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S U M M A R Y
The Rytov approximation that expresses phase residuals as an explicit function of the slow-
ness perturbations, is also related to the generalized Radon transform (GRT). Using Beylkin’s
formalism, we derive the corresponding inverse GRT to give the slowness model as an explicit
function of the phase residuals. This expression is used to deduce the resolution limits of wave
path traveltime tomograms as a function of source frequency and source–receiver geometry.
Its validity is restricted to arbitrary models with smooth variations in velocity, where the scale
wavelength of the velocity variations must be at least three times longer than the character-
istic source wavelength. The formula explicitly gives the slowness perturbation function as a
function of the product of the frequency and the traveltime gradient that can be obtained by
ray tracing. It shows that the spatial resolution limits of a slowness anomaly can be estimated
by calculating the available wavenumbers of the slowness perturbation function. Using this
procedure, resolution limits are obtained for several types of data: controlled source data in a
crosswell experiment, data from a diving-wave experiment and earthquake data using the ref-
erence velocity model of the whole Earth. This formula can also be used for diffraction-limited
pixelization of velocity models or for direct inversion of traveltime data.

Key words: seismic resolution, tomography, traveltime.

1 I N T R O D U C T I O N

Current 3-D models of the whole Earth are primarily based on ve-
locity images calculated by tomographic inversion of earthquake
traveltimes. Such models have revolutionized our understanding
of the Earth’s origins, convection cells and tectonic mechanisms
(e.g. Dziewonski 1984; Su et al. 1994; Ritsema et al. 1999). How-
ever, tomographic images are limited in accuracy because the high-
frequency assumption of ray theory conflicts with the inherent low
frequency of the observed teleseismic arrivals. This conflict leads
to an inaccurate estimate of the model errors because the finite-
frequency effects are not taken into account (Tong et al. 1998;
Marquering et al. 1999).

Exploration seismologists also use ray-based tomographic meth-
ods to determine subsurface velocity structures, and so their ve-
locity models are also limited by finite-frequency effects in the
data. With few exceptions, tomographers generally ignore the wave-
interference effects that can significantly limit the resolution of their
tomographic images.

To correct this deficiency, Woodward & Rocca (1988); Woodward
(1989, 1992) and Luo & Schuster (1990, 1991) developed inversion
methods that accounted for finite-frequency effects in body wave
traveltime data under the Rytov and Born approximations, respec-
tively. Instead of backprojecting traveltime residuals along raypaths,
Woodward and Rocca’s formulation backprojected phase residuals

along Rytov wave paths in the space–frequency domain while Luo &
Schuster backprojected traveltime residuals along Born wave paths
in the space–time domain. In either case, the finite-frequency ef-
fects of wave propagation were partly accounted for and led to more
accurate tomograms with low-frequency data. Here, the region of a
first-Fresnel zone or wave path is defined by the following condition
(Kravtsov & Orlov 1980):

|τ (r′, rs) + τ (r′, rg) − τ (rs, rg)| ≤ T

2
, (1)

where T is the period, τ (r, r′) is the traveltime for waves to propagate
from r to r′, and the point r′ belongs to the first-Fresnel zone for the
source–receiver pair (rs, rg) if and only if it satisfies eq. (1).

The problem with wave-equation methods is that they are usually
too expensive to routinely implement, particularly with earthquake-
tomography studies where the teleseismic waves have propagated
over thousands of kilometres. A cheaper, but less effective, means
of accounting for wave-interference effects in traveltime tomograms
is to derive resolution limits based on wave path effects, and to
incorporate these into estimates of model variances for ray-based
tomograms (Schuster 1996; Wu & Toksoz 1987).

Now, we derive such resolution limits for traveltime tomograms
computed for arbitrary Earth models with smooth variations in the
velocity. The starting point is to relate the phase to the model us-
ing the Rytov approximation, recognize the resulting equation as a
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generalized Radon transform (GRT), and use Beylkin’s (1985) for-
malism to derive the inverse GRT. The inverse GRT explicitly rep-
resents the slowness model as a function of phase data, and shows
that the wavenumber of the slowness anomaly can be estimated as
the product of the frequency and the traveltime gradient, so that res-
olution limits of the reconstructed slowness model can be obtained.
These limits are valid in the asymptotic high-frequency limit, but
are still useful for finite-frequency phenomena. To paraphrase Bleis-
tein (1984): ‘. . . the results of the asymptotic analysis are usually
meaningful when the typical wavelength is (in practice three times
or more) shorter than the typical dimension in the problem’. Veloc-
ity images obtained by earthquake traveltime tomography, reflection
traveltime tomography or diving-wave tomography can now be as-
sessed for their limits of resolution based on the finite-frequency
effects of the data and smoothly varying velocity models.

This paper is divided into three parts. The first section presents
the derivation of the inverse GRT formula that explicitly relates
the reconstructed model to the phase data. From this formula we
derive the resolution limits of the slowness model as a function of
source frequency and source–receiver coverage. The second section
presents some numerical examples where the resolution limits are
computed for a crosswell experiment, a diving-wave experiment and
whole-Earth tomography. Finally, the conclusions are presented.

2 T H E O R Y

Under the first-order Rytov approximation the wavefield-phase
residual �φ(ω, rs, rg) = ln[ψ (ω)] − ln[ψ0 (ω)] can be linearly re-
lated to the object function O(r) as (Woodward 1992)

�φ(ω, rs, rg) =
∫

O(r)ω2 G0(ω, r, rs)G0(ω, r, rg)

G0(ω, rs, rg)
dr, (2)

where ψ and ψ0 are the perturbed and background wavefields, re-
spectively; G0 represents the Green’s function for the background
model and the support of ω2[G0(ω, r, rs) G0(ω, r, rg)]/G0(ω, rs,
rg) defines the region of the Rytov wave path; rs and rg denote
the source and geophone locations; the object function is given as
O(r) = 1/[V 2(r)] − 1/[V 2

0(r)]; and V 0(r) denotes the background
velocity.

Using the first term of the geometrical optics approximation, the
Green’s function can be written as

G0(ω, r, r′) = − exp

[
− i (n + 1) π

4

]
ω(n−3)/2a0(r, r′)eiωτ0(r,r′),

(3)

where n denotes the model dimension; a0(r, r′) and τ 0(r, r′) satisfy
the transport and eikonal equations, respectively.

Substituting eq. (3) into eq. (2) and equating imaginary parts of
both sides of eq. (2), the imaginary part of �φ(ω, rs, rg) yields
the time-delay-like phase delay and can be linearly related with the
object function O(r) as

Im[�φ(ω, rs, rg)] = −
∫

X
ω(n+1)/2O(r)A(r, rs, rg)

× sin

[
ωτ (r, rs, rg) − (n + 1) π

4

]
dr, (4)

where A(r, rs, rg) = [a0(r, rs)a0(r, rg)]/a0(rs, rg) represents the
geometrical spreading term of the Rytov wave path, X denotes the
model domain and τ (r, rs, rg) = τ 0(r, rs) + τ 0(r, rg) − τ 0(rs, rg).

According to Beylkin’s theory, eq. (4) can be related to a causal
GRT, and the asymptotic inverse formula in the case of a fixed source
can be expressed as (see Appendix A)

Oest(r) = − 4

(2π )n

∫
ω

∫
∂X

ω(n−3)/2 Im[�φ(ω, rs, rg)]

× sin

[
ωτ (r, rs, rg) − (n + 1) π

4

]

× h(r, rs, rg)

A(r, rs, rg)
χ (r, rs, rg) drg dω, (5)

where ∂X denotes the model boundary, h(r, rs, rg) is Beylkin’s
determinant (Beylkin 1985)

h(r, rs, rg) =

∣∣∣∣∣∣∣∣∣∣

∂r1τ ∂r2τ · · · ∂rn τ

∂r1rg1
τ ∂r2rg1

τ · · · ∂rnrg1
τ

...
...

. . .
...

∂r1rgn−1
τ ∂r2rgn−1

τ · · · ∂rnrgn−1
τ

∣∣∣∣∣∣∣∣∣∣
, (6)

and χ (r, rs, rg) is a cut-off function chosen to ensure that χ (r, rs, rg)
h(r, rs, rg) ≥ 0 on X × ∂X (Beylkin 1985). Here, ∂ri τ = ∂τ (r, rs,

rg)/∂ri and ∂ri rg j
τ = ∂2τ

(
r, rs, rg

)
/∂ri∂rg j .

When Im[�φ(ω, rs, rg)] ≈ ω�τ (here �τ is equal to the differ-
ence between the observed traveltime and the calculated traveltime)
(Schuster & Quintus-Bosz 1993), eqs (4) and (5) can also be written
as

�τ (rs, rg) = −
∫

X
ω(n−1)/2O(r)A(r, rs, rg)

× sin

[
ωτ (r, rs, rg) − (n + 1) π

4

]
dr, (7)

and

Oest(r) = − 4

(2π )n

∫
ω

∫
∂X

ω(n−1)/2�τ (rs, rg)

× sin

[
ωτ (r, rs, rg) − (n + 1) π

4

]

× h(r, rs, rg)

A(r, rs, rg)
χ (r, rs, rg) drg dω. (8)

Eq. (5) or (8) can also be expressed as a Fourier transform (see
Appendix A)

Oest(r) = 1

(2π )n

∫
(r)

e−ik·rÔ(k) dk, (9)

where Ô(k) denotes the Fourier transform of O(r) and k is the
wavenumber vector given by

k = ω[∇τ0(r, rs) + ∇τ0(r, rg)], (10)

where ω represents the source frequency; ∇τ 0(r, rs) and ∇τ 0(r, rg)
are the gradients of the traveltimes; both τ 0(r, rs) and τ 0(r, rg) sat-
isfy the eikonal equation and can be calculated by conventional ray
tracing for a given velocity model and source–receiver geometry. In
eq. (9), the integration domain (r) is determined by the frequency
range and by those source–receiver pairs ηsg(r) for which the asso-
ciated wave path and the recorded traveltimes can be influenced by
the perturbation at r.

The set (r) in the Fourier domain determines the spatial resolu-
tion of the reconstructed object function Oest(r) and controls what
can be recovered (Beylkin 1985). As an example, the maximum
value of kx or kz in the integration limits of eq. (9) determines the
smallest resolvable features in the horizontal (i.e. �x) and vertical
(i.e. �z) directions.

Therefore, the resolution limits of the wave path traveltime tomo-
gram at some point r can be estimated as
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�xi (r) ≈ π

maxηsg(r),T kxi

= 1

2 maxηsg(r),T

[∣∣∂xi τ0(r, rg) + ∂xi τ0(r, rs)
∣∣]/T

, (11)

where �xi is the resolution limit along the coordinate direction
xi , ∂xi denotes the derivative along the xi coordinate and T is the
minimum period of the data. For finite frequencies, the region in the
vicinity of the raypath that mostly influences the recorded traveltime
for a given source–receiver pair is usually denoted as the first-Fresnel
zone of a wave path (Woodward 1989) or a Fresnel volume (Kravtsov
& Orlov 1980; Červený & Soares 1992; Vasco et al. 1995); so ηsg(r)
represents the source–receiver pairs for which the point r is within
the first-Fresnel zone of the corresponding wave paths.

As an example, energy that emanates from a scatterer at r will
arrive at every receiver, but only when the scatterer is within the
first-Fresnel zone of a reflection or transmission wave path can it in-
fluence the associated reflection or transmission traveltime. Thus the
source–receiver pairs ηsg(r) in eq. (11) are restricted to those wave
paths that intersect the scatterer. This idea is illustrated in Fig. 1. The
source–receiver pairs ηsg(r) for reflection and transmission travel-
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Figure 1. Crosswell geometry. (a) For a fixed source at rs and a centred scatterer, the scattered energy will influence the reflection traveltimes observed at
geophones rg between rg1 and rg2, (b) the transmission traveltimes observed at geophones r′

g between r′
g1 and r′

g2, and (c) the diffracted traveltimes observed
at all available geophones. The scatterer intersects the boundaries of the reflection wave paths associated with source–receiver pairs (rs, rg1) and (rs, rg2),
and the transmission wave paths associated with (rs, r′

g1) and (rs, r′
g2), respectively. The source–receiver pairs (rs, rg) and (rs, r′

g) define ηsg in eq. (9) for
reflection and transmission traveltime wave path tomography, respectively; (d) The available wavenumbers for the reconstructed model for reflection traveltime
wave path tomography, (e) transmission traveltime wave path tomography and (f) diffraction traveltime wave path tomography. Compared with that in (d) and
(f), the wavenumber coverage in (e) is diminished, and thus results in a poorer vertical resolution for transmission traveltime wave path tomography.

time tomography are quite different, and this results in a different
coverage for the wavenumbers of the reflection and transmission
traveltime tomograms. Transmission traveltime tomography is usu-
ally associated with a narrower coverage of wavenumbers, and thus
results in a poorer resolution in the transmission traveltime tomo-
gram.

3 R E L A T I O N S H I P T O M O D E L
R E S O L U T I O N O P E R A T O R S

Eq. (9) says that the estimated model is given by a blurred version
of the actual model. The blurring kernel can be related to that of a
model resolution kernel (Backus & Gilbert 1968) by inserting the
identity

Ô(k) =
∫

X
eik·rO(r) dr, (12)

into eq. (9) to obtain

Oest(r) =
∫

X′
G(r | r′)O(r′) dr′, (13)
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where the blurring kernel G(r | r′) is given by

G(r | r′) = 1

(2π )n

∫
(r)

eik·(r′−r) dk. (14)

Therefore, the limits of resolution illustrated by, for example,
the quadrilateral regions in Fig. 5 (see Section 4.3), delineate the
support for the dominant part of the resolving kernel G(r | r′). The
resolving kernel is also referred to as a point spread function for
optical imaging (Jansson 1997), or a migration Green function for
reflection imaging (Schuster & Hu 2000).

4 N U M E R I C A L E X A M P L E S

Some numerical examples will now be computed for estimating
slowness resolution limits for different types of seismic data: trav-
eltime data from crosswell McElroy field data (Harris et al. 1992),
traveltimes from diving waves and synthetic earthquake traveltimes
for whole-Earth tomography.
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Figure 2. Traveltime tomogram reconstructed from crosswell McElroy field data (data courtesy of Harris et al. 1992). There are 201 shots evenly distributed
along the well from depths of 811 to 963 m, and there are 186 hydrophones evenly distributed from depths of 822 to 963 m for each shot gather. The offset
between the wells is 56 m, and the velocity model is discretized into a (295, 801) grid with gridpoint intervals of 0.19 m. (a) P-velocity traveltime tomogram.
The three boxes represent three scatterers at the offset of x = 28 m, and at depths of 846, 887 and 920 m. The available wavenumbers for these three scatterers
are shown in (b)–(d) suggesting that the estimated spatial resolutions (�x , �z) are (6.63, 3.65) m, (5.68, 4.03) m and (6.19, 4.48) m. Here, a maximum source
frequency of 1400 Hz was assumed.

4.1 CROSSWELL McElroy FIELD DATA

The resolution limits are estimated for wave path diffraction trav-
eltime tomography and a 2-D crosswell data set, the McElroy data
(Harris et al. 1992; Zhou et al. 1997). There are 201 shots evenly
distributed along the well from depths of 811 to 963 m, with a source
interval of 0.76 m. For each common shot gather, there are 186 hy-
drophones evenly distributed from depths of 822 to 963 m, with
a trace interval of 0.76 m. The offset between the wells is 56 m,
and the velocity model is discretized into a (295, 801) grid, with
gridpoint intervals of 0.19 m. Fig. 2(a) shows the p-wave raypath
traveltime tomogram. This tomogram has a vertical resolution of
approximately 10 m in the centre of the model that corresponds to
a reservoir sand unit, and it does not contain detailed information
concerning the reservoir lithology. Taking this tomogram to be the
background model and using eq. (11), the spatial resolution limits
for transmission wave path traveltime tomography can be estimated
for any scatterer. Figs 2(b)–(d) show the coverage of wavenumbers
of the reconstructed slowness anomaly for the scatterers at an offset
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of x = 28 m, and at depths of 846.0, 887.0 and 920.0 m, respectively.
The x- and z-direction resolution limits (�x , �z) can be estimated
as (6.63, 3.65), (5.68, 4.03) and (6.19, 4.48) m. Zhou et al. (1997)
showed that the vertical resolution of the McElroy traveltime to-
mogram can be improved to approximately 3 m or less by elastic
traveltime and waveform inversion.

4.2 Diving-wave traveltime tomography

Sheriff & Geldart (1982) presented an analytical formula for the
traveltime of the direct arrival for a v(z) model with a linearly in-
creasing velocity. We now use this formula to determine the spatial
resolution limits of a traveltime tomogram for a linearly increasing
velocity model. A model with a linear increase in velocity will be
assumed with a and v0 to be the velocity gradient and the surface
velocity, respectively. The sources and receivers are continuously
distributed from (0, 0) to (L, 0), as shown in Fig. 3. According
to eq. (11), the spatial resolution limits for the scatterer at x in a
diving-wave traveltime tomogram can be estimated by calculating
the maximum wavenumbers |kx| and |kz| over those source–receiver
pairs (s, r) for which the associated wave path includes x. For a fixed
source at s, the maximum wavenumber can be calculated as (see Ap-
pendix B)

|kx | ≈ π

√
8a(

v2 − v2
0

)
T

√
(1 − p2v2)

√
1 − p2v2

0, (15)

and

|kz | ≈ π

√
8a(

v2 − v2
0

)
T

√
p2v2

√
1 − p2v2

0, (16)

where p = (sin i0)/v0 defines the parameter for the raypath sx, i0 is
the take-off angle and v is the velocity at the image point (x, z). For
a source at s = (x s, 0) the ray parameter can be expressed as

p =

v2

0 +
{

a
[
(xs − x)2 + z2

] + 2zv0

2|xs − x |

}2



−1/2

, (17)

where x s denotes the x-coordinate of the source at s. Since the re-
ceiver aperture is limited, only p-values that obey the following
conditions should be considered:

0 ≤ xs ≤ x − az2 + 2zv0

a (L − x)
(18)

rs

x

= 0V + azV

(x,z)

(0,0) (L,0)

Figure 3. Diving-wave traveltime tomography. The velocity increases lin-
early with depth z, with a gradient a and the surface velocity v0. The spatial
resolution limits for a scatterer at x can be estimated by calculating the trav-
eltime gradients ∇x(τ sx + τ xr) when the scatterer is on the boundary of the
diving-wave path for the source–receiver pair (s, r).

or

x + az2 + 2zv0

ax
≤ xs ≤ L , (19)

and the range of the p-value [pmin, pmax] can be determined. Thus,
the maximum wavenumbers from eqs (15) and (16) can be obtained,
so that the spatial resolution limits can be estimated according to
eq. (11).

In the case of unlimited aperture, when p approaches zero at
the far-offset trace, the maximum value of |kx| in eq. (15) can be
obtained as max |kx | ≈ π

√
8a/(v2 − v2

0)T and the x-direction reso-
lution limit can be estimated as �x ≈

√
[(v2 − v2

0)T ]/8a. Similar-
ly, when z ≤ [(3 − √

6)/
√

6](v0/a) and p = √
6/3v0, we have,

max |kz | ≈ π
√

8a/(v2 − v2
0)T [( 4

√
12/3)(v/v0)] and �z ≈√

(v2 − v2
0)T /8a[(3/

4
√

12](v0/v)]; when z ≥ [(3 − √
6)/

√
6]

(v0/a) and p = 1/v, we have, max |kz | ≈ π

√
8a/

(
v2 − v2

0

)
T

4
√

(v2 − v2
0)/v2 and �z ≈

√
(v2 − v2

0)T /8a 4
√

v2/(v2 − v2
0).

4.3 Global earthquake tomography

Whole-Earth P-velocity tomograms can be obtained by inverting
the first-arrival traveltimes picked from teleseismic records. Such
tomograms are limited in resolution by the finite-frequency effects
of low-frequency waves propagating through the Earth. To under-
stand these limits we calculated the wave paths for 1 Hz teleseismic
P waves.

The Preliminary Reference Earth Model or PREM (Dziewonski
et al. 1981) is taken to be the background velocity model, and travel-
times are computed by an eikonal-equation solver. These traveltimes
are then used to calculate numerically the wavenumber of the recon-
structed model defined by eq. (10), and the spatial-resolution limits
of the tomogram by eq. (11). Along a central ray, the wavenum-
ber will be zero according to eq. (10) and this is consistent with
the wave path theory (Woodward & Rocca 1988; Marquering et al.
1999). The sources and geophones are distributed uniformly around
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Figure 4. The transmission wave paths that intersect a single point at a
depth of 800 km. The sources and receivers are distributed uniformly around
a great circle of the Earth at a spatial interval of 1 degree for every source
(or receiver), the dominant frequency is set to be 1 Hz, and the gridpoint
interval is taken to be 2 km. The units of both the x-and z-coordinates are
in km, and the units of velocity are km s−1. The fat rays are the wave paths
(Woodward & Rocca 1988; Luo 1991; Marquering et al. 1999).
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Figure 5. The unresolvable regions at different depths. The image points under consideration are at the centre of the quadrilaterals that represent the
unresolvable regions. The size of the quadrilaterals gives the spatial resolution limits of an earthquake traveltime tomogram, where wave interference effects
are partly taken into account. The horizontal width gives the horizontal resolution �x and the vertical height gives the vertical resolution �z. The sources and
the geophones are uniformly distributed around a great circle of the Earth for 1 degree every source (or geophone). (a) Depth = 100, �x = 32, �z = 24 km;
(b) depth = 300, �x = 32, �z = 48 km; (c) depth = 400, �x = 48, �z = 72 km; (d) depth = 800, �x = 82, �z = 74 km.

a great circle at a spatial interval of 1◦ for every source (or receiver);
the dominant frequency is set to be 1 Hz and the gridpoint interval
is taken to be 2 km.

Fig. 4 shows the wave paths superimposed on to the PREM, where
only first-arrival traveltimes are used and we consider a region no
deeper than 1500 km. Fig. 5 shows the approximated unresolvable
regions for the scatterers at the depths of 100, 300, 400 and 800 km,
respectively. The result shows that the spatial resolution generally
becomes worse at deeper depths. At depths between 100 and 300 km,
the spatial resolution (horizontal or vertical) is approximately 32 km,
and between 400 and 900 km it is approximately 75 km.

5 C O N C L U S I O N S

We have derived the inverse GRT for the Rytov equation, which
yields the reconstructed slowness as an explicit function of phase
residuals. This formula also provides a practical means for estimat-
ing the limits of model resolution arising from wave-interference

effects. It is valid for arbitrary Earth models with smoothly varying
velocities having variations longer than three times the source wave-
length. For the crosswell example, resolution formulae are derived
that are in agreement with formulae derived under the far-field ap-
proximation. For the earthquake tomography example, a procedure
is defined that allows for the computation of the wave path reso-
lution limits of earthquake tomograms for given source–receiver
geometries, image point locations and source frequencies. And for
the diving-wave problem, simple formulae are given, which yield
vertical- and horizontal-resolution limits of a diving-wave tomo-
gram associated with a layered-Earth model.

One of the implications of this work is that the reliability estimates
for global tomograms should take into account wave path resolution
limits. This can be done by varying the size of the pixels in the
tomographic velocity model so that they are no smaller than that
dictated by the resolution limit, i.e. diffraction-limited pixelization
of the model. A possible application of the inverse GRT formula is
that it can be used as a fast means for inverting traveltime data.

C© 2003 RAS, GJI, 152, 669–676

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/152/3/669/690815 by guest on 21 January 2022



Resolution limits of traveltime tomography 675

A C K N O W L E D G M E N T

We thank the sponsors of the 1999 University of Utah Tomography
and Modelling/Migration Consortium (UTAM) for their financial
support.

R E F E R E N C E S

Backus, G. & Gilbert, F., 1968. The resolving power of gross earth data,
Geophys. J. R. astr. Soc., 16, 169–205.

Beylkin, G., 1985. Imaging of discontinuities in the inverse scattering prob-
lem by inversion of a causal generalized Radon transform, J. Math. Phys.,
26, 99–108.

Bleistein, N., 1984. Mathematical Methods for Wave Phenomena, Academic
Press, New York.
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A P P E N D I X A : A S Y M P T O T I C
I N V E R S I O N

In this appendix we derive the asymptotic inversion eqs (5) and (9).
We now consider the Fourier integral operator (FIO) defined by

(FO)(r) = − 4

(2π )n

∫ +∞

0

∫
∂X

ω(n−3)/2 Im[�φ(ω, rs, rg)]

× sin

[
ωτ (r, rs, rg) − (n + 1) π

4

]

× h(r, rs, rg)

A(r, rs, rg)
χ (r, rs, rg) drg dω. (A1)

Substituting eq. (4) in eq. (A1) we rewrite F as

(FO)(r) = 4

(2π )n

∫ +∞

0

∫
∂X

∫
X

ωn−1O(r′)A′(r, r′, rs, rg)

× sin

[
ωτ (r, rs, rg) − (n + 1) π

4

]

× sin

[
ωτ (r′, rs, rg) − (n + 1) π

4

]
× h(r, rs, rg)χ (r, rs, rg) dr′ drg dω, (A2)

where A′(r, r′, rs, rg) = A(r′,rs,rg)
A(r,rs,rg) . Since both τ (r, rs, rg) and τ (r′,

rs, rg) are non-negative, we rewrite the FIO as

(FO)(r) = 1

(2π )n

∫ +∞

−∞

∫
∂X

∫
X

ωn−1O(r′)A′(r, r′, rs, rg)

× exp{iω[τ (r′, rs, rg) − τ (r, rs, rg)]}
× h(r, rs, rg)χ (r, rs, rg) dr′ drg dω. (A3)

According to Beylkin’s theory (Beylkin 1985), the FIO in (A3) is a
pseudodifferential operator, and by making use only of its first-order
term we have

(FO)(r) ∼ 1

(2π )n

∫ +∞

−∞

∫
∂X

∫
X

ωn−1O(r′)

× eiω∇rτ (r,rs,rg)·(r′−r)

× h(r, rs, rg)χ (r, rs, rg) dr′ drg dω. (A4)

Changing variables of integration from ω, rg to k, where

k = ω∇rτ (r, rs, rg), (A5)

we have

dk = ωn−1h(r, rs, rg) drg dω, (A6)

and

(FO)(r) ∼ 1

(2π )n

∫
(r)

∫
X

eik·(r′−r)O(r′) dr′ dk

= 1

(2π )n

∫
(r)

e−ik·rÔ(k) dk, (A7)

where Ô(k) is the Fourier transform of the object function O(r); the
Fourier domain (r) is determined by the frequency range and by
those source–receiver pairs ηsg(r) for which the associated wave path
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and the recorded traveltimes can be influenced by the perturbation
at r. The domain of (r) determines the spatial resolution of the
reconstructed object function and controls what can be recovered
(Beylkin 1985).

Thus from (A7) we obtain an approximate reconstruction formula
(5), and its Fourier transform (9). Substituting Im[�φ(ω, rs, rg)] ≈
ω�τ

(
rs, rg

)
into the above derivation, eq. (8) can be obtained

directly.

A P P E N D I X B : T H E M A X I M U M
W A V E N U M B E R S F O R D I V I N G - W A V E
T R A V E L T I M E T O M O G R A P H Y

In this appendix, formulae are derived for the maximum wavenum-
bers for diving-wave traveltime tomography, eqs (15) and (16) in
the text.

According to Sheriff & Geldart (1982), in the case of a linear
increase of velocity with depth, v = v0 + az, the raypath from a
source point s to some receiver point g is a circular arc with the
centre on the line located v0/a above the surface. Therefore,

τsg = 2

a
ln


axsg

2v0
+

√
1 +

(
axsg

2v0

)2

 , (B8)

where τ sg denotes the first arrival traveltime for the raypath sg, x sg

denotes the horizontal distance between s and g, and both the source
and receiver are at the surface.

For some point x on the raypath sg, we have

τxg = 1

a


c ln

pxgv

1 +
√

1 − p2
xgv

2
− ln

pxgv0

1 +
√

1 − p2
xgv

2
0


 , (B9)

where τ xg denotes the first arrival traveltime for the raypath xg, v

is the velocity at the point x; c is determined such that, when xxg ≤
x sg/2, c = 1, and when xxg ≥ x sg/2, c = −1, where xxg denotes the
horizontal distance between x and g; and pxg is the raypath parameter
that can be expressed as

pxg = 1√
v2

0 + {[
a
(
x2

xg + z2
) + 2zv0

]/
2xxg

}2
. (B10)

For a fixed source at s, an image point at x, and the ray leaving
at s returns to the surface through x at receiver g, the maximum
wavenumbers can be obtained at the receiver g′ close to g such that
the image point x is on the boundary of the wave path associated
with the source–receiver pair (s, g′), that is,

|τsx + τxg′ − τsg′ | = T

2
, (B11)

where τsg′ denotes the first arrival traveltime from s to g′.
τxg′ can be approximated by a Taylor series up to second order as,

τxg′ ≈ τxg + p(�xgg′ ) + c
(�xgg′ )2

2

ap2√
1 − p2v2

0 − c
√

1 − p2v2

×
√

1 − p2v2
0

√
1 − p2v2, (B12)

where p denotes the ray parameter of the raypath sxg and �xgg′

denotes the x-coordinate difference between g and g′.
Similarly, τsg′ can be approximated as,

τsg′ ≈ τsg + p(�xgg′ ) − (xgg′ )2

2

ap2

2

√
1 − p2v2

0 . (B13)

From eqs (B11) to(B13), we have

|�xgg′ | ≈
√√√√ 2T

ap2
√

1 − p2v2
0

√
1 − p2v2

0 − c
√

1 − p2v2√
1 − p2v2

0 + c
√

1 − p2v2
. (B14)

Inserting eq. (B12) into eq. (10) yields

|kx | = 2π

T

∣∣∣∣∂(τsx + τxg′ )

∂x

∣∣∣∣ ≈ 2π

T

∣∣∣∣∂(τsx + τxg + p�xgg′ )

∂x

∣∣∣∣
= 2π

T

∣∣∣∣∂(p�xgg′ )

∂x

∣∣∣∣ = 2π

T

∣∣∣∣∂p

∂x

∣∣∣∣ |�xgg′ |, (B15)

and similarly,

|kz | ≈ 2π

T

∣∣∣∣∂p

∂z

∣∣∣∣ |�xgg′ |, (B16)

where ∇(τ sx + τ xg) = 0, since x is on the raypath sg; |∂ p/∂x | and
∂ p/∂z| can be derived from eq. (B10) as∣∣∣∣∂p

∂x

∣∣∣∣ = ap2
√

1 − p2v2
0

√
1 − p2v2√

1 − p2v2
0 − c

√
1 − p2v2

, (B17)

and∣∣∣∣∂p

∂z

∣∣∣∣ = ap3v
√

1 − p2v2
0√

1 − p2v2
0 − c

√
1 − p2v2

. (B18)

Inserting eqs (B14), (B17) and (B18) into eqs (B15)–(B16) yields
eqs (15) and (16).
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