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Abstract

Numerical solutions to the equation governing variably saturated flow are usually obtained using either the finite difference

(FD) method or the finite element (FE) method. A detailed comparison of these methods shows that the main difference between

them is in how the numerical schemes spatially average the variation of material properties. Further differences are also observed

in the way that flux boundaries are represented in FE and FD methods. A modified finite element (MFE) algorithm is used to

explore the significance of these differences. The MFE algorithm enables a direct comparison with a typical FD solution scheme,

and explicitly demonstrates the differences between FE and FD methods. The MFE algorithm provides an improved

approximation to the partial differential equation over the usual FD approach while being computationally simpler to implement

than the standard FE solution. One of the main limitations of the MFE algorithm is that the algorithm was developed by imposing

several restrictions upon the more general FE solution; however, the MFE is shown to be preferable over the usual FE and FD

solutions for some of the test problems considered in this study. The comparison results show that the FE (or MFE) solution can

avoid the erroneous results encountered in the FD solution for coarsely discretized problems. The improvement in the FE solution

is attributed to the broader hydraulic conductivity averaging and differences in the representation of flux type boundaries.
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1. Introduction

Due to the non-linear physical processes associated

with unsaturated conditions, the governing conserva-

tion equations for variably saturated flow problems are

complex. Therefore, the solution of the governing

equation is sought using numerical techniques,

of which finite difference (FD) and finite element

(FE) methods are two popular schemes (Wang and

Anderson, 1982; Zheng and Bennett, 1995). Variations

of the standard FD and FE methods, such as the sub-

domain FE method have also been successfully used to

solve these problems (Cooley, 1983). The choice of

using either an FD or FE method for the solution of

variably saturated flow problems is largely personal

and proponents of a particular method can easily

support the strengths of their preferred solution

strategy. This can cause problems when a choice has

to be made between these approaches, as it is difficult to

objectively compare the methods in a tangible manner.
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This difficulty is further amplified because of the rich

history of analysts who have consistently promoted

one approach over the other. Hence, a study to compare

the performance of these methods for several variably

saturated flow problems is required so that a judgment

of the preferred solution method can be identified using

a sound physical basis.

Previous investigations directly comparing FE and

FD formulations for the solution of variably saturated

flow problems are limited. Philosophical discussions

comparing the FE and FD methods in a general context

are available, however these are constrained for

making qualitative comparisons and provide little

insight into the practical differences observed in the use

of these techniques. For example, Gray (1984)

presented a comprehensive analysis comparing FE

and FD techniques in a general context, while

Neumann et al. (1975) made some qualitative com-

ments upon the differences in FE and FD approaches

for the solution of variably saturated flow problems;

however, no quantitative analysis was invoked.

The differences in the performance of FE and FD

techniques for variably saturated flow in one-dimen-

sional problems have been more thoroughly analyzed.

For example Hayhoe (1978) compared FE and FD

solutions to the one-dimensional, horizontal, water

content form of the variably saturated flow equation.

He concluded that a linear FE solution was preferable

to a higher order FE solution, as well as noting that

some improvement to the usual FD solution was

obtained with alternative inter-nodal hydraulic con-

ductivity averaging schemes. Van Genuchten (1982)

compared an FD formulation and several FE formu-

lations for the solution of one-dimensional variably

saturated flow and solute transport. This work gave a

comprehensive description for using several FE

procedures to solve variably saturated, coupled flow

and solute transport problems. More recently, Celia

et al. (1990) compared one-dimensional FE and FD

solutions to the variably saturated flow equation and

showed that the results were dependent upon the

method of temporal discretization chosen for the FE

approach. These analyses are limited because of the

focus upon one-dimensional problems. We aim to

show that the true differences in FE and FD solutions

are more pronounced in higher dimensional problems

and therefore cannot be effectively deduced from these

past one-dimensional studies.

The objective of this study is to compare the

efficiency of FD and FE methodologies for solving

the two-dimensional variably saturated flow equation.

In particular, we compare the performance of two

specific methods for the implementation of the FE and

FD algorithms. This comparison motivated the devel-

opment of a modified finite element (MFE) algorithm

that enabled an explicit analysis of the significance of

the differences between FE and FD solutions of two-

dimensional variably saturated flow problems.

2. Background

2.1. Governing equation

The governing equation for variably saturated flow

within a homogeneous, isotropic two-dimensional

porous medium is (Clement et al., 1994):
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where Ss½L
21� is the specific storage of the porous

medium, c½L� is the pressure head, u is the water

content, f is the porosity, KðuÞ½LT21� is the hydraulic

conductivity, t½T� is time and x and z are the Cartesian

coordinates.

Eq. (1) describes variably saturated flow under the

conditions that (1) the air phase in the unsaturated zone

does not interact with the fluid, and (2) the spatial

distribution of fluid density is invariant.

2.2. Finite element algorithm

2.2.1. Triangular elements

We used linear triangular elements to formulate the

FE solution in this study. Alternatively shaped or

higher order elements may also be used; however,

linear triangular elements are known to produce a good

solution to similar problems and are the simplest two-

dimensional element that allows analytical analysis

(Segerlind, 1984; Cooley, 1992). The typical triangular

element and nodal structure used in this study are

shown in Fig. 1. A standard linear interpolation scheme

M.J. Simpson, T.P. Clement / Journal of Hydrology 270 (2003) 49–6450



is used to form the trial solution as described by

ĉðx; zÞ ¼ crNr þ csNs þ ctNt ð2Þ

where,

Nr ¼
1

2A
½ar þ brx þ crz�;

Ns ¼
1

2A
½as þ bsx þ csz�;

Nt ¼
1

2A
½at þ btx þ ctz�; ar ¼ xszt 2 xtzs;

br ¼ zs 2 zt; cr ¼ xt 2 xs; as ¼ xtzr 2 xrzt;

bs ¼ zt 2 zr; cs ¼ xr 2 xt; at ¼ xrzs 2 xszr;

bt ¼ zr 2 zs; ct ¼ xs 2 xr

where ĉ½L� is the interpolated pressure head,cr;cs and

ct½L� are the discrete values of the pressure head at the

element vertices, Nr, Ns and Nt are the linear shape

functions which depend upon the Cartesian coordi-

nates (x, z ) of the element vertices, and A½L2� is the area

of the element. Note that the terms ar; as; at; br; bs; bt;

cr; cs and ct are traditionally used in triangular

interpolation schemes to keep the notation succinct

(Segerlind, 1984).

2.2.2. Galerkin finite element solution

The Galerkin solution technique assumes a trial

solution to the partial differential equation. The

residual error produced by the trial solution weighted

by each shape function is then minimized at each

computational node to form an algebraic analogue to

the partial differential equation. The residual equation

for element e takes the form:
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where A refers to the area of element e, {N e} are the

shape functions associated with the element and {R e}

are the components of the nodal residuals associated

with element e. Summing the residual components of a

particular node arising from the surrounding patch of

elements, and then forcing the residual to zero makes

the trial solution approximate the actual solution in a

discrete sense at a particular node.

Eq. (3) is integrated using standard techniques to

develop the element matrix equations (Eisenberg

and Malvern, 1973; Segerlind, 1984). The non-

linear equations are linearized by the introduction

of a Picard iteration scheme (Cooley, 1983; Celia

et al., 1990); and mass lumping is used to develop

the capacitance matrix (Neumann, 1973; Celia et al.,

1990). The resulting residual equation is:
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Fig. 1. Linear triangular element.
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Note that the above system forms the element level

equations for the two-dimensional variably saturated

flow equation. The dot above the entries represents a

temporal derivative, while the superscript m refers to

the previous Picard iteration level.

For the implementation of Eq. (4) in a standard

FE code, the terms are evaluated in an element-by-

element fashion and the resulting equations can be

assembled together using the direct stiffness method

to yield a set of linear equations (Segerlind, 1984).

The linear system can be solved using a standard

matrix solver (Istok, 1989).

2.3. Modified finite element algorithm

Typically, in the implementation of an FE code, all

of the input data and manipulation are undertaken in

terms of the element structure. Within the solution

algorithm, the direct stiffness assembly procedure is

used to transform the element information into a set of

linear (or linearized) equations based upon the nodal

structure. The equations are later solved to yield the

discrete values of the dependent variable at the new

iteration level.

Unfortunately, swapping between the element and

nodal equation structure in this manner has two major

limitations. Firstly, the process of preparation and

assembly of the element information is cumbersome.

Secondly, the internal computation required to

achieve this element to nodal transformation is a

lengthy computational process. Further, the element

and node numbering systems are often ad hoc; hence

the resulting linear equation system incorporates a

large sparse matrix, which poses difficulties in terms

of efficient storage and solution methods.

When an FE formulation is expanded upon an FD-

like nodal arrangement, the two methods yield a

similar discrete approximation to the partial differen-

tial equation (Zienkiewicz and Cheung, 1965; Pinder

and Gray, 1976; Cooley, 1983). This observation is

the motivation for the development of an MFE

algorithm where the standard FE residual expression

is developed in a nodal form instead of the usual

element expression. The development of the FE

solution using this modified strategy has two advan-

tages. Firstly, the discrete MFE equations can be

directly compared with a standard FD approximation

to explicitly elucidate the differences between the FD

and FE methods. Secondly, the process of manually

moving between the element formulation and the

nodal expression is hoped to alleviate the problems

associated with the computational assembly process

in standard FE formulations, and lead to an efficient

method to store and solve the resulting equations.

At this point the restrictions placed upon the MFE

algorithm in its development should be noted. Since

the MFE equations are to be expanded upon an FD

grid, the MFE solutions shall be confined to

discretizations with constant, but not necessarily

equal nodal spacing in the x and z directions.

Furthermore, since we are to directly compare the

FD and MFE solutions, we restrict the MFE algorithm

to situations where the material properties are not

allowed to vary from element to element. These

restrictions are necessary in order to enable a

straightforward comparison between the MFE and

FD solution techniques. It should be noted that these

restrictions do impede the use of the MFE algorithm

in comparison with the more general FE approach

where both of these restrictions can be relaxed

(Neumann, 1973; Cooley, 1983).

Once the FE equations have been expanded upon

an FD grid, then a single governing relationship may

be written for each node, and then applied throughout

the grid. Developing the FE equations upon an FD-

style grid is done by using two different triangular

element orientations as shown in Fig. 2. These

elements are used in conjunction with an FD grid as

shown in Fig. 3. To compute the FE residual for the

central node upon this grid, Eq. (4) must be written for

each of the six elements that surround the central

computational node. Since the components of the

element matrices depend upon the orientation of the

element, Eq. (4) must be reformulated to correspond

to the two different element orientations. For elements

1, 3 and 5 which are all oriented in the same way,

evaluating the element matrices in terms of the FD

grid spacing yields a residual equation,
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A similar expression can be obtained by evaluating

Eq. (4) for elements 2, 4 and 6
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The expressions (5) and (6) are written by recognizing

that the interpolation terms br; bs; bt; cr; cs and ct can be

evaluated using the nodal spacings Dx and Dz.

Although the terms in Eqs. (5) and (6) are almost

identical, they really should not be compared with each

other. This is because the two expressions are written

upon completely different, unrelated elements.

The choice of the element and node numbering is

arbitrary. If an alternative element and node numbering

were chosen, then intermediate expressions (5) and (6)

would differ, but the final result would be identical. The

current element and node numbering was chosen

because it yielded the most compact intermediate

equations.

Now that the FE relations for the specified element

layout are established, they must be transferred to an FD

grid, therefore the indices used in Eqs. (5) and (6) must

be replaced by the corresponding FD nodal indices. The

structure and nomenclature used for the FD-style

expression are shown in Fig. 3. (Note that in the figure

the FE notation is given in the interior of the elements

and the FD notation is given on the exterior of the

elements.) Since each element contributes one com-

ponent of the residual at the central node, the total

residual at the central node will be

Ri;j ¼ R1
s þ R2

t þ R3
r þ R4

s þ R5
t þ R6

r ð7Þ

where R1
s is the residual component from the first

element at the sth vertex, R2
t is the residual

component from the second element at the tth

vertex and so on. Each of the residual components

in Eq. (7) can be deduced from Eqs. (5) and (6).

For example, for element1, the sth vertex of the element

will contribute a residual to the central computational

Fig. 2. Element orientation and node structure.
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node. Hence, the component of the residual expression

comes from the Rs row of the FE relation (5) and using

this information the residual R1
s can be evaluated as

R1
s ¼

2Dz2
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Now that the residual component of element 1 has been

established we will move from the FE (r, s, t ) notation

to the general FD (i, j ) notation to be consistent with

FD terminology. This is accomplished by simply

comparing the nodal indices in Fig. 3. Eq. (8) can be

written in terms of the FD indices as:
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Repeating this process of recognizing which vertex

of elements 2–6 would contribute to the central

node, and then expanding the corresponding relation-

ship yields the remaining residual components for

each element. Once each of the components of the

element residual has been obtained, they can be

substituted into Eq. (7) to develop a discrete form of

the governing equation. This relationship is written

in an FD-style format as

acmþ1
i;j21þbcmþ1

i21;jþccmþ1
i;j þdcmþ1

iþ1;jþecmþ1
i;jþ1 ¼ f ð10Þ
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Fig. 3. Element topology used to define the MFE five-star computational molecule relationship.
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f ¼2Au
†mþ1

i;j þ
2Aum

i;jSsc
†mþ1

i;j

f
2

Dx

6
ð2Km

i;j2122Km
i;jþ1

þKm
iþ1;j2Km

iþ1;jþ1þKm
i21;j212Km

i21;jÞ:

Eq. (10) is an FE approximation written at a general

node within the domain.

Before applying Eq. (10) to solve a problem, the

temporal derivative components must be expressed in

terms of the dependent variable. This is achieved using

a backward Euler stepping for the pressure storage

term along with the modified Picard linearization

procedure for the water content term (Celia et al.,

1990). Note that the modified Picard linearization

procedure is a specialization of the general lineariza-

tion technique described by Cooley (1983). To make

the equation compatible with the FD expression, the

area of the element A½L2� is expressed in terms of nodal

spacing and then each term is divided through by ðDx

DzÞ: The resulting expression is
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where C½L21� is the capacity function, which is

obtained by computing the slope of the water retention

curve. Note that the superscript n refers to the previous

level of time integration, while the superscript n þ 1

refers to the values at the current (unknown) time

increment.

Eq. (11) is the final form of the discrete MFE

equation to be applied at an internal node. The

structure of Eq. (11) defines a five-star computational

molecule relationship that avoids the need for global

nodal numbering as it relies only upon a local

numbering scheme. Note the MFE approximation

(11) can be compactly assembled into a penta-

diagonal matrix equation that avoids the storage of

zero entries; this approach is commonly employed in

FD algorithms (Clement et al., 1994). This form of the

MFE equations is useful as it allows a direct

comparison to be made between two specific FE and

FD methods so that an understanding of the working

differences between these methods can be explicitly

developed.

2.4. Boundary conditions

Both Dirichlet and Neumann boundaries are

considered. Dirichlet nodes occur where the pressure

head is known a priori at some point on the domain

boundary. Neumann boundaries occur where a value

of the normal flux, q½LT21� is known at some location

along the boundary. The methods for the implemen-

tation of Dirichlet and Neumann boundary condition

are well known and have been documented for the

general FE procedure (Segerlind, 1984). The use of

these principles in the MFE discretization is a

straightforward extension of the development of the

interior node expression.

The implementation of Dirichlet boundaries in

both FD and FE algorithms are identical. The

implementation of Neumann boundaries however, is

different. A Neumann boundary is incorporated into

an FD algorithm by writing a discrete form of Darcy’s

law at the boundary node where the flux is known

(Clement et al., 1994). In an FE algorithm, specified

fluxes are incorporated into the flux vector (Eq. (4))

that results from the application of integration by parts

upon the original element-level residual expression

(Eq. (3)). These two approaches lead to different

expressions at Neumann boundary nodes for FE and

FD techniques. The mathematical details of these

differences are discussed in Simpson (2002).
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2.5. Theoretical comparison of finite difference and

finite element solution algorithms

A standard, fully implicit in time and centered in

space FD approximation for Eq. (1) can be written as

(Clement et al., 1994)

acmþ1;nþ1
i;j21 þ bcmþ1;nþ1

i21;j þ ccmþ1;nþ1
i;j

þ dcmþ1;nþ1
iþ1;j þ ecmþ1;nþ1

i;jþ1 ¼ f ð12Þ

where

a ¼
1

2Dz2
ðKm;nþ1

i;j þ Km;nþ1
i;j21 Þ;

b ¼
1

2Dx2
ðKm;nþ1

i;j þ Km;nþ1
i21;j Þ;

d ¼
1

2Dx2
ðKm;nþ1

i;j þ Km;nþ1
iþ1;j Þ;

e ¼
1

2Dz2
ðKm;nþ1

i;j þ Km;nþ1
i;jþ1 Þ;

c ¼ 2a 2 b 2 d 2 e 2
Cm;nþ1

i;j

Dt
2

Ss

Dtf
;

f ¼
ðum;nþ1

i;j 2 un
i;jÞ

Dt
2

Cm;nþ1
i;j cm;nþ1

i;j

Dt
2

Ssc
n
i;j

Dtf

2
1

2Dz
ðKm;nþ1

i;j21 2 Km;nþ1
i;jþ1 Þ:

In this study, the linear systems generated by both the

FD and the MFE algorithms were solved using a bi-

conjugate gradient method (Press et al., 1992). The

multiplying routine was developed to take advantage

of the penta-diagonal structure of the equations in

both solutions.

A comparison of the discrete formulations (11)

and (12) elucidates several important differences

between the FE and FD approaches. In the discretiza-

tion of the diffusive terms for the MFE algorithm, one

of the shape function parameters in the MFE equation

was always zero for each element. For example, in

elements 1, 3 and 5, the br term from Eq. (2) was

always zero as the s and t vertices in these elements

have the same elevation (z value). This leads to

several entries in the diffusive matrices being zero.

The result of these zero entries has the convenient

effect of making the residual at the central node

independent of the pressure head at the diagonal

nodes. For example, in element 3 (Fig. 3), the

southeast diagonal node is denoted as the tth node

while the central node corresponds to the rth node. To

obtain the residual expression for element 3 requires

the expansion of the rth row of Eq. (5), which has two

matrices involving the unknown pressure heads: one

for the x diffusive term and the other for the z

diffusive term. Since the (1,3) entry in the x diffusive

matrix and the (3,3) entry in the z diffusive matrix are

zeros, the residual expression at the central node

becomes uncoupled from the pressure head at the

diagonal node. This uncoupling is also observed for

all other elements that are connected to the diagonal

nodes. This implies that the residual at the central

node is not explicitly dependent upon the current

value of the dependent variable (the pressure head)

on the northwest and southeast diagonal nodes.

Therefore, the dependent variable is only accessed

through the vertical and horizontal nodes, which are

the same nodes used by a standard FD approach. The

nodal value of the hydraulic conductivity however, is

accessed at all nodes including the diagonal nodes.

Therefore, the FE discretization naturally incorpor-

ates the influence of the hydraulic conductivity

variation over a greater spatial area than does the

FD approximation. This broader representation of the

hydraulic conductivity differs from the standard FD

approximation that only accesses the vertical and

horizontal nodes. These kinds of observations have

been previously noted (Cooley, 1983); however, the

significance of these differences between the FE and

FD solutions of the two-dimensional variably satu-

rated flow equation has not been thoroughly

analyzed.

It should be noted that the FD approximation used

in this comparison study utilizes a specific kind of

approximation to the partial differential equation. The

work of Clement et al. (1994) resulted in a scheme

where an arithmetic mean of the hydraulic conduc-

tivity was employed. Several researchers have found

that alternative averaging schemes can improve the

performance of FD approximations (Hayhoe, 1978;

Haverkamp and Vauclin, 1981). However, we focused

upon arithmetic averaging only as it is the most

intuitive approach and it also allowed us to compare

our results against standard published results from

Clement et al. (1994).
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The comparison of the discrete relationships (11)

and (12) has several different implications. Firstly,

since the nodal relationship for the MFE formulation

is similar to the FD approximation in terms of how the

dependant variable is accessed, it is possible to

transform any working FD model into an equivalent

MFE model with minimal effort. This transformation

has the advantage that the MFE model can now take

advantage of the penta-diagonal matrix storage posed

by the form of Eq. (11). This avoids the use of sparse

matrix storage methods and solution schemes. Sec-

ondly, the discrete formulations explicitly show how

FE approximations naturally result in an intrinsic

averaging scheme for the hydraulic conductivity over

a broader spatial extent than the FD scheme.

3. Validation of modified finite element algorithm

In order to assess the computational differences

between the MFE and FD algorithms, first the models

must be validated. This was achieved by indepen-

dently testing the MFE and FD algorithms against

several benchmark problems. The benchmark results

for the FD algorithm have been previously discussed

in Clement et al. (1994). The results for the MFE

algorithm are discussed here.

3.1. Transient infiltration into a dry soil

The first test problem relates to a field example of

variably saturated infiltration and solute transport.

Van Genuchten (1982) provided a numerical solution

to this field study which was completed by Warrick

et al. (1971). Although this problem is a one-

dimensional infiltration process, the solution was

found upon a two-dimensional mesh. This was

achieved by using a two-dimensional mesh with no-

flow boundaries imposed upon the vertical sides of the

mesh to reproduce the one-dimensional conditions.

This allows for a one-dimensional problem to be

solved while still exploring the impact of two-

dimensional discretization effects. The use of one-

dimensional problems to verify higher dimensional

algorithms is a common validation strategy; for

example, Segol (1976) used a one-dimensional

problem to verify a three-dimensional coupled flow

and solute transport model.

The water retention curve for the soil is given by:

u¼0:682920:09524 logelcl; 229:484 cm#c;

u¼0:453120:02732 logelcl; 0:0#c#229:484 cm:

ð13Þ

Similarly the hydraulic conductivity function was

defined using the relations:

K ¼ 80; 482:5lcl23:4095
; 2 29:484 cm # c;

K ¼ 21:5334lcl20:97814
; 0:0 # c # 229:484 cm:

ð14Þ

The initial conditions for the simulation are

uðx; z; 0Þ ¼ 0:2 for 60 # z # 125 cm; and uðx; z; 0Þ ¼

0:15 þ ðz=1200Þ; for 0 # z # 60 cm (Van Genuchten,

1982). The flow was initiated using a Dirichlet

boundary at the surface with c ¼ 214:5 cm; the

base of the column was impervious to flow. Numerical

simulations were performed with Dt ¼ 0:01 h; and

use spatial discretizations of Dz ¼ 2:5 cm and

Dx ¼ 2:5 cm: The wetting front profiles generated

by the modified algorithm are superimposed upon the

Van Genuchten (1982) solution in Fig. 4. The MFE

algorithm captured both the position and shape of the

wetting front after 2 and 9 h of infiltration.

3.2. Transient water-table mounding problem

This example was used to verify a two-dimensional

recharge problem involving spatially variable flux

boundaries. The problem was based upon laboratory

results presented by Vauclin et al. (1979), which

reported the transient position of the phreatic surface

in a laboratory scale soil box. The domain is a

rectangular block 600 cm £ 200 cm; the water table is

initially located at a height of 65 cm from the base and

the recharge occurs over a strip of the aquifer of

100 cm wide. A recharge of 355 cm/day was applied

at the soil surface. Since the problem was symmetric,

only the right hand side of the domain was modeled

with a no flow boundary imposed along the axis of

symmetry. No flow boundaries were also imposed

along the lower and upper boundaries with the

exception of the recharge zone. The right hand

boundary is also modeled with a no flow boundary

above the water table, and the nodes below the water
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table are held at a hydrostatic pressure distribution.

The water retention characteristics are simulated

using the Van Genuchten (1980) model

Q ¼
mv

1 þ ðavlclÞnv

� �
ð15Þ

where av½L
21�; nv and mv are the Van Genuchten

parameters. The effective saturation Q, is then related

to the moisture content of the soil by

Q ¼
u2 ur

us 2 ur

ð16Þ

where Q is the effective saturation, u is the moisture

content, ur is the residual water content and us is the

saturated water content or porosity of the porous

media.

Mualem’s (1976) model relating the unsaturated

hydraulic conductivity to the effective saturation is

used for the description of the hydraulic conductivity

KðQÞ ¼ Ks½1 2 {1 2Qð1=mvÞ}mv�2
ffiffiffi
Q

p
ð17Þ

where KðQÞ½LT21� is the hydraulic conductivity, Ks½

LT21� is the saturated hydraulic conductivity, Q is the

effective saturation, and mv is the Van Genuchten

parameter. The modified algorithm was used with a

regular grid discretized with Dx ¼ 10:0 cm and

Dz ¼ 5:0 cm; the temporal discretization was Dt ¼

0:002 h: An equivalent Van Genuchten model for the

porous medium was described using av ¼ 3:3 m21

and nv ¼ 4:1 which were identified by Clement et al.

(1994). The value of the saturated hydraulic conduc-

tivity was Ksat ¼ 840 cm=day:

Fig. 5 shows the spatial and temporal distribution

of the phreatic surface predicted by the algorithm

along with the data points from the experimental

work. The profiles show that the algorithm is able to

reproduce the transient water table positions quite

accurately.

4. Comparison of modified finite element and finite

difference algorithms

Since the MFE and FD formulations have differ-

ences in the way which they approximate the partial

differential equation, it is of interest to see if these

differences can be observed in the numerical solution

of a problem. For this comparison, the proposed MFE

algorithm and the FD algorithm of Clement et al.

(1994) were used to simulate two benchmark

problems under varying spatial and temporal dis-

cretizations. The accuracy of the solutions in response

Fig. 4. Vertical movement of the transient wetting front as simulated with the MFE algorithm.
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to the varying discretizations was directly measured

through a comparison of the distribution of the

pressure heads for each discretization against a fine

solution. The ‘fine solution’ used for this purpose was

the previously verified solution for each of the test

problems generated using fine temporal and spatial

discretizations. Note that the fine mesh solutions from

the FD and MFE algorithms were indistinguishable.

The deviation between the fine and several sets of

coarse solutions are quantified using a root mean

square error, defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðcfine 2 ccoarseÞ

2

N

s
ð18Þ

where RMSE is the root mean square error, ccoarse[L]

is a test solution generated using a coarser grid,

cfine[L] is the true solution, and N is the total number

of grid points.

In addition, a traditional mass balance approach

was also used to track the numerical error. However,

in several instances, the algorithms were able to

maintain a good closure of mass in the domain even

though the internal structure of the solution was

different from the fine solution. Therefore, in this

work, we used the RMSE to quantify the deviations

between coarse and fine solutions.

4.1. Comparison of results for the field infiltration

problem

The field infiltration problem was resolved using

both the MFE and FD algorithms subject to spatial

discretizations of Dz ¼ 2.5, 5.0 and 12.5 cm in con-

junction with temporal discretizations of Dt ¼ 0.01,

0.1 and 0.5 h. The two-dimensional meshes were

constructed using square grids with Dx ¼ Dz:

Table 1 shows the comparison of the numerical

error for different sets of discretizations. The error

analysis shows the following trends: (1) the error from

the MFE algorithm is consistently equivalent to that

associated with the FD algorithm, and (2) the error

increases for both MFE and FD methods as the mesh

becomes increasingly coarse. Also, in general, the

error decreases with a decrease in Dt; however, it is

difficult to generalize this trend because certain coarse

meshes yielded reduced error with an increase in Dt.

Fig. 5. Transient water table for the Vauclin infiltration problem as simulated by the MFE algorithm.
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Fig. 6 shows plots of the profiles generated with a

coarse discretization along with the solution generated

upon a fine mesh. Even at this relatively coarse

discretization, there appears to be no advantage in

using either the FD or MFE algorithms. Both the FD

and MFE solutions are identical; both profiles show

errors as the shape of the wetting front is significantly

smoothed in comparison to the fine mesh solution.

This result agrees with Celia et al. (1990) who showed

that mass-lumped, linear Galerkin FE approximations

to one-dimensional problems are equivalent to

the standard centered in space, fully implicit in time

FD approximation. Further discussions of the effects

of different boundary conditions for one-dimensional

problems are discussed in Simpson (2002).

4.2. Comparison of results for the transient

water-table mounding problem

The original Vauclin example was modified

slightly in order to allow the use of several uniform

discretizations. The domain size was retained at

300 cm £ 200 cm, but the infiltration was applied to

the top left hand 60 cm of the surface boundary while

the initial depth of water was fixed at 60 cm. Two

levels of spatial discretization were used, Dx ¼ 10 cm

and Dz ¼ 10 cm; and Dx ¼ 20 cm and Dz ¼ 10 cm:

Both of these meshes were used to simulate the flow

for 2 h using temporal discretization of Dt ¼ 0.002,

0.02 and 0.1 h The errors were compared to a fine

mesh simulation; however, instead of using

the pressure head directly as the fine solution; it was

Table 1

Comparison of the MFE and FD solutions for the field infiltration

problem

Run Dz (cm) Dt (h) Time (h) MFE error FD error

1 2.5 0.01 2.0 0.000 0.001

2 2.5 0.10 2.0 0.002 0.002

3 2.5 0.50 2.0 0.009 0.009

4 5.0 0.01 2.0 0.008 0.008

5 5.0 0.10 2.0 0.006 0.006

6 5.0 0.50 2.0 0.012 0.012

7 12.5 0.01 2.0 0.023 0.023

8 12.5 0.10 2.0 0.021 0.021

9 12.5 0.50 2.0 0.017 0.017

10 2.5 0.01 9.0 0.000 0.000

11 2.5 0.10 9.0 0.001 0.001

12 2.5 0.50 9.0 0.008 0.008

13 5.0 0.01 9.0 0.006 0.006

14 5.0 0.10 9.0 0.005 0.005

15 5.0 0.50 9.0 0.008 0.008

16 12.5 0.01 9.0 0.022 0.023

17 12.5 0.10 9.0 0.021 0.021

18 12.5 0.50 9.0 0.018 0.018

Fig. 6. Comparison of MFE and FD solutions to the field infiltration problem using a coarse numerical grid.
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the elevation of the phreatic surface that was used to

calculate the error via Eq. (18). Table 2 summarizes

the errors for all the numerical discretizations. For

each profile, the error for the MFE solution is

consistently smaller than the FD error. Fig. 7 shows

the profiles obtained from the FD and MFE algorithms

at a coarse discretization. The phreatic surface profiles

show that the MFE solution is able to maintain a

correct representation of the fine mesh solution, while

the FD solution is prone to errors. Since this problem

involves both flux boundaries and true two-dimen-

sional flow, the improvement in the FE solution over

the FD solution is attributed to a combination of the

differences in hydraulic conductivity averaging and

the representation of the flux boundaries between the

two algorithms.

In summary, this comparison shows that the MFE

approach is superior to, and able to produce a more

accurate solution than was possible using the FD

approach for coarse discretizations. In certain cases

the profiles obtained with a coarse MFE solution were

able to maintain an accurate resemblance of the fine

solution while the FD solution was quite erroneous.

The explanation for the improved performance of the

MFE solution is the incorporation of a larger spatial

extent of the hydraulic conductivity variability and the

difference in how FE methods represent specified flux

boundaries. This kind of improved stability in FE

solutions has been previously reported, (Cooley,

1983); however, it is of interest here to see the

significance of the FD errors and the improvement

offered by an FE solution. Re-writing the general FE

equation as the MFE solution is useful to explicitly

demonstrate how the FE solution automatically

incorporates a more elaborate representation of the

spatial variation of the hydraulic conductivity than the

FD approach. This is important, particularly for

infiltration problems that are characterized by steep

wetting fronts and rapid spatial changes in the

hydraulic conductivity.

Table 2

Results for the FD and MFE algorithm comparison for the modified

Vauclin problem

Run Dx (cm) Dz (cm) Dt (h) MFE error FD error

19 10 10 0.002 0.000 0.363

20 10 10 0.020 0.259 1.744

21 10 10 0.100 468.2 519.3

22 20 10 0.002 1.706 4.965

23 20 10 0.020 2.023 9.243

24 20 10 0.100 139.3 860.7

Fig. 7. MFE and FD solutions to the modified Vauclin infiltration problem under a coarse numerical grid.
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5. Comparison of modified finite element and

traditional finite element solutions

Since the use of the MFE algorithm is restricted in

comparison to the standard FE solution, it should be

noted that the standard FE procedure offers a more

general and flexible solution to variably saturated flow

problems. The general FE procedure can easily handle

irregularly shaped domains, and irregular node

spacing as well as allowing the material properties

to change from element to element. None of these

features are permitted with the MFE algorithm.

The MFE solution does offer several compu-

tational advantages as compared to the usual FE

approach. The obvious difference is in the form of the

resulting matrix equation. The stiffness matrix for the

MFE solution is a penta-diagonal matrix that can be

neatly stored as five vectors thereby avoiding the need

to define and store the whole stiffness matrix. The

penta-diagonal matrix can be efficiently solved using

conjugate gradient algorithms that only require the

facility to multiply the stiffness matrix and its

transpose with an arbitrary vector (Press et al.,

1992). This kind of storage and solution scheme is

preferable to the standard FE methods where the

stiffness matrix will be banded and sparse depending

upon the node numbering scheme. Although con-

jugate gradient algorithms can be developed to

efficiently store and solve banded and sparse

equations, the MFE solution approach is much more

straightforward and simple to implement.

One further limitation of the MFE algorithm is that

it is restricted to meshes with uniform diagonal

alignment; hence the element direction is biased. This

could result in mesh-induced anisotropy issues when

the mesh is coarse, a problem commonly encountered

in traditional FE analysis (Boufadel et al., 1999).

There are several ways to remedy this problem; firstly

the use of symmetric elements, such as the bi-linear

rectangular element, can eliminate the element bias.

However, since we were interested in developing a 5-

node relationship that was similar in nature to the FD

approximation, this alternative was not pursued, as the

bi-linear rectangular element would result in a 9-node

relationship. Secondly the element alignment can be

modified so that the direction of the diagonal is not

uniform (Cooley, 1983). However, the uniform

diagonal alignment was chosen as this ensured

the penta-diagonal structure of the resulting system

of equations. Finally, it has been demonstrated that

refining the element size in a uniformly aligned mesh

can reduce the impact of the bias (Boufadel et al.,

1999). This is the simplest method for minimizing

the impact of alignment bias, and therefore it is

recommended that a grid refinement study should

always be undertaken to ensure that the chosen

discretization is free from alignment-induced bias.

In summary, the MFE approach provides advan-

tages over both the traditional FE and FD solutions for

certain problems. The MFE algorithm is only

applicable to those problems that can be discretized

upon a regular domain, and therefore the use of the

MFE algorithm faces the same limitations associated

with the FD approach in this respect. However, in

terms of performance, the MFE approach naturally

provides a higher quality solution than the standard

FD approach, and hence is a superior alternative for

solving regular problems. In addition, the MFE

algorithm provides advantages over the traditional

FE approach for regular problems as the same quality

solution associated with a uniformly aligned linear

triangular mesh is obtained without the need for

element/node numbering, pre-processing, or sparse

matrix storage and solution schemes.

6. Conclusions

A comprehensive analysis of the solution of two-

dimensional variably saturated flow problems by

the FE and FD methods was undertaken. The analysis

led to the development of an MFE algorithm for the

solution of the two-dimensional variably saturated

flow equation. The discrete MFE equations were

derived to demonstrate the fundamental differences

between the FD and FE discretization procedures. The

MFE equations clearly show how the FE method

naturally incorporates a broader spatial extent of the

hydraulic conductivity variation as compared to the

usual FD approximation. The algorithm was used to

develop a code for solving two-dimensional variably

saturated flow problems. The code was then bench-

marked against the solutions of two standard variably

saturated flow problems.

Once the MFE algorithm was validated, then the

code was used in conjunction with a standard FD
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approximation to evaluate the significance of the

differences in the discrete equations. Two infiltration

problems were solved several times using a range of

spatial and temporal discretizations. The results from

the MFE and FD algorithms were compared against

known fine mesh solutions. The results showed that

the algorithms performed equivalently for a one-

dimensional problem, however the MFE solution was

preferable for a two-dimensional problem solved

upon a coarse grid. For the two-dimensional problem,

the MFE algorithm was able to maintain a reasonable

approximation to the fine mesh profile, while at the

same discretization, the FD solution was plagued by

numerical errors. Therefore this analysis showed that

the errors introduced by an FD approximation can be

significant and that the FE approach for the same

numerical discretization can avoid these problems due

to the intrinsic averaging of material properties and

improved representation of specified flux boundaries.

In addition to the comparison of the FD and MFE

algorithms, some specific advantages of the MFE

algorithm have also been illustrated. Firstly, any

traditional FE algorithm used with the same dis-

cretization as the MFE is inefficient compared to the

MFE algorithm. This is because the MFE approach

generates a simple matrix equation that can be stored

and solved using elementary numerical schemes

without resorting to dealing with sparse matrices.

Secondly, solutions from the standard FD algorithm

are numerically inferior to those obtained using the

MFE approach because of how the two approaches

approximate the partial differential equation. There-

fore, any problem that can be discretized upon a

regular grid is most efficiently solved using the

proposed MFE algorithm.
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