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Abstract

The Radial basis function neural network (RBFNN) has been successfully applied to many tasks due to its powerful

properties in classification and functional approximation. This paper presents a novel RBFNN for water-stage forecasting in an

estuary under high flood and tidal effects. The RBFNN adopts a hybrid two-stage learning scheme, unsupervised and supervised

learning. In the first scheme, fuzzy min–max clustering is proposed for choosing best patterns for cluster representation in an

efficient and automatic way. The second scheme uses supervised learning, which is a multivariate linear regression method to

produce a weighted sum of the output from the hidden layer. Since this network has only one layer using a supervised learning

algorithm, its training process is much faster than the error back propagation based multilayer perceptrons. Moreover, only one

parameter, u, must be determined manually. The other parameters used in this model can be adjusted automatically by model

training. The water-stage data of the Tanshui River under tidal effect are used to construct a water-stage forecasting model that

can also be used during flood. The results show that the RBFNN can be applied successfully and provide high accuracy and

reliability of water-stage forecasting in an estuary.
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1. Introduction

An estuary is a semi-enclosed coastal body of

water which has free connection to the open sea and

within which sea water is measurably diluted with

fresh water derived from land drainage (Cameron and

Pritchard, 1963). The hydrological systems in an

estuary are unique and the water-stage is continually

changing under the interaction of riverine and marine

processes. The most obvious factors having a

profound influence on the water-stage include shape

of the estuary, astronomical tide, wind, salinity,

temperature, sediment, river discharge, storm surge,

and others, are too complex to model directly.

Consequently, the hydrodynamic processes of estu-

aries are manifestly complex and notoriously

nonlinear.

Water-stage forecasting in a river under tidal

effects is among the most important outstanding

problems of flood management. It is never an easy

task, because in order to develop a water-stage

forecasting model one must know the behavior of

the physical processes. The river flow conditions

under tidal effects are rarely steady or uniform.
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However, many of the concepts and principles derived

from other watercourses can be applied. For example,

the momentum equation is used to study surges and

floodwaves, stochastic hydraulics is employed to

estimate discharge (Chen and Chiu, 2002) and the

diffusion equation with kinetics is applied to evaluate

the pollutant movement in estuarine systems. Some

empirical equations also have been developed to

characterize the flow (Wright et al., 1973; Prandle,

1991; Van Dongeren, 1992). Many deterministic and

stochastic models have been developed to forecast the

water-stage (Lin and Lee, 1996; Perumal and Ranga

Raju, 1998). One of the major disadvantages of using

these models is that the parameters are usually

difficult to determine from the observed data. Owing

to the lack of practicality and difficulty in use, the

application of such sophisticated models in Taiwan

has so far been unsuccessful.

Even with all these difficulties and challenges,

artificial neural networks (ANNs), a relatively new

computational tool that has found wide acceptance in

many disciplines, provide an alternative way to make

important contributions to one step ahead under-

standing and/or managing these hydrological pro-

cesses. The attractiveness of ANNs comes from their

information processing characteristics, such as non-

linearity, parallelism, noise tolerance, and learning

and generalization capabilities (Basheer and Hajmeer,

2000). Recently, ANNs have been successfully used

for modeling hydrological processes (Hsu et al., 1995;

Rogers et al., 1995; Kuligowski and Barros, 1998;

Sajikumar and Thandaveswara, 1999; Govindaraju

and Rao, 2000; Chang and Chen, 2001; Chang et al.,

2002).

Most of the water-stage forecasting models built by

ANNs are based on training the rainfall–runoff data

set where the previous stages of rainfall and/or water-

stage could dominate the current water-stage. In

estuary problems, there are many effects that could

influence the water-stage. Moreover, the poorly

defined or even misunderstood riverine and marine

interaction in the estuary makes it impossible to

model its hydrological processes in the circumstance.

To develop an estuary water-stage forecasting neural

network, a great amount of relative information (data)

would be involved, and thus massive network

structure. In this study, we present a novel Radial

basis function neural network (RBFNN) for solving

this poorly defined and complex problem.

2. Radial basis function neural network

RBFNNs rank among the most popular tools for

function approximation and have currently been

widely applied in many areas, such as nonlinear

control, speech processing, and pattern recognition

(Gorinevsky and Vukovich, 1997; Pedrycz, 1998).

An important property of RBFNNs is that a high-

dimensional space nonlinearity problem can be

easily broken down through a set of linear

combination of radial basis functions. Another

important feature of an RBFNN is the ability to

be quickly trained. For the purpose of faster training

speed, RBFNNs with the hybrid learning scheme

applied herein, which is suggested by Moody and

Darken (1989), have a feedforward structure that

involves three layers. The input layer is composed

of n input nodes. The only hidden layer consists of

J locally tuned units and each unit has a radial

basis function acting like a hidden node. The

hidden node output zj(x ) calculates the closeness of

the input and projects the distance to an activation

function. The activation function of the jth hidden

node used in this study is the Gaussian function

given by

zjðxÞ ¼ exp 2
kx 2 mjk

2

2s2
j

 !
ð1Þ

where x is the n-dimensional input vector; mj is the

center of the radial basis function for hidden node j;

and kx 2 mjk denotes the Euclidean distance between

the center of the radial basis function and input; sj

is a parameter for controlling the smoothness

properties of the radial basis functions. The third

layer of the network is the output layer with L nodes

that are fully interconnected to each hidden node.

The output of the network is the sum of linear

weighted zj(x )

yl ¼
XJ

j¼0

wljzjðxÞ ð2Þ

z0ðxÞ ¼ 1 ð3Þ
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where yl is the lth component of the output layer; wlj is

the synaptic weight between the jth node of hidden

layer and the lth node of output layer. Eq. (3) denotes

the constant, wl0, in the regression Eq. (2).

3. Network training

Training an RBFNN for a specific problem involves

selecting the type of basis functions with associated

center location �uand width s, the number of functions

K and the weights. Apparently, this is a non-convex

optimization problem. A great number of studies have

been done to explore the efficient ways. For batch mode

training, RBFNNs with localized basis functions offer

a very attractive way that, in practice, the estimation of

parameters can be decoupled into a two-stage pro-

cedure: (1) determine the centers and widths, and (2)

based on the results obtained in step (1), determine the

weights to the output units.

The two-stage training scheme is shown in Fig. 1.

In the first stage only the input values are used for

determining the centers and the widths of the radial

basis functions. Thus, learning is unsupervised. Once

the function parameters are fixed, supervised training

(i.e. with target information) can be used for

determining the second layer weights. More detail

of the two-stage scheme is as follows.

3.1. Unsupervised training—fuzzy min–max

clustering

The key to determining the locations and widths of

the localized basis functions is to view them as

representing the input data density. An efficient

approach is to cluster the input vectors and then

locate the basis functions at the centers. A variety of

clustering techniques can be used to cluster the data

with simultaneous water-stage conditions into the

same hidden node. The K-means clustering algorithm,

which minimizes the sum of squares error between the

inputs and hidden node centers, is commonly used to

locate the centers of the radial basis functions

(Oukhellou and Aknin, 1999); however, this algor-

ithm must be given or input the number of radial basis

functions J, and the widths sj of every radial basis

function usually have to be the same. One has to guess

this number J and sj before starting training the neural

network. Instead of the K-means clustering method,

the fuzzy min–max clustering method (Simpson,

1993) is employed in this study. The advantage of the

fuzzy min–max clustering method is that the number,

centers and sj of radial basis functions can all be

determined systematically and automatically.

The fuzzy min–max clustering algorithm involves

three phases: expansion of a hyperbox, overlap test,

and contraction of a hyperbox. During the network

training process, a large number of n-dimensional

hyperboxes that range from 0 to 1 along each

dimension will be generated. Each hyperbox is

Fig. 1. General flowchart of algorithm for constructing a rainfall–

runoff model using RBFNN.
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viewed as a hidden unit. The boundary of a hyperbox

is defined by the max and min points of the form

vj ¼ ðvj1; vj2;…; vjnÞ ð4Þ

uj ¼ ðuj1; uj2;…; ujnÞ ð5Þ

where vj and uj are the min and max points for the jth

hyperbox; vjn and ujn are the min and max value for

the nth dimension. The membership function for

measuring the degree of the hth input xh falling within

the hyperbox j is defined as

Hjðxh; vj; ujÞ ¼
1

n

Xn

i¼1

½1 2 f ðxhi 2 ujiÞ2 f ðvji 2 xhiÞ�

ð6Þ

f ðjÞ ¼

1 j . 1

j if 0 # j # 1

0 j , 0

8>><
>>: ð7Þ

where xhi is the ith node of the hth input; Hj(·) is the

membership value setting to the unit interval [0,1]; j

is either xhi 2 uji or vji 2 xhi. The membership values

are used to determine which hyperbox needs to be

expanded.

At the beginning, the max and min points of the

first hyperbox are set to be the first input data. In the

subsequent, the degree of membership values will be

calculated for every new input, and the hyperbox with

the highest degree of membership is tested for

possible hyperbox expansion if

Xn

i¼1

ðmaxðuji; xhiÞ2 minðvji; xhiÞÞ # nu ð8Þ

in which u is a user-defined value and 0 # u # 1: A

small u means more hyperboxes will be created. If the

hyperbox is expanded, the min and max points of the

hyperbox will be adjusted as

vnew
ji ¼ minðvold

ji ; xhiÞ ð9Þ

unew
ji ¼ maxðuold

ji ; xhiÞ ð10Þ

If no hyperbox can be expanded

Xn

i¼1

ðmaxðuji; xhiÞ2 minðvji; xhiÞÞ . nu

 !
;

a new hyperbox will be generated.

vnew
ji ¼ unew

ji ¼ xhi ð11Þ

After the hyperbox is expanded, the hyperbox overlap

test will be used to determine whether hyperboxes

overlap or not. If overlapping is found between

hyperboxes, the max and/or min points of each

dimension of hyperbox j could be contained within

another hyperbox k. Thus, the hyperboxes will be

contracted with the minimal disturbance principle,

and only the one dimension that has the minimum

overlap is adjusted.

The entire training data will be presented for

clustering again and again until no hyperbox needs to

be adjusted. The parameter sj is determined by half of

the width of the hyperbox, as given:

sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvj1 2 uj1Þ

2 þ ðvj2 2 uj2Þ
2 þ … þ ðvjn 2 ujnÞ

2
q

2
ð12Þ

3.2. Supervised learning—multivariate linear

regression

After the clustering is completed, the radial basis

functions are fixed. In the second scheme, the weights

wlj are determined to let the output of network yhl

approximate to the target yphl: The supervised training

algorithm aims to minimize the following sum of

squares error,

SSE ¼
1

2

XN
h¼1

XL
l¼1

ðyphl 2 yhlÞ
2 ð13Þ

where yhl and yphlare the lth node of the hth set output

and target, respectively. Since the outputs of the

network are linear combinations of the outputs of the

hidden layer, a multivariate linear regression model,

given as

yp ¼ zw þ e ð14Þ

can be used to determine the weights. In Eq. (14) y p is

the target that is an N £ L matrix; z is the output of the

hidden layer that is an N £ (J þ 1) matrix; w is the

weight between hidden and output layers that is a

(J þ 1) £ L matrix; and e is independent noise with

zero mean. The method of least squares selecting
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weight matrix w p to minimize SSE is given by

wp ¼ ðzTzÞ21zTyp ð15Þ

4. Study watersheds and data

To illustrate the foregoing with practical appli-

cations, the Tanshui River will be considered. The

Tanshui River, composed of three major tributaries,

the Ta-han Creek, the Hsin-tien Creek, and the

Keelung River, as shown in Fig. 2, is situated near

the city of Taipei. The third largest river in Taiwan, it

drains 1183 km2 into the Taiwan Strait and its

downstream section for approximately 25 km from

the river mouth is under tidal effects. The water-stage

in this section is needed as the boundary condition for

flood forecasting after heavy rainfalls brought by

tropical storms every year. Recently, a flood control

project was undertaken on the Tanshui River,

including forecasting models, costly levees and bank

protection works that can reduce the frequency of

inundation of Taipei, mitigate losses by flood

damages, and safeguard lives and properties. Water-

stage forecasting, especially during a flood, is one of

the most crucial parts of the project. Unfortunately,

because of the complex hydrological processes in

these highly unsteady flows, the traditional physics-

based models and time series models cannot be used.

The RBFNN can be then used to test its applicability.

Six gaging stations equipped with automatic water-

stage recorders are located in the study watershed.

The available water-stage data collected by Taiwan

Water Conservancy Agency are the hourly data

measured at the gaging stations.

5. Practical applications

The travel times of flow between the Taipei Bridge

Station and the other gaging stations are less than 3 h

because of the small watershed. For water-stage

forecasting, the inputs of the model include the

lunar month, lunar day, time and the water-stages of

the six gaging stations for up to 3 h before the study.

The only output is the 1-h-ahead water-stage of the

Fig. 2. Locations of the study watershed.
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Taipei Bridge Station. In order to employ fuzzy min–

max clustering, the different units and scales of the

input data must be scaled to have values be between 0

and 1. The model using the RBFNN can be

represented by

Gtðtþ 1Þ ¼
XJ

j¼0

wjzj½TmðtÞ;TdðtÞ;ThðtÞ;GtðtÞ;Gtðt2 1Þ;

Gtðt2 2Þ;GhðtÞ;Ghðt2 1Þ;Ghðt2 2Þ;GcðtÞ;Gcðt2 1Þ;

Gcðt2 2Þ;GsðtÞ;Gsðt2 1Þ;Gsðt2 2Þ;GwðtÞ;Gwðt2 1Þ;

Gwðt2 2Þ;GgðtÞ;Ggðt2 1Þ;Ggðt2 2Þ� ð16Þ

where G(t þ 1) is the water-stage at time t þ 1; the

subscripts t, h, c, s, w, and g represent gaging stations

of the Taipei Bridge, Ho-kou, the Chung-cheng

Bridge, the Hsin-hai Bridge, Wu-du, and the Guan-

du Bridge, respectively; Tm(t ), Td(t ), and Th(t ) are

lunar month, lunar day, and time. The water-stages of

Ho-kou and the Guan-du Bridge are used to describe

storm surge, ebb and flood flows. The water-stages of

the Chung-cheng Bridge, the Hsin-hai Bridge and

Wu-du represent the inflows of the Hsin-tien Creek,

the Ta-han Creek and the Keelung River, respectively.

The effect of astronomical tide is related to lunar

month, lunar day and time.

The data of eight typhoon events during 1994 were

obtained, and the continuous hourly water-stage data

were measured from July 1996 to December 2000 by

Taiwan Water Conservancy Agency. Totally, 22 864

sets data are used in this study. The data are split into

three independent subsets: the training, evaluation,

and testing subsets, respectively. The training subset

includes 13 269 sets of data, the evaluation subset has

3469 sets, while the test subset has the remaining 6126

sets. The training subset is used for model develop-

ment and parameter estimation. In this phase, a great

number of models (networks) are created due to

different values of the predetermined parameter u. In

the second phase, the best model from the above

candidates is chosen by simulating the performance of

evaluation subset data. Neither networks’ structure

nor their parameters can be adjusted at this stage. As

the best model is determined in the previous phase, the

testing subset data which is never part of training and

validation subsets is then devoted to access the

performance of the selected model without any

modification.

Correlation coefficient and root-mean-square error

(RMSE) are used to evaluate the performance of

the networks. The correlation coefficient indicates the

strength of relationships between observed and

estimated water-stages. The RMSE evaluates the

residual between observed and forecasted water

stages.

Fig. 3 shows the effect of u on RMSE and number

of hidden nodes. It appears that u controls the number

of hidden nodes (or radial basis functions) where the

number of hidden nodes decreases as u increases.

According to the evaluation subset data, the best

model, in terms of minimum RMSE, is u ¼ 0.15 and

Fig. 4. Observed and forecasted water-stages of the model at

training phase.

Fig. 3. u for RMSE and number of hidden nodes.
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450 hidden nodes. That means, on average, each node

might include 332 data sets. Compared with the

training data sets (13 269), 450 is relative small and

can be acceptable. Fig. 4 shows the observed and

forecasted water-stages at training phase with

u ¼ 0.15. Gobs and Gest denote the observed and

forecasted water-stages, respectively. All the data

points nicely fall onto the line of agreement. Three

typhoon events at the training phase are shown in

Fig. 5. Fig. 6 is similar to Fig. 4 and shows the

accuracy of the water-stages at the evaluation phase

forecasted by the RBFNN. Fig. 7 shows the perform-

ance of one of the typhoon events at the evaluation

phase that the hydrograph is well predicted. Finally, in

the testing phase, the best model identified in previous

phase is directly implemented without any adjustment

to its structure or parameters. The forecasted and

observed water-stages at the testing phase are

compared in Fig. 8. Again, it shows that the

performance of the RBFNN is very good. The

water-stage forecasting model is also exhibited in

Fig. 9, which includes four typhoon events at the

Fig. 5. Accuracy of water-stage forecasting during typhoons at

training phase.

Fig. 6. Accuracy of 1 h ahead water-stage forecasting in the Tanshui

River at evaluation phase.

Fig. 7. Accuracy of water-stage forecasting phase during typhoons

at evaluation phase.

F.-J. Chang, Y.-C. Chen / Journal of Hydrology 270 (2003) 158–166164



testing phase. The forecasts are very satisfactory and

accurate; in particular, the peaks of the hydrographs

are captured by the model. These figures indicate that

the water-stages forecasted by RBFNN agree quite

well with the observed water-stages. The RMSEs of

the training, evaluation and testing subsets are 0.059,

0.07 and 0.059, respectively. Moreover, the corre-

lation coefficients of the training, evaluation and

testing are 0.998, 0.997 and 0.998. They results show

that the model performance is accurate and consistent

in these different subsets. All correlation coefficients

are very close to unity, and all RMSEs are relatively

smaller. It demonstrates that the RBFNN can be

successfully applied to establish the model and

provide accurate and reliable one-step-ahead water-

stage forecasting.

6. Summary and conclusions

The hydrological processes in an estuary are

nonlinear and extremely complicated, and it is

difficult to quote physically model. The RBFNN, an

intelligently adaptive model, has been successfully

used for many tasks. In this study, we proposed a

novel RBFNN, which employs hybrid unsupervised

Fig. 8. One hour ahead water-stage forecasting in open channel

under tidal effect.

Fig. 9. Accuracy and reliability of RBFNN during typhoons at testing

phase.
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and supervised training schemes, for water-stage

forecasting in an estuary. During the first scheme,

the commonly used K-means clustering method is

replaced by the fuzzy min–max clustering for

determining the characteristics of the radial basis

functions. The advantage of using fuzzy min–max

clustering is that the number, centers and s of the

radial basis function can be determined systematically

and automatically. It is not necessary to estimate

many parameters. Only one parameter, u, needs to be

pre-decided. A small u, which will generate more

radial basis functions and might overfit the data at the

training phase, does not necessary guarantee better

performance in forecasting. The weights between the

hidden layer and output layer are obtained by

multivariate linear regression method. The output of

the RBFNN is simply the sum of the weighted output

of the hidden layer. Several candidate models are built

by using the training subset data. The model, which

applies to the validation subset data and has minimum

RMSE, is chosen from those candidate models. The

chosen model is then verified, without any further

change, through the test subset data to evaluate its

applicability and suitability. The water-stage data of

the Tanshui River under tidal effect is used for

developing the water-stage forecasting model. The

results demonstrate that RBFNN networks can

successfully model nonlinear hydrological systems

and accurately forecast 1-h-ahead water-stage in

rivers under tidal and typhoon effects.
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