. The reason is that the time of computation does
not inflate with the number of faults, N. The bottleneck of
the method is in its graphic routine whose time of computa-
tion does not depend on N. It takes about 10 min to process a
set of data by a personal computer with MMX Pentium
processor, 166 MHz. In contrast, the multi-inverse method
spends much more time that increases as N¥, where the
integer k is typically between 4 and 7 (Yamaji, 2000b).

We have discussed the possibility of separating stresses
from heterogeneous data sets. When we analyze natural data
sets, errors are inevitable when measuring the orientation of
fault planes and slickenside striations. Given slip vectors
nearly parallel to principal stress axes, the inversion used
in the conventional and multi-inverse methods is not toler-
ant of the error. Therefore, Gephart and Forsyth (1984) point
out that the minimization of the angular misfit between
observed and theoretical slip directions is vulnerable to
the error. They recommend minimizing the variation in
stress ratios that are compatible with observed data.
However, stress ratios are sometimes difficult to determine,
because stresses with similar principal directions but differ-
ent stress ratios can result in the same fault activity (Yamaji,
2000b).

The main and post processors of the present graphical
method are compatible with Windows Operating System,
and are available from the Author’s web page.
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