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An analytical solution for correcting palaeomagnetic inclination error
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S U M M A R Y
With increasing evidence showing significant inclination shallowing in red beds, it is impor-
tant to develop useful tools to detecting and correcting inclination errors for haematite-bearing
sedimentary rocks. Theoretically, any deviation of magnetization from the ambient magnetic
field can be described by a preferred orientation distribution (OD) of unique axes of the
anisotropic magnetic particles. Based on Stephenson’s continuous particle OD function, mag-
netic anisotropy parameters of a bulk sample and inclination-correction equations were derived
considering all the magnetic particles in a sample. In addition to our new equations for cor-
recting red bed inclination error, the results also confirm the inclination correction of Jackson
et al. for magnetite-bearing samples, which is based on a simple, discrete-particle OD model
used by Stephenson et al. to show their derivations, suggesting that the inclination correction
is probably independent of the particle OD models.
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1 I N T R O D U C T I O N

Significant inclination shallowing (>15◦) of haematite-bearing
sediments has been observed in laboratory redeposition experiments
(Lovlie & Torsvik 1984; Tauxe & Kent 1984; Tan et al. 2002a), in
compaction experiments (Tan et al. 2002a), and in modern fluvial
haematite-bearing deposits (Tauxe & Kent 1984; Rosler & Appel
1998). It has also been observed in the Neogene Siwalik Formation
red beds deposited in the Himalayan foreland fluvial and alluvial
environments (e.g. Butler 1992; Gautam & Fujiwara 2000; Ojha
et al. 2000), in Miocene red beds from the extensional Catalan Neo-
gene basins of Spain (Garces et al. 1996), in Tertiary and Cretaceous
red beds from central Asia (especially, NW China) (e.g. Gilder et al.
1996, 2001; Fang et al. 1997; Kodama & Tan 1997; Tan et al. 2002b),
and in Palaeozoic red beds from North America (e.g. van der Pluijm
et al. 1993; Potts et al. 1994; Stamatakos et al. 1995; Tan & Kodama
2002). Red beds are one of the major targets of palaeomagnetic stud-
ies aimed at constructing major continental apparent polar wander
paths and delineating the kinematic histories of major and minor
continental blocks. Therefore, it is of great interest to develop use-
ful approaches to detecting and correcting inclination errors in red
beds.

Deviation of the magnetization of a sample from the applied mag-
netic field direction can be theoretically described by an anisotropy
in the ability of the sample being magnetized (either by mag-
netic susceptibility, kχ , or remanence susceptibility, qχ ) assuming
there are no magnetic interactions between magnetic particles. The
anisotropy of magnetic susceptibility (AMS) and remanence sus-
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ceptibility (ARS) of a bulk sample results from an anisotropic
orientation distribution (OD) of the anisotropic individual par-
ticles. ARS may include the anisotropies of anhysteretic rema-
nence (ARM), isothermal remanence (IRM) and thermal remanence
(TRM). Stephenson et al. (1986) have derived mathematical rela-
tionships between the individual particle anisotropy and bulk sample
anisotropy parameters. To avoid mathematical complexities, they
used a simple particle OD model in which the magnetically prolate
particles are aligned with their maximum anisotropy axes parallel
to each of the three principal axes of the bulk sample anisotropy
ellipsoid. They stated that the results are the same as if the math-
ematical relationships are derived using a more realistic, continu-
ous particle OD function, i.e. that proposed by Stephenson (1981).
Jackson et al. (1991) developed a quantitative model for correct-
ing inclination shallowing carried by magnetite-bearing samples
by assuming that the remanence-acquisition tensor of sediments is
consistent with the long-axis OD model. In both of these deriva-
tions, only those particles with easy axes aligned parallel to the
principal axes of the bulk sample anisotropy ellipsoids were con-
sidered. Since the contributions of magnetic susceptibility or rema-
nent magnetization from particles not aligned with their easy axes
parallel to the three principal axes do not cancel out, this simplifi-
cation is not sound physically. The anisotropy of haematite parti-
cles is most probably oblate, different from the prolate magnetite
anisotropy. Therefore, the equation of Jackson et al. (1991) is not
applicable for haematite-bearing samples. We will use a continuous
particle OD function to derive a complete relationship between in-
dividual particle anisotropy and bulk sample anisotropy parameters
for magnetite-bearing and haematite-bearing samples, respectively,
and, in particular, to develop new formulae to detect and correct red
bed inclination errors.
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2 A S S U M P T I O N S

The AMS and ARS of bulk rock samples and their influence on the
fidelity of the palaeomagnetic record to the magnetic field direction
can be understood based on three essential assumptions concerning
the magnetic anisotropy of the individual magnetic particles and the
particle OD pattern. First, the magnetic interaction between indi-
vidual particles is negligible. If this assumption does not hold, the
situation is more complicated, and it will not be considered in this
study. Secondly, the magnetic anisotropy of individual particles can
be expressed by an ellipsoid of revolution. This means that the indi-
vidual particle anisotropy is either prolate with equal susceptibility
in the minimum plane or oblate with isotropic susceptibility in the
maximum plane. It can be expressed as

k1 > k2 = k3 for prolate particle AMS fabric, k1 = k2 > k3 for
oblate particle AMS fabric, and

q1 > q2 = q3 for prolate particle ARS fabric, q1 = q2 > q3 for
oblate particle ARS fabric,

where ki, qi (i = 1, 2, 3) are the principal axes of the AMS and ARS
ellipsoids of the individual particle, respectively.

Then, the individual particle anisotropy factor, a is defined as

aχ = k1/k2 (or k2/k3) for magnetic susceptibility of prolate (or
oblate) particles, and

aγ = q1/q2 (or q2/q3) for remanence susceptibility of prolate (or
oblate) particles.

The third assumption is that the intrinsic (individual particle) re-
manent magnetization is along the easy axis for prolate particles
and within the easy plane for oblate particles. Specifically, the nat-
ural remanent magnetization (NRM) of a sample is the vector sum,
exclusively, of the magnetizations along the easy axes of individ-
ual magnetite particles or the magnetizations within the easy planes
of haematite particles. In reality, the latter two assumptions can
be met by single-domain or elongated pseudo-single-domain mag-
netite particles and rhombohedral and hexagonal haematite crystal
particles because the easy magnetization axis of a magnetite min-
eral is controlled by particle shape and a haematite mineral is con-
trolled by magnetocrystalline anisotropy (e.g. Dunlop & Ozdemir
1997). The magnetic susceptibility of haematite is ∼ 6000 µSI (e.g.
Borradaile & Henry 1997). The magnetic susceptibility of common
red beds is <300 µSI. Therefore, the concentration of haematite
in red beds is probably <5 per cent. Magnetic interaction between
particles is in many cases negligible because of the relatively low
concentration of magnetic minerals, except for chemically precipi-
tated magnetic minerals. Magnetic interaction is important between
precipitates of magnetite or haematite particles that carry a chemical
remanent magnetization (CRM). CRM carried by multiple gener-
ations of haematite particles may be parallel or antiparallel to the
applied field direction, or without any relation to the field direc-
tion (Stokking & Tauxe 1990), suggesting that magnetic interaction
of chemical precipitates of haematite can exist. On the other hand,
if a complicated remanent magnetization is not observed in real
red beds, which is probably a common situation, magnetic interac-
tion is probably not important. Therefore, the three assumptions for
inclination-shallowing correction of red beds are generally met.

3 C O N T R I B U T I O N O F
A S I N G L E P A R T I C L E

The existence of anisotropic particles is essential, while a preferen-
tial OD of anisotropic particles is necessary to cause a deflection

Figure 1. A diagram showing the orientation of a prolate particle in the
spherical polar coordinates. The principal axes (L and S1) of the particle
anisotropy can be defined by their declination and inclination, i.e. L(ϕ, 90◦
− θ ), S1(ϕ, θ ), and S2 is the cross-product of L and S1, which is parallel to
the horizontal plane (X –Y ).

of the remanent magnetization from the magnetic field direction. A
uniform OD of anisotropic particles will not cause a bulk sample
anisotropy or inclination error for the sample. Stephenson (1981)
derived a particle OD function from the inversion of an anisotropy
expression for bulk rock samples; therefore, it was assumed to be
a realistic OD function for the anisotropic particles in a sample
(Stephenson et al. 1986). Derivation of the analytical solution is
based on Stephenson’s OD function:

n(θ, ϕ) = 3 N0

2π

[
kz + (ky − kz) sin2 θ + (kx − ky) sin2 θ cos2 ϕ

]
,

(1)

where n(θ , ϕ) is the angular number density of particles with their
unique principal axes of the individual particle aligned in and around
the direction defined by unit spherical polar coordinates (θ , ϕ)
(Fig. 1); N 0 is the total number of particles in the distribution; kx, ky,
kz are the number densities of particles with their unique principal
axes of the individual particle aligned in the three principal axes X ,
Y and Z of the bulk sample anisotropy ellipsoid divided by 3N 0/2π ,
respectively. kx, ky and kz have been normalized such that kx + ky +
kz = 1. The unique principal axis of the individual particle is either
the easy axis of a prolate magnetite particle or the hard axis of an
oblate haematite particle.

Assuming that the susceptibility values of the unique principal
axis of the individual particle and the equal axes are L and S, re-
spectively, the eigenvalues of the anisotropy tensor of the particle
are

D =
∣∣∣∣∣∣
L

S
S

∣∣∣∣∣∣ . (2)

The anisotropy tensor of a particle aligned in the direction defined
by (θ , ϕ) shown in Fig. 1 is

T = P D P t, (3)

where P is the eigenvector (unit vectors along L and Ss) matrix
of the anisotropy of the particle, and Pt is the transposed matrix
of P:
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P = |A, B, C| =

∣∣∣∣∣∣∣
sin(θ ) cos(ϕ) − sin(ϕ) − cos(θ ) cos(ϕ)

sin(θ ) sin(ϕ) cos(ϕ) − cos(θ ) sin(ϕ)

cos(θ ) 0 sin(θ )

∣∣∣∣∣∣∣
.

(4)

By extension of eq. (3), it can be shown that the contributions of
either magnetic susceptibility or remanence from a single particle
with its unique axis aligned in the direction defined by (θ , ϕ) to
the principal axes, X , Y , Z, of the anisotropy ellipsoid of the bulk
sample are T 11, T 22, T 33, respectively:

T11 = S + (L − S) cos2 ϕ sin2 θ,

T22 = S + (L − S) sin2 ϕ sin2 θ,

T33 = S + (L − S) cos2 θ.

(5)

4 B U L K S A M P L E A N I S O T R O P Y

Integrating the contributions from all the particles in a sample to
the X , Y and Z directions, respectively, one will obtain the bulk
sample susceptibility or remanence along the three principal axes
of an anisotropy ellipsoid:

X =
∫ 2π

0

∫ π/2

0
T11n(θ, ϕ) sin(θ ) dθ dϕ,

Y =
∫ 2π

0

∫ π/2

0
T22n(θ, ϕ) sin(θ ) dθ dϕ,

Z =
∫ 2π

0

∫ π/2

0
T33n(θ, ϕ) sin(θ ) dθ dϕ.

(6)

The results of the integration in eq. (6) are:

X = (N0/5)[(L + 4S) + 2(L − S)kx ],

Y = (N0/5)[(L + 4S) + 2(L − S)ky],

Z = (N0/5)[(L + 4S) + 2(L − S)kz].

(7)

Normalization of X , Y and Z by (X + Y + Z ) yields the final
normalized principal axes for the bulk sample:

X0 = 2(L − S)kx + (L + 4S)

5(L + 2S)
,

Y0 = 2(L − S)ky + (L + 4S)

5(L + 2S)
,

Z0 = 2(L − S)kz + (L + 4S)

5(L + 2S)
.

(8)

By solving eq. (8), the three constants, kx, ky and kz, can be
expressed as functions of the three measurable parameters X 0, Y 0

and Z 0:

kx = 5(L + 2S)X0 − (L + 4S)

2(L − S)
,

ky = 5(L + 2S)Y0 − (L + 4S)

2(L − S)
,

kz = 5(L + 2S)Z0 − (L + 4S)

2(L − S)
.

(9)

For elongated magnetite-bearing samples, the a factor is defined
by L/S, and eqs (8) and (9) become

X0 = 2(a − 1)kx + (a + 4)

5(a + 2)
,

Y0 = 2(a − 1)ky + (a + 4)

5(a + 2)
,

Z0 = 2(a − 1)kz + (a + 4)

5(a + 2)

(10)

and

kx = 5(a + 2)X0 − (a + 4)

2(a − 1)
,

ky = 5(a + 2)Y0 − (a + 4)

2(a − 1)
,

kz = 5(a + 2)Z0 − (a + 4)

2(a − 1)
.

(11)

Eqs (10) and (11) are different from those used by Stephenson
et al. (1986). For example, the difference between kx and k’x of
Stephenson et al. (1986) (eq. 5) is (a + 2)(3X 0 − 1)/[2(a − 1)].
Furthermore, similar equations are derived for haematite-bearing
samples. For flaky oblate haematite particles, the a factor is defined
by S/L , and eqs (8) and (9) become

X0 = 2(1 − a)kx + (1 + 4a)

5(1 + 2a)
,

Y0 = 2(1 − a)ky + (1 + 4a)

5(1 + 2a)
,

Z0 = 2(1 − a)kz + (1 + 4a)

5(1 + 2a)

(12)

and

kx = 5(1 + 2a)X0 − (1 + 4a)

2(1 − a)
,

ky = 5(1 + 2a)Y0 − (1 + 4a)

2(1 − a)
,

kz = 5(1 + 2a)Z0 − (1 + 4a)

2(1 − a)
.

(13)

5 I N C L I N A T I O N C O R R E C T I O N S

Assuming a is infinite for the intrinsic remanent magnetization of
individual particles that contribute to the NRM, a tensor for the
acquisition of NRM can be derived from eq. (10) for magnetite-
bearing samples and from eq. (12) for haematite-bearing samples,
respectively:

kNRM =




X0 0 0

0 Y0 0

0 0 Z0




= 1

5




2kx + 1 0 0

0 2ky + 1 0

0 0 2kz + 1


 (Fe3O4) (14)

kNRM = 1

5




2 − kx 0 0

0 2 − ky 0

0 0 2 − kz


 (α-Fe2O3). (15)
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The relationship between remanent components [Mr = (N r , E r ,
V r)t] and palaeomagnetic field components [Hf = (N f , E f , V f)t]
can be expressed as

Mr = kNRM Hf. (16)

Assuming the palaeomagnetic field is within the XZ plane of the
anisotropy ellipsoid, or the anisotropy ellipsoid is oblate with al-
most equal magnitudes for the maximum and intermediate axes, the
remanent inclination of magnetite-bearing samples can be derived
from eqs (14) and (16):

tan(I0) = 2kx + 1

2kz + 1
tan(Im). (17)

The two constants kx and kz can be replaced by bulk sample
anisotropy and individual particle anisotropy parameters, eq. (11),
using either ARS or AMS measurement results. Inserting eq. (11)
into eq. (17), we then have the inclination-correction equation for
magnetite-bearing samples:

tan(I0) = (a + 2)X0 − 1

(a + 2)Z0 − 1
tan(Im), (18)

where I 0 is the real magnetic field inclination; I m is the remanent
inclination; X 0 and Z 0 are the normalized principal anisotropy axes
of the bulk rock samples and a is the individual particle anisotropy
factor. Eq. (18) is the same as that derived by Jackson et al. (1991).

Similarly, the remanent inclination of haematite-bearing samples
can be derived from eqs (15) and (16):

tan(I0) = 2 − kx

2 − kz
tan(Im). (19)

Inserting eq. (13) into eq. (19), we then have the inclination correc-
tion equation for haematite samples:

tan(I0) = (2a + 1)X0 − 1

(2a + 1)Z0 − 1
tan(Im). (20)

A correction for inclination error may use either the AMS or
ARS parameters for bulk samples and individual particles. Mea-
surement of the individual particle anisotropy is difficult, although
it is not impossible. Approaches for determining the a factor in-
clude compaction experiments and extraction of magnetite particles
(e.g. Kodama 1997; Tan & Kodama 1998). Laboratory compaction
experiments of disaggregated sediments may provide a more ac-
curate estimate of the a factor, yet disaggregation and compaction
experiments are not easily applied to well-cemented and/or coarse-
grained sediments. Direct measurement of the a factor involves
disaggregation of sediments, extraction of magnetic particles and
alignment of the easy axes of the particles parallel to a magnetic
field. This approach is less accurate and more difficult, because
extracting only those particles that carry the characteristic rema-
nent magnetization (ChRM) is difficult, and magnetic interaction
between the extracted particles is almost inevitable. Separation of
fine haematite particles from red beds is even more difficult. Alter-
natively, Stephenson et al. (1986) suggested that the a factor may
be constrained using the relationship between the normalized bulk
sample AMS and the ARS principal axis values (χ i , Ri).

6 R E L A T I O N S H I P S B E T W E E N
A M S A N D A R S

Rewrite eq. (11) for magnetic susceptibility and remanence, respec-
tively; by equating these two equations (because of the same particle

distribution) and rearranging, we then have a relationship between
normalized AMS and ARS principal axes for magnetite-bearing
samples:

Ri = (aχ + 2)(aγ − 1)

(aγ + 2)(aχ − 1)
χi + aχ − aγ

(aγ + 2)(aχ − 1)
, (21)

where aχ and aγ are the magnetic susceptibility and remanence
anisotropy factors of the individual particle, respectively; Ri = R1,
R2, R3, are the normalized (R1 + R2 + R3 = 1) maximum, in-
termediate and minimum axes of ARS, and χ i = χ 1, χ 2, χ 3, are
the normalized (χ1 + χ2 + χ3 = 1) maximum, intermediate and
minimum axes of AMS.

We find a similar relationship for haematite-bearing samples:

Ri = (2aχ + 1)(aγ − 1)

(2aγ + 1)(aχ − 1)
χi + aχ − aγ

(2aγ + 1)(aχ − 1)
. (22)

Following Stephenson et al. (1986), by defining the normalized par-
ticle a factor as

āγ = aγ

2 + aγ

, āχ = aχ

2 + aχ

(for Fe3O4) (23)

āγ = aγ

1 + 2aγ

, āχ = aχ

1 + 2aχ

(for α-Fe2O3) (24)

it can be shown that the normalized a factors for remanence and
magnetic susceptibility have the same linear relationship as eq. (21)
for magnetite or eq. (22) for haematite. Although the values of the
normalized a factors are between 1/3 and 1 for magnetite particles,
and between 1/3 and 1/2 for haematite particles, corresponding to the
range of the a factor values between 1 and infinity, a much smaller
range of either the normalized remanence a factor or the normalized
a factor of magnetic susceptibility may be achieved when the slope
defined in eq. (21) or (22) is either flat or steep. A few inconsistent
data values concerning haematite particle anisotropy have been re-
ported. For example, Neel (1953) measured magnetic susceptibility
and saturation remanence as a function of temperature in the direc-
tion parallel and perpendicular to the basal plane of the haematite
particle, yielding a factor values of less than 1.1 for magnetic sus-
ceptibility and approximately 2 for remanence at room temperature.
In contrast, Uyeda et al. (1963) reported a factor values greater than
100 for magnetic susceptibility. The linear relationship between
the remanence and magnetic susceptibility anisotropy-parameters
of the bulk sample can be very helpful in determining the a factor
of the haematite (e.g. Tan & Kodama 2002; Tan et al. 2002b).

The linear relationship between the normalized principal axes
of AMS and ARS is for pseudo-single-domain and multidomain
magnetite and single-domain and pseudo-single-domain haematite
particles. For single domain magnetite particles, the ARS ellip-
soid is consistent with the individual particle shape, while the
AMS ellipsoid is inverted such that the maximum and minimum
axes are along the short and long axes of the particle, respectively
(e.g. Potter & Stephenson 1988). The inclination correction equation
(eq. 18) may not be applicable for multidomain magnetite, since its
intrinsic remanence may not be parallel to the long axis of the parti-
cle. In addition, the linear relationship may not apply for bulk rock
samples, because AMS measurements often include contributions
from ferromagnetic, (super) paramagnetic and diamagnetic parti-
cles. Nevertheless, the linear relationship provides an independent
way for estimating the a factor value. When ferromagnetic grains
dominate the AMS, the easily measured AMS and ARS parameters
may be analysed by linear regression. The values of the slope and
the intercept point on the Ri axis (eqs 21 or 22), can be used to con-
strain the a factors of the individual particles in the bulk samples.
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When the a factor is known, an accurate palaeomagnetic inclination
can be determined by eq. (18) for magnetite-bearing or eq. (20) for
haematite-bearing samples, respectively.

7 D I S C U S S I O N

Jackson et al. (1991) derived an inclination-correction expression
for magnetite-bearing samples, which is the same as eq. (18). They
used the simple relationship between remanence anisotropy and in-
dividual particle anisotropy of Stephenson et al. (1986) and their
supposition that the acquisition tensor of the detrital remanent mag-
netization (DRM) is consistent with the long-axis OD function:

kD =

kD max 0 0

0 kD int 0
0 0 kD min


 =


kx 0 0

0 ky 0
0 0 kz


 . (25)

The basic assumptions we used are essentially the same as those
implicit in their derivations, but we consider the contributions from
all the magnetic particles. Eqs (20) and (22) can be derived following
their reasoning. However, by considering all magnetic particles, we
have derived new relationships between individual particle and bulk
sample anisotropies (eqs 8–15), which indicate that the contribution
of individual particles not aligned with their ellipsoid axes parallel
to the principal axes of the bulk sample cannot be neglected. If these
new relationships are used in the DRM tensor of Jackson et al. (1991)
(eq. 25), we will have a different inclination correction equation. For
example, the equation for magnetite-bearing samples will be

tan(I0) = (a + 2)X0 − (a + 4)/5

(a + 2)Z0 − (a + 4)/5
tan(Im). (26)

Eq. (26) yields a significantly greater inclination correction than
eq. (18) (Fig. 2). Therefore, Jackson et al.’s (1991) DRM tensor is
a model-dependent expression for inclination shallowing, which is
true for the simplified particle distribution model Stephenson et al.
(1986) used to show the derivations. In fact, the DRM or NRM tensor
depends on detailed OD models. If a truncated Fisher (1953) func-
tion (Hrouda 1980) is used as a continuous OD model, it will yield
different NRM tensors (see the Appendix). However, eqs (14) and
(15) are probably the more realistic tensors of a natural remanent
magnetization for magnetite-bearing and haematite-bearing sam-
ples, respectively, because they are based on a more realistic OD
model (Stephenson 1981).

Three continuous functions have been used to describe OD mod-
els, and to derive the relationship between bulk sample anisotropy
and individual particle anisotropy. They are the Bingham distri-
bution function (Bingham 1964), the truncated Fisher distribution
function (Hrouda 1980) and the Stephenson (1981) distribution
function. Both Bingham’s and Stephenson’s functions describe tri-
axial OD models, while the Fisher function is a uniaxial OD model.
Owens (1974) used numerical approaches to solve the integrations
using the Bingham function. We have difficulty in deriving an ana-
lytical solution for correcting inclination shallowing using the Bing-
ham function. Stephenson (1981) derived the triaxial OD function
by inverting the ellipsoid equation of bulk sample anisotropy; there-
fore, the function has a physical basis, i.e. the triaxial bulk sample
anisotropy. One drawback of the Stephenson (1981) OD model is
that it cannot describe the extreme case when particles are perfectly
aligned with their unique axis in one direction, because the inver-
sion of the ellipsoid equation for the bulk sample anisotropy does
not exist. For the Stephenson OD model, when ky = kz = 0 and
kx = 1 for magnetite-bearing samples or kx = ky = 0 and kz = 1
for haematite-bearing samples, the model-dependent eqs (10), (17),

Figure 2. Plots of the inverse of the inclination correction factor (1/f ) as
a function of the inverse of the foliation (1/F) of bulk sample anisotropy
for certain magnetite particle anisotropy factors, a. The solid and dashed
lines are calculated by eqs (18) and (26). Eq. (26) is derived by inserting
the new relationship (eq. 11) between bulk sample and individual particle
anisotropies into the DRM tensor of Jackson et al. (1991) (eq. 25). It indicates
that the DRM tensor and the NRM tensor are model dependent. However, the
relationship between the ARS and AMS principal axes of the bulk sample
and the inclination correction expressions are probably model independent
(see the text).

(12), (19) predict limits for the maximum anisotropy and inclina-
tion correction factors, which are 3 and 2 for magnetite-bearing
and haematite-bearing samples, respectively. These are the largest
anisotropies the model can describe, owing to the small decrease of
the OD function near the Y and Z axes (Fig. 3). Although greater
values of anisotropy may occasionally be observed in highly de-
formed metamorphic rocks, the observed bulk sample anisotropy
of sedimentary rocks is well below the limit (e.g. Tarling & Hrouda
1993), suggesting that the Stephenson OD model is valid for study-
ing magnetic anisotropy and inclination corrections of sedimen-
tary rocks. The inclination correction factors calculated using the
model-independent eqs (18) and (20) can be greater than these limits
(e.g. Fig. 2). This probably indicates that when ky and kz (kx and ky)
are taken as virtual numbers, eqs (10), (12), (17), (19) might pre-
dict greater anisotropy and inclination correction factor values. In
contrast, the truncated Fisher OD function (Hrouda 1980) can de-
scribe the extremely high anisotropies because the OD of particles
in the model can be distributed within a very narrow solid angle
(Fig. 3). When k approaches infinity, F(k) = −1, X 0 = a/(a + 2),
Y 0 = Z 0 = 1/(a + 2) and I m = 0◦, eqs (A3), (A5), (A7) (see the
Appendix); these parameters are consistent with the extreme model
in which the OD is perfectly restricted parallel to the X -axis. The
truncated Fisher function (Hrouda 1980) can only describe oblate
bulk sample ellipsoids if individual particles are oblate, or prolate
bulk sample ellipsoids if individual particles are prolate. In contrast,
the Stephenson OD function can describe prolate, oblate and triaxial
bulk sample anisotropies, independently of whether the anisotropy
of the individual particle is prolate or oblate. Choosing the Stephen-
son OD function in our analytical solution is not only a result of
its physical basis but also owing to its ability to describe various
anisotropy ellipsoids.
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Figure 3. Curves showing the normalized orientation distribution (OD)
density of particles with their unique axes aligned in the direction with

 (=arccos (cos ϕ ∗ sin θ )) degree to the X -axis. The curves are calcu-
lated by the truncated Fisher distribution function (Hrouda 1980) (see the
Appendix), f/ fmax = ek(cos 
−1). For comparison, ky and kz are set to zero in
Stephenson (1981) OD function, so that the distribution becomes uniaxial,
and f/ fmax = cos2 
. It shows that the truncated Fisher distribution func-
tion is able to describe the extreme cases when OD of particles is restricted
in a very narrow solid angle, while the Stephenson’s OD model describes a
rather smooth OD.

Despite the difference in detailed OD functions, and the model-
dependent expressions for the principal axes of bulk sample
anisotropy and the remanence tensors, using the truncated Fisher
OD function yields the same inclination-correction equations and
the same linear relationships between the ARS and AMS principal
axes as those derived using the Stephenson OD function and the
discrete OD model of Stephenson et al. (1986) and Jackson et al.
(1991) (see the Appendix).

Cogne (1987) derived a theoretical relationship between the ratio
of ARS principal axes and the ratio of AMS principal axes for mul-
tidomain magnetite, in which the former is the square of the latter,
i.e. Pγ = P2

χ . A Peruvian gabbro and granites of Flamanville from
NW France yielded exponent values of 1.94 and 1.81, respectively.
These results were thought to be in good agreement with the theoret-
ical analysis (Cogne 1987). Recently, Gattacceca & Rochette (2002)
observed significantly greater exponent values (3.9) from volcanic
flows from Monte Minerva, Italy. The relationship between the de-
gree of ARS and the degree of AMS (defined as the ratio between
the maximum and the minimum principal axes) can also be derived
from the linear relationship between the ARS and AMS principal
axes (eqs 21 or 22):

Pγ = s Pχ + i(1 + 2Pχ )

s + i(1 + 2Pχ )
for oblate bulk sample anisotropy (27)

Pγ = s Pχ + i(2 + Pχ )

s + i(2 + Pχ )
for prolate bulk sample anisotropy (28)

where s and i are the slope and intercept of the line defined by
eqs (21) or (22), and s = 1 − 3i . Pγ and Pχ do not have a square
relationship. The relationship depends on the anisotropy of the indi-

vidual particle and the bulk sample anisotropy, which can vary quite
significantly. The curves derived from real data also deviate signif-
icantly from Cogne’s theoretical results (Fig. 4), indicating that the
square relationship between the degrees of anisotropy of ARS and
AMS is probably not universal.

Another critical point for the comparison of ARS and AMS pa-
rameters, and for the inclination correction is that the ARS, AMS
and ChRM should be carried by the same populations of magnetic
particles. Because the highest coercivity of haematite is far greater
than 100 mT (the highest alternating field (AF) available to most
ARM experiments), the anisotropy of high-field IRM or TRM must
be measured to study the anisotropy of remanence-carrying par-
ticles and its effect on the palaeomagnetic directions in red beds.
When working with AMS, it is important to isolate various sources
contributing to AMS. For magnetite-bearing samples, the magnetic
susceptibility of bulk samples may be dominated by magnetite.
However, when the magnetite is a mixture of single-domain, pseudo-
single domain and multidomain particles, separating their contribu-
tions to AMS becomes critical. For haematite-bearing samples, ow-
ing to its low magnetic susceptibility, it is essential to isolate them
from other non-remanence-carrying particles. We have used AF de-
magnetization to target the anisotropy of ARM of ChRM-carrying
magnetite particles (Tan & Kodama 1998), thermal demagnetization
to target the anisotropy of IRM of ChRM-carrying haematite parti-
cles (Tan & Kodama 2002), and chemical demagnetization to target
AMS of ChRM-carrying haematite particles (Tan et al. 2002b). Suc-
cessful inclination corrections rely on a direct relationship between
the magnetic anisotropy and the ChRM-carrying particles.

Various processes ranging from syn-depositional, post-
depositional to compactional alignment of magnetic particles may
have affected the particle distribution pattern. Detailed mecha-
nisms may include interaction between hydraulic, magnetic and
mechanical forcing factors during settling of magnetic particles
(e.g. Verosub 1977; Tauxe & Kent 1984), attachment of magnetic
particles to clay minerals during deposition (Lu et al. 1990; Deamer
& Kodama 1990) and post-deposition mechanical compaction
(Sun & Kodama 1992), and a possible pressure solution (chemical)
compaction (Tan & Kodama 2002). Yet, the magnetic anisotropy
tensors measured represent the final state of the particle distribution;
it may be produced by one or a combination of several mechanisms.
The inclination correction developed by Jackson et al. (1991)
has accurately corrected synthetic magnetite-bearing depositional
and compaction-caused inclination shallowing, respectively (e.g.
Jackson et al. 1991; Kodama & Sun 1992). The new equations
developed in this study have also been successfully applied to
correct red bed palaeomagnetic inclination shallowing of possible
depositional and compactional origins (Tan & Kodama 2002; Tan
et al. 2002b). Therefore, as suggested by Jackson et al. (1991), the
inclination correction is not complicated by detailed physical paths
of inclination shallowing.

Tectonic strain can also distort the particle distribution pattern and
palaeomagnetic directions (e.g. Cogne et al. 1986; van der Pluijm
1987; Kodama 1988; Borradaile 1993; Jackson et al. 1993). The in-
clination correction techniques may be applicable to tectonic-strain-
deflected remanence. However, since stress and strain may also al-
ter the domain states and magnetic properties of magnetic particles
(see, e.g., Jackson et al. 1993), the case of strained remanence and
magnetic anisotropy is more complicated than the situation we con-
sidered here for depositional and burial compaction-caused inclina-
tion shallowing. We have not tried to use the techniques developed
by Jackson et al. (1991) and this study to correct the tectonically
distorted palaeomagnetic direction.
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Figure 4. Plots of curves showing the relationship between the degree of
ARS and the degree of AMS (eqs 27 and 28). The values of s and i used
in the equations are 2.33 and −0.443 of multidomain magnetite-bearing
samples from Stephenson et al. (1986) Fig. 4 (diamond), 3.673 and −0.891
of haematite-bearing samples from Tan (2001) Fig. 4.16 (circle), 7.261 and
−2.087 of haematite-bearing samples from Tan (2001) Fig. 3.19 (triangle).
The degree of anisotropy is defined as the ratio between the maximum and
minimum principal axes. Note the difference between the magnetite curves
(diamond) and the curve defined by the square relationship of Cogne (1987)
(square).

8 C O N C L U S I O N S

Based on three assumptions for individual particle anisotropy,
a bulk sample anisotropy is derived from all particles that can
be described by a continuous-particle OD function proposed by
Stephenson (1981). The expression for a bulk sample anisotropy
is different by those derived from only considering particles with
their unique axes parallel to the principal axes of the bulk sample,
indicating that the other particles also contribute to the bulk sample
anisotropy. However, the linear relationship between the ARS and
AMS principal axes of the normalized bulk sample and inclination
corrections are probably independent of the particle OD models,
and independent of detailed mechanisms that may have caused the
observed, depositional and/or burial compaction-caused magnetic
anisotropy and inclination shallowing.
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A P P E N D I X A : D E R I V A T I O N O F
I N C L I N A T I O N C O R R E C T I O N U S I N G
T H E T R U N C A T E D F I S H E R
D I S T R I B U T I O N F U N C T I O N

Hrouda (1980) adopted a truncated Fisher (1953) distribution func-
tion to describe the frequency density of the c-axis distribution of
haematite particles, and to derive the relationship between bulk sam-
ple and individual particle anisotropies. We will use this distribution
function to derive the inclination correction expressions.

Based on Hrouda (1980), the frequency density of haematite par-
ticles with their c-axis distributed in the direction defined by the
polar angle θ (Fig. 1) is

f = k

2π (ek − 1)
ek cos θ (A1)

where k is a measure of concentration of the c-axis distribution.
This function can also be used to describe the easy-axis distribution
of prolate magnetite particles, but with some modifications of the
orientation of the principal axes of the bulk sample anisotropy, i.e.
the maximum axis will align in the Z-axis direction (Fig. 1).

For haematite-bearing samples, the principal axes of the bulk
sample anisotropy can be described by

X =
∫ 2π

0

∫ π/2

0
T11 f sin θ dθ dψ,

Y =
∫ 2π

0

∫ π/2

0
T22 f sin θ dθ dψ,

Z =
∫ 2π

0

∫ π/2

0
T33 f sin θ dθ dψ.

(A2)
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The results of the integration in (A2) are

X = Y = L + S

2
+ L − S

2
F(k),

Z = S − (L − S)F(k),

F(k) = k

ek − 1

[
2

k3
− ek

(
1

k
− 2

k2
+ 2

k3

)]
.

(A3)

Eq. (A3) is consistent with Hrouda (1980) eq. (5). The normalized
principal axes are

X0 = Y0 = (L + S) + (L − S)F(k)

2(L + 2S)
,

Z0 = S − (L − S)F(k)

L + 2S
.

(A4)

Inserting the individual particle anisotropy factor, a = S/L into
eq. (A4), we have

X0 = Y0 = (1 + a) + (1 − a)F(k)

2(1 + 2a)
,

Z0 = a − (1 − a)F(k)

1 + 2a
.

(A5)

By arranging eq. (A5) for F(k), we have

F(k) = (1 + a) − 2(1 + 2a)X0

a − 1
,

F(k) = (1 + 2a)Z0 − a

a − 1
.

(A6)

Assuming an infinite a factor for the intrinsic remanence of the
particle, we have the NRM tensor:

kNRM =




[1 − F(k)]/4 0 0

0 [1 − F(k)]/4 0

0 0 [1 + F(k)]/2


 . (A7)

From eq. (16), we have

tan(I0) = 1 − F(k)

2 + 2F(k)
tan(Im). (A8)

Inserting eq. (A6) using either AMS or ARS parameters into
eq. (A8), we then have the inclination correction for haematite-
bearing samples:

tan(I0) = (2a + 1)X0 − 1

(2a + 1)Z0 − 1
tan(Im). (A9)

By writing eq. (A6) for ARS and AMS parameters, respectively, and
equating them, we have

Ri = (1 + 2aχ )(aγ − 1)

(1 + 2aγ )(aχ − 1)
χi + aχ − aγ

(1 + 2aγ )(aχ − 1)
. (A10)

Note that eqs (A9) and (A10) are exactly the same as eqs (20)
and (22). This may imply that the linear relationship between the
normalized principal axes of remanence anisotropy and magnetic
susceptibility anisotropy, and the inclination correction are probably
independent from detailed OD models.

For magnetite-bearing samples, since the easy-axis distribution
of the prolate magnetite particles is around the Z-axis, the maximum
principal axis (X 0) of the bulk sample is along the Z-axis direction,
while the intermediate and minimum axes (Y 0 and Z 0) (which are
equal) are within the XY plane. From (A4), we have

Y0 = Z0 = (L + S) + (L − S)F(k)

2(L + 2S)
,

X0 = S − (L − S)F(k)

L + 2S
.

(A11)

By inserting a = L/S into eq. (A11), we have

Y0 = Z0 = (1 + a) + (a − 1)F(k)

2(a + 2)
,

X0 = 1 − (a − 1)F(k)

a + 2
.

(A12)

Similarly, it can be shown that the linear relationship between the
normalized principal axes of ARS and AMS, and the inclination
correction for magnetite-bearing samples derived using the trun-
cated Fisher distribution function are exactly the same as eqs (21)
and (18), respectively.
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