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Abstract

In many parts of the world the frequency of river floods (flash floods) seems to have increased during the past half century.

Intensified agriculture is considered as a possible cause for the changed peak flow behavior. It is believed that a large-scale,

narrowly designed subsurface drainage reduces the soil water retention in periods with excessive precipitation or snow melt. To

increase the soil water retention, it may be necessary to reconsider conventional drain spacing design. The present study deals

with the calculation of drain spacings for optimal rainstorm runoff control. A semi-analytical procedure is developed with

which for a given extreme rainfall event the drain spacing is calculated that provides the highest possible soil water retention,

but no surface runoff. The model considers two-dimensional unsteady water flow between parallel tile drains, with a rising

water table. It combines an analytical rising water table model with an empirical spreading water table model. A comparison of

the new and a conventional drain design system (Hooghoudt–Ernst) shows that with the newly designed system a considerable

temporary soil water retention during heavy rainfall can be achieved. For example, for a soil with a hydraulic conductivity of

0.5 m d21 that is underlain by an impervious barrier at the 2.0 m depth, and that is drained by tiles with a radius of 0.1 m at the

1.0 m soil depth, an additional soil water retention of 38 mm is obtained when the drain spacing is 46.0 m instead of 13.5 m for a

rainfall event of 80 mm in a 4-day period. The newly proposed design system may help to reduce the flood threat in areas with

large-scale agricultural drainage in periods with excessive rainfall or snow melt.
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1. Introduction

Agricultural land drainage at a large scale has been

practiced in Northwestern Europe since the middle of

the 19th century. In Goudie (2000) an overview about

the present degree of drained agricultural land in that

part of the world is given. His map shows, for

example, that in the United Kingdom 60.9% of the

agricultural land is drained, in the Netherlands 65.2%,

in Denmark 51.4%, and in Finland 91.0%. For former

West Germany Goudie (2000) indicates a drainage

percentage of 37% and for former East Germany

27.0%. Surprisingly high is the drainage percentage in

Hungary (73.7%).

The first drain spacing equations were derived also

in Northwestern Europe (van der Ploeg et al., 1999c).

Until the middle of the 20th century, mainly drain

spacing equations for steady-state flow conditions

were derived; since 1950 drain formulas for non-

steady-state flow conditions have also been developed

increasingly. The development of drain spacing

design criteria from 1850 to 2000 is well documented

by the three monographs of the American Society of

Agronomy (ASA) and the American Society of

Agronomy/Crop Science Society of America/Soil

Science Society of America (ASA/CSSA/SSSA) on

the drainage of agricultural land, i.e. by Luthin (1957),
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van Schilfgaarde (1974a) and Skaggs and van

Schilfgaarde (1999). The main design criterion during

the past 150 years of scientific drainage was the water

table height, midway between two adjacent drains,

above some impervious barrier. Either a steady-state

water table, or a falling water table was considered in

the flow analysis. In both cases the objective was to

establish or maintain optimal physical growing

conditions in the root zone of the crops grown on

the field.

To remove excess rain or irrigation water as fast as

possible from the root zone of a growing crop, it is

necessary to have small drain spacings. In Germany,

subsurface drainage systems are designed with use of

the Hooghoudt–Ernst equations (Eggelsmann, 1981;

van der Ploeg et al., 1999b). When the design rainfall

is chosen high, the Hooghoudt–Ernst equations result

in small drain spacings. Standard rainfall rates in

Germany are 7 mm d21 for areas with an annual

precipitation of less than 600 mm, 9 mm d21 for such

with 600–1000 mm, and 17 mm d21 for regions with

more than 1000 mm of precipitation per year.

Recommended rainfall rates, however, are generally

higher and vary between 10 mm d21 for the coastal

area of Northern Germany, and 24 mm d21 for the

pre-Alp region of Southern Germany (van der Ploeg

et al., 1999b). In such cases a narrowly spaced

drainage system is designed that is highly effective in

removing surplus soil water in periods with excessive

rainfall. With about one fourth of its total agricultural

land area tile-drained, Germany thus has a highly

effective, large-scale soil drainage system.

However, this system has recently been ques-

tioned. Particularly in Western and Southern

Germany, it appears that the frequency of river floods

has increased during the past few decades (van der

Ploeg et al., 1999a, 2001b). Although a combination

of factors, such as climate change, decrease of the

meadowland area, physical soil degradation of the

cropland area, increased cultivation of runoff-enhan-

cing crops, is considered to be responsible for the

observed change in river discharge behavior (van der

Ploeg et al., 1999c, 2001a,b), it is argued that the

large-scale, narrowly designed subsurface drainage of

agricultural land also, possibly contributes to the

flood problem. Although a narrowly designed

subsurface drainage system may reduce surface

runoff, it is believed that in periods with heavy or

prolonged rainfall the drain discharge increases

disproportionally.

The discussion about the role of artificially drained

land in the discharge behavior of rivers is not new. In

Germany, for example, this subject was discussed by

early scholars such as Hess (1879), and particularly by

Krause (1898). The discussion has been controversial

since the beginning. Whereas some argue that land

drainage reduces, by increasing the soil water storage

capacity, the threat of river floods, others believe that

because of a loss of soil flow resistance, the flood risk

due to soil drainage increases. A thorough study on

this subject has been made by Robinson (1990) and

Robinson and Rycroft (1999). These authors have

clearly demonstrated the complexity of the matter and

have shown additionally that a general answer to the

question, as to whether drained land in a catchment

enhances or reduces the discharging river’s flood peak

during a rainstorm, cannot be given. However, at the

field scale it appears that flood peaks are frequently

decreased by subsurface drainage in areas that prior to

drainage had a high water table. In case of heavy or

prolonged rainfall, surface runoff often occurs in such

areas. By lowering the water table, an increased soil

water storage capacity reduces surface runoff as well

as the following flood peak. If, on the other hand, the

ground water table in the undrained state was deeper

and rarely causing surface runoff, flood peaks

frequently increase after drainage because of a

shortened subsurface flow path for water.

In addition to subsurface drainage, often the

discharging drainage ditches and canals are deepened

and straightened. In such cases, a flood peak increase

has been observed at the catchment scale, even if

subsurface drainage itself enhances a flood peak

decrease. Because channel improvements have been

carried out in many land drainage projects in Germany

(van der Ploeg and Sieker, 2000), it can be assumed

that agricultural drainage generally is contributing to

the flood problem that Germany presently is facing.

In the present study the design of subsurface

drainage systems is reconsidered. Not the root

environment of a growing crop, but a maximum soil

water retention in periods with excessive rainfall,

snow melt or irrigation, will be of main concern. For a

rainstorm of given intensity and duration (design

recharge), that particular drain spacing L is searched,

for which the soil between the drains becomes
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completely water-saturated at the moment the

recharge stops. The objective thus is to design a

drainage system that provides maximum soil water

retention, but that does not allow surface runoff for a

given design recharge. To this end, a semi-analytical

model, describing the water table rise between drains

during a rainstorm, will be extended, and sample

calculations with the extended model will be carried

out and evaluated. For earlier work on this subject, a

reader is referred to Zimmer et al. (1995), Lesaffre and

Zimmer (1988) and Salem and Skaggs (1998), and in

particular, with respect to runoff control, to Skaggs

(1980).

2. Model considerations

We are going to present a two-dimensional

drainage model, with which the discharge q from a

subsurface tube (tile) drain can be calculated. The

model applies to flat or slightly sloping land (Ritzema,

1994). We will consider non-steady flow conditions in

a homogeneous and isotropic soil, underlain by an

impervious horizontal or slightly sloping barrier, and

drained by parallel, equally spaced tube drains, two of

which are shown in Fig. 1.

Although we will consider non-steady flow

conditions, it is useful to consider first briefly

steady-state flow conditions. A schematic represen-

tation of the flow region is shown in Fig. 1.

In case of steady-state flow conditions, the

discharge rate q from a drain can be calculated

with the Hooghoudt equation, which can be written

(van der Ploeg et al., 1999c) as

q ¼
8Kdh

L2
þ

4Kh2

L2
; ð1Þ

where K stands for the soil hydraulic conductivity at

saturation, h is the height of the water table above the

drain level (Fig. 1), midway between the drains, L is

the drain spacing, and d stands for the water depth in

a fictitious ditch, that would be just as effective in

removing soil water as a tube drain of radius r at a

distance D above the impervious boundary. For

Fig. 1. Schematic representation of a homogeneous soil, underlain by an impervious boundary, that is drained by parallel, equally spaced tubes

(tiles), two of which are shown.
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a discussion of d, we refer to van der Ploeg et al.

(1999b,c). It is noted, that for steady-state flow

conditions the drain discharge q is equal to the

recharge (rainfall) rate R, shown in Fig. 1.

For later use, the equation for the shape of the

water table in Fig. 1, as well as for the average (flat)

water table height hav, are given here. With use of a

cartesian coordinate system (Fig. 1), the height y of

the water table at any location x between the drains

can be calculated from the expression (van der Ploeg

et al., 1999b)

y2
2 d2 ¼ ðq=KÞðLx 2 x2Þ; ð2Þ

from which it follows (because y ¼ hx þ d) that the

height hx of the water table above the level of the tube

drains at any location x between the drains is given as

hx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq=KÞðLx 2 x2Þ þ d2

q
2 d: ð3Þ

From the space-variable water table height hx; the

average water table height hav above the level of the

drains can be calculated as

hav ¼
ðL

0
hxdx=L: ð4Þ

With use of Eq. (3), hav can thus be expressed as

hav ¼
qL2 þ 4Kd2

4L
ffiffiffiffi
qK

p tan21 L

2d

ffiffiffiffi
q

K

r� �
2

1

2
d: ð5Þ

This expression for hav is valid for h # H; where H is

the depth of the drains below the soil surface (Fig. 1).

When in Eq. (5) the right-hand side (RHS) of Eq. (1)

is substituted, Eq. (5) reduces to

hav ¼
ðdþhÞ2

2
ffiffiffiffiffiffiffiffiffiffiffiffi
hð2dþhÞ

p tan21

ffiffiffiffiffiffiffiffiffiffiffiffi
hð2dþhÞ

p

d

 !
2

1

2
d: ð6Þ

In case of non-steady flow conditions, the height h of

the water table is calculated with use of the equation

(Lesaffre and Zimmer, 1988; Zimmer et al., 1995)

Cm›h=›t¼R2q; ð7Þ

where C is a water-table shape factor, m represents the

drainable porosity, t is time, R is the recharge rate, and

q is the rate of drain discharge. Eq. (7), with different

expressions for q, has been used by various authors to

derive non-steady-state drainage equations

(van Schilfgaarde, 1974b). Following Lesaffre and

Zimmer (1988) and Zimmer et al. (1995), we used in

our analysis the RHS of Eq. (1) to express q.

Substituting the RHS of Eq. (1) for q in Eq. (7) and

solving this equation, one can express the height ht of

the water table, midway between the drains, as

follows

ht¼
a

2K
tanh

2ta

L2Cm
þtanh21 2Kðdþh0Þ

a

� �	 

2d; ð8Þ

where the factor a is given by

a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RL2Kþ4K2d2

p
and where h0 is the water table height at t¼0; midway

between the drains (Fig. 2), when the rainstorm starts.

Also this expression is valid for ht#H (Fig. 1). From

Eq. (8) the time t¼t1 can be calculated, at which the

water table reaches the soil surface (i.e. when ht¼H).

This value t¼t1 depends (as Eq. (8) indicates) on the

drain spacing L.

The non-steady-state drain discharge rate q is

calculated (Lesaffre and Zimmer, 1988; Zimmer et al.,

1995) as

q ¼ A 8
Kdh

L2
þ 4

Kh2

L2

 !
þ ð1 2 AÞR; ð9Þ

where A is another water-table shape factor. Eq. (9)

shows, that the drain discharge q for non-steady-state

water table conditions is calculated from a sequence

of steady-state water tables. However, because the

water table is not rising at the same rate at every

location, a portion of the recharge rate, ð1 2 AÞR; is

directly contributing to the drain flow. Substitution of

ht of Eq. (8) in Eq. (9) yields for the drain discharge

rate qt :

qt ¼ A
8Kdht

L2
þ

4Kh2
t

L2

 !
þ ð1 2 AÞR: ð10Þ

The shape factors A and C in Eqs. (7)–(10) depend

primarily on the fictitious depth d. For a steady-

state water table and for d ¼ 0; the parameter A ¼

0:869 and C ¼ 0:904; whereas for d ¼ 1; A ¼ 0:8

and C ¼ 0:833: For intermediate values of d, A and

C depend also on h (Zimmer et al., 1995). For a

rising water table, these shape factors A and C

strictly speaking do not apply, because of an initial

arching of the water table near the drains. The

steady-state water-table shape, for which A and C

apply, is only approached in the course of
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the recharge process. This dynamic behavior of the

water table can be described only numerically

(Bouarfa and Zimmer, 1998). In our approximate

analysis, however, we assumed a steady-state shape

of the water table throughout the rising process.

As soon as the water table (ht in Fig. 2) reaches

the soil surface (at t ¼ t1), Eq. (8) does not apply

any longer and neither do Eqs. (9) and (10) for the

drain discharge. From this time on, an empirical

relation proposed by Salem and Skaggs (1998) can

be used to estimate the drain discharge q, whilst

the soil profile is further filling up. Referring to

Fig. 2, we can write this relation as

q ¼ q2 2 ðq2 2 q1Þexp b
hav 2 h1;av

hav 2 h2;av

 !
; ð11Þ

where hav is the the average (but initially unknown)

water table height (Fig. 2), h1,av, the value of hav when

the water table reaches the soil surface (at t ¼ t1),

h2,av, the value of hav when the soil becomes fully

saturated (at t ¼ t1 þ t2), and q, q1, and q2 are the

corresponding drain discharge values. In Eq. (11), b is

a matching factor, that will be discussed later.

The quantity q1 in Eq. (11) can be determined with

Eq. (9), for h ¼ H: The parameter q2 in Eq. (11) is the

drain discharge (m3 m22 d21) per unit length (L ) of

drain, in case the soil profile is completely water-

saturated (ponded case with a zero height of water

standing on the soil surface). For such a flow

configuration, Kirkham (1957) has provided a sol-

ution (his equation III.39), from which our drain

discharge q2 can be derived. Using that equation, we

can express q2 as (Kirkham, 1957)

q2 ¼ 4pKðH 2 rÞ=ðfLÞ ð12Þ

where the function f can be written as (Fig. 1)

f ¼2ln
sinh½pð2H2rÞ=L�

sinhðpr=LÞ

� 

22

X1
n¼1;2;…

ð21Þn

£ ln
sinh2ð2pnZ=LÞ2sinh2ðpr=LÞ

sinh2ð2pnZ=LÞ2sinh2½pð2H2rÞ=L�

( )
: ð13Þ

In Eq. (13) the symbol Z stands for the depth of the

impervious barrier below the soil surface (Z¼HþD;

see Fig. 1). The other symbols in Eqs. (12) and (13)

have been defined above.

Fig. 2. The water table between two tile drains in case of a rising water table; the height of the water table midway between the drains at time

t ¼ 0 is denoted by h0 and at some arbitrary time t by ht.
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To compute the discharge rate q with Eq. (11),

values for hav, h1,av, and h2,av must be known. As can

be seen from Fig. 2, h2;av ¼ H: The parameter h1,av is

given by Eq. (6), with h ¼ H (Fig. 1). The value for

hav in Eq. (11) is not easily available, but can be

derived from the expression

R2m
dhav

dt
¼q22ðq22q1Þexp

bðhav2h1;avÞ

ðhav2h2;avÞ

" #
: ð14Þ

This differential equation cannot be solved analyti-

cally, but must be solved numerically. The numerical

solution provides the time t¼t2; for which the average

water table height hav becomes equal to H (Fig. 1). At

this moment ðt¼t2Þ the soil becomes water-saturated.

As can be seen from Eqs. (8) and (10), the value of

t¼t2 depends on the drain spacing L.

Once the value t2 is known, the sum t1 þ t2 can be

compared with T (the duration of the rainstorm). In

case t1 þ t2 , T ; the soil became saturated too early

and a new (smaller) estimate for the drain spacing L

must be made. For the new value of L the procedure to

estimate t1 and t2 (and the optimum value for L ) starts

all over, i.e. new values for q1, q2, and h1,av have to be

calculated before Eq. (14) is numerically solved

again. For selected problems, we will show how the

combined model can be used to design a drainage

system that prevents surface runoff and provides

maximum soil water retention in case of heavy

rainfall.

3. Materials and methods

The drainage area considered in this study is the

catchment of the Leine river in Northern Germany.

The Leine river is a tributary of the Aller river,

which in turn is a tributary of the Weser river.

Major cities in the Leine catchment are Hannover,

Goettingen, and Hildesheim. A map of Germany

with the Weser catchment and the Leine area is

shown in Fig. 3. The land area in the Leine

catchment is predominantly used for agriculture and

the main crops are winter cereals and sugarbeets.

The topography varies between gently rolling and

flat. Mean annual precipitation is about 665 mm

and an estimated 25% of the generally deep

loessial soils is tile-drained. North of Hannover,

sandy soils are widespread.

During the past decades, the Leine area has

repeatedly been struck by floods. The largest floods

are usually observed in the humid wintertime, when

rainfall of moderate intensity, but of large areal extent

occurs, sometimes accompanied by snow melt.

During the past 20 years floods along the Leine

river were recorded in 3/81 and 12/81 (March and

December 1981), 1/82, 1/86, 1/87, 3/88, 12/88, 3/90,

1/93, 1/94, and 3/94. The largest flood was the one in

March 1981, with a recurrence interval of 30 years.

During the wet month of March 1981, a combined

rainstorm of 65 mm on four consecutive days

triggered a major flood. For our present analysis we

have therefore chosen this rainstorm as a sample case

and have taken the design recharge rate (e.g. in Eq. (7))

as R ¼ 20 mm d21 for a 4-day period.

In our optimum drain spacing analysis for R ¼ 20

mm d21 for 4 days, we considered various values for

the parameters H and D (Fig. 1), as well as for the

hydraulic conductivity K. They were D ¼ 0:0; 0.5,

1.0, 2.0, and 5.0 m and K ¼ 0:2; 0.5, 1.0, and

2.0 m d21. For the drain depth we used mostly H ¼

1:0 m; but we considered also drain cases with an

impervious barrier (Fig. 1) at the 0.9, 0.7, 0.5, and

even at the 0.3 m soil depth. In these cases we

assumed the tube (tile) or the mole drains to rest on the

impervious boundary.

Also for the drainable porosity m we used multiple

values in our analysis. To facilitate the computations,

a relation between m and the hydraulic conductivity K

was applied. Such an empirical relation bears some

physical justification and has been repeatedly pro-

posed in the literature (Eggelsmann, 1981; Chossat,

1987). The relation of Chossat and the relation m ¼

0:1
ffiffiffi
K

p
; used, e.g. by Eggelsmann (1981) are shown in

Fig. 4. In our analysis we decided to use the relation

m ¼ 0:1
ffiffiffi
K

p
:

In our model, the parameter d (Fig. 1) plays an

important role. Tabulated values for d (as a function of

D, L, and r ) can be found, for example, in van der

Ploeg et al. (1999c). In our present study, with given

values for L, we calculated d from the expression (van

der Ploeg et al., 1999c):

d ¼
L

8
ðL 2

ffiffi
2

p
DÞ2

8DL
þ

1

p
ln

ð1=2Þ
ffiffi
2

p
D

r

" # : ð15Þ
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To conclude this section, a remark about the

parameter b of Eq. (14) seem to be appropriate. This

parameter is a matching factor, without much physical

significance. Its use in Eq. (14) influences however

considerably the simulated rate of drain discharge,

once the water table has reached the soil surface. To

our knowledge, no experimentally determined b

values for the case of a rising water table are available

in the literature. The values that we assigned to b thus

are rather arbitrary. It suffices here to say that we used

values for b between 0.1 and 1.0. We will discuss

the parameter b some more in Section 4. Finally, we

remark that all our computations were performed with

the program MAPLE of Waterloo Maple Inc. (1997).

4. Results and discussion

For a 4-day long rainstorm, with a rainfall intensity

of 20 mm d21 ðR ¼ 0:02 m d21Þ; with tube (tile)

Fig. 3. The major river catchments in Germany, including the Weser catchment with Aller and Leine rivers and with the cities of Hannover,

Hildesheim, and Goettingen.
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drains at a depth H ¼ 1:0 m; the optimum drain

spacing L was calculated. It is the drain spacing L, at

which the soil profile becomes completely saturated at

the moment the rain stops. Hence, until then no

surface runoff has occurred and the soil water

retention at this moment reaches a maximum. We

always started our computations assuming initially

steady-state flow conditions to occur for a steady rain-

fall (recharge) rate of 1 mm d21 ðR ¼ 0:001 m d21Þ:

Resulting values of L, for different values of D

(Fig. 1) and for the hydraulic conductivity K, are

shown in Table 1. For comparison also the drain

spacings are shown (in parentheses) that are calcu-

lated with the conventional Hooghoudt equation (Eq.

(1)), for a recharge design rate of 12 mm d21.

The table shows, as expected, that the new values

are considerably larger than the conventionally

calculated values.

To show how much storage capacity is not made

use of in case of the conventionally calculated drain

spacings, the maximum water table height ht (Fig. 2)

and the average water table height hav for the drain

spacings listed in parentheses in Table 1, can be

determined. The water table height ht can be

calculated with Eq. (8) (for t ¼ T) and hav with Eq.

(6). For the drain spacing entries of Table 1, the

corresponding hav values (in cm) are listed in Table 2.

The table shows, for example, that for K ¼ 0:5 �

m d21 and D ¼ 1:0 m; hav ¼ 46 cm; which means that

54 cm of the soil profile is water-unsaturated. If the

drainable porosity m ( ¼ 0.1K) ¼ 7%, this means that

38 mm of water could have been stored additionally

Fig. 4. The relationship between the soil hydraulic conductivity K and the drainable porosity m, according to Eggelsmann (1981) and Chossat

(1987).

Table 1

Optimum drain spacings for highest soil water retention in case of an extreme rainfall event; numbers in parentheses denote drain spacings

calculated with the Hooghoudt equation (Eq. (1)) for q ¼ 12 mm d21; r ¼ 0:1 m; and h ¼ 0:5 m

Hydraulic conductivity

K (m d21)

Depth D of the impervious barrier below the drains (m)

D ¼ 0:0 D ¼ 0:5 D ¼ 1:0 D ¼ 2:0 D ¼ 5:0

Drain spacing L (m)

0.2 8.7 (4.1) 15 (7.0) 16 (8.2) 17.5 (9.3) 19 (9.5)

0.5 23 (6.5) 39 (11.1) 46 (13.5) 55 (16.1) 67 (18.2)

1.0 47 (9.1) 78 (15.7) 92 (19.5) 110 (24.0) 145 (29.4)

2.0 .91 (12.9) .165 (22.2) .190 (28.0) .200 (35.3) 265 (46.0)
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for a drain spacing L ¼ 46 m instead of L ¼ 13:5 m

(Table 1).

The use of b in Eq. (11) needs a comment. As

mentioned earlier, no experimentally derived values

for b for a rising water table seem to exist. Any

assigned value to b is therefore arbitrary. Its effect on

the rise of the drain discharge, after the water table has

reached the soil surface, can be illustrated with the use

of Fig. 5. For a flow configuration, as shown in Figs. 1

and 2, with H ¼ 1:0 m; h1;av ¼ 0:66 m; and h2;av ¼

1:0 m; the drain discharge q is shown as a function of

hav and of b. In view of field observations on drain

discharge, we assumed that b is larger than 0.01, but

smaller than 1.0. Simulations with HYDRUS-2D

(Simunek et al., 1996) confirmed this assumption.

Based on our experience, both in the field and with

HYDRUS-2D, we therefore assigned a value of 0.5 to

b ðb ¼ 0:5Þ:

Because Eq. (14) does not have an analytical

solution, the procedure discussed so far is somewhat

cumbersome. The procedure can be simplified, if only

a first approximation for the optimum drain spacing is

required. This can be achieved with the Kirkham

equation (Eq. (12)). Permitting soil saturation during a

steady-state design recharge rate R ¼ q2; one can

calculate the corresponding drain spacing L with Eq.

(12). In Fig. 6 the relation between L and q2 is shown

for four different flow configurations (H ¼ 1:0; r ¼

0:10; K ¼ 0:5 m d21; and Z ¼ 1:0; 1.5, 2.0, or 5.0, see

Fig. 1). If, for example, a drain spacing is required,

Table 2

The average height hav of the water table above the level of the tile drains after 4 days of recharge ðR ¼ 20 mm d21Þ; for drain spacings as

calculated with the Hooghoudt equation (Eq. (1))

Hydraulic conductivity

K (m d21)

Depth D of the impervious barrier below the drains (m)

D ¼ 0:0 D ¼ 0:5 D ¼ 1:0 D ¼ 2:0 D ¼ 5:0

Average water table height, hav (cm)

0.2 51 51 50 51 53

0.5 49 47 46 45 45

1.0 46 41 40 38 38

2.0 40 34 33 32 32

Fig. 5. The influence of the matching factor b of Salem and Skaggs (1998) on the calculated drain discharge q as a function of the average water

table height hav.

E. Wiskow, R.R. van der Ploeg / Journal of Hydrology 272 (2003) 163–174 171



such that at soil saturation a recharge rate R of

20 mm d21 does not cause surface runoff (or ponded

water), a drain discharge q2 of also 20 mm d21 is

needed. If Z ¼ 2:0 m (Fig. 1) this means that L ¼ 44

m (Fig. 6). This number differs only slightly from the

one given in Table 1 ðL ¼ 46 mÞ; calculated with our

newly proposed procedure. For other values of H, r,

and K similar curves can be constructed.

The1 presented non-steady drainage flow esti-

mations assume that the drainage volume of the soil

between the water table and the soil surface is

characterize by a constant soil texture-dependent

drainable porosity, an assumption common in ground-

water hydrology. In theory, however, the drainage rate

is a function of the rate of water table change and its

proximity to the soil surface, thereby varying with time

depending on drainage and redistribution rates. Never-

theless, the analytical approximations allow quantifi-

cation of water flux across the water table as a result of

changes in water table position, without solving the

unsaturated water flow equation for the combined

saturated–unsaturated soil domain. Alternatively, a

full suite of numerical techniques is available that can

solve for variably saturated flow with fluctuating water

tables (Simunek et al., 1996; Skaggs, 1980) and that do

not require restrictive assumptions as needed in the

presented analytical solutions (e.g. constant drainable

porosity and Dupuit assumption of dominantly hori-

zontal water flow). These mechanistic numerical

models will more accurately estimate drainage rates

as a function of the unsaturated water flow dynamics

between the water table and the soil surface. However,

it is difficult to a priori assess the influence of the

simplifying assumptions on optimum drainage spacing

and storage capacity calculations. A comparison

between semi-analytical and fully numerical solutions,

as well as on extended analytical solutions, is ongoing.

5. Conclusions

In many countries subsurface drainage systems are

designed with narrow spacing. With a narrowly

designed drainage system it is achieved that in periods

with excessive recharge the water table does not rise

into the rooting zone of a growing crop and that the

water table is falling quickly when the recharge stops.

Because of the narrow design, the upper part of the soil

profile therefore does not become saturated. It appears

that because of such a design, drainage systems may

add to river floods in periods with excess precipitation,

especially when the system is practiced at a large scale,

as in Germany. To increase soil water retention in wet

Fig. 6. The drain discharge q for the ponded water case of Kirkham (1957) as a function of the depth of the impervious boundary Z, for

K ¼ 0:5 m d21; r ¼ 0:1 m; and H ¼ 1:0 m:

1 This paragraph was added by J.W. Hopmans and J. Simunek,

because Dr R.R. van der Ploeg was unable to make requested

revision due to illness.
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periods, drainage design systems therefore may be

reconsidered. We have shown that a modified drainage

design system, that allows soil saturation, may increase

soil water retention during periods with elevated

recharge. The threat of river floods in such periods

thus can be reduced, especially when the drain spacing

is chosen not too small. With a larger drain spacing, the

drainage performance of the system is admittedly

lowered somewhat. However, as in the case of the

Leine valley in Northern Germany, floods are usually

observed during winter between December and March,

when much arable land is bare or fallow. Under these

circumstances, a high performance of the drainage

system is not required. Restricted drainage efficiency

under such conditions therefore may help to reduce the

risk of winter floods.

How much loss of drainage efficiency can be

expected, and which design rainstorm should be

chosen, are questions that need to be answered

regionally. The answers depend, among others, on

the sensitivity to water logging and the worth of the

cultivated crops, on the size of the land area that is

drained, on the external costs caused by possible

floods, and on the frequency of such floods. Restricted

drainage efficiency is likely to affect crop yields. This,

however, is not necessarily a disadvantage for a

national economy. In Germany, for example, agricul-

ture is heavily subsidized. As a consequence, there is

an overproduction of such commodities as sugar,

wheat, and barley. Because the costs of agricultural

production are high, it is usually not possible to sell

German agricultural commodities on the world market,

unless also the export is subsidized. A reduced

drainage efficiency thus seems advantageous both for

the environment and the economy.
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