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Abstract

Uncertain soil properties are often modeled as random fields. This renders the unsaturated flow equations stochastic.

Determining statistics of pressure head statistics, c; is nontrivial, since the Richards equation is highly nonlinear. The prevalent

approach is to linearize relative hydraulic conductivity, KrðcÞ; around the ensemble mean pressure head, kcl; which often leads

to significant errors. Recently, an approach has been proposed to avoid such a linearization for the Gardner model, Kr ¼

expðacÞ; with the soil parameter a being a random variable. We generalize this approach by allowing a to be a random field.

This is achieved by means of a partial mean-field approximation with respect to aðxÞ: Using two-dimensional infiltration into a

heterogeneous soil with uncertain hydraulic parameters as an example, we demonstrate that our predictions of the mean

pressure head and its variance remain accurate for moderately variable as. The robustness of our solutions increases with the

correlation length of a:

q 2003 Elsevier Science B.V. All rights reserved.

Keywords: Stochastic; Random; Moment equations; Porous media; Nonlinear

1. Introduction

Even within a given soil type, hydraulic properties

and parameters often vary significantly from point to

point in a manner that cannot be described with

certainty. Therefore, it seems appropriate to model

saturated hydraulic conductivity and the parameters of

constitutive relations between relative conductivity

and pressure head in unsaturated soils as correlated

random fields, and to cast the unsaturated flow

equations in a stochastic framework.

Once statistical properties of randomly hetero-

geneous parameters and forcing terms (sources, initial

and boundary conditions) have been determined, one

can solve the corresponding stochastic flow equations

analytically or numerically. The most common and

widely applicable approach is to solve the stochastic
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flow equations numerically by conditional Monte

Carlo simulations, and then to analyze the results

statistically. The sample statistics most commonly

computed from such simulations include (conditional)

mean hydraulic heads and gradients, volumetric water

fluxes and seepage velocities. The theoretical (ensem-

ble) counterparts of these (conditional) sample means

constitute unbiased predictors of system behavior

and/or performance under uncertainty. The con-

ditional predictors are optimal in that the sum of

squared prediction errors is minimum (Mood and

Graybill, 1963). Another statistic commonly com-

puted from Monte Carlo simulations is the sample

variance–covariance of the prediction errors. Its

theoretical (ensemble) counterpart constitutes a

measure of predictive uncertainty. It is common for

Monte Carlo simulations to assume that the input

variables (parameters and forcing terms) are multi-

variate Gaussian or log-Gaussian. When this assump-

tion holds, the conditional predictors are optimal in

that the prediction errors have minimum variance

(Mood and Graybill, 1963).

Although the Monte Carlo method is conceptually

straightforward and has the indisputable advantage of

applying to a very broad range of both linear and

nonlinear flow and transport problems, its major

drawbacks have led to development of alternative

methods. A conceptual disadvantage of the Monte

Carlo approach is that it provides no theoretical

insight into physical phenomena. Especially for

highly nonlinear stochastic differential equations,

there is no guarantee that Monte Carlo simulations

have converged to the exact (ensemble) solution after

some large number of realizations. To the best of our

knowledge, there are no well-established compu-

tational criteria to predict the number of realizations

required to achieve the desired accuracy. This

becomes especially critical in assessing higher order

moments or the probability distribution of state

variables of interest.

An alternative to Monte Carlo simulations is

provided by moment equations, which yield the

corresponding predictions of flow and transport

deterministically. Moment equations have been

applied successfully to describe steady (Neuman

and Orr, 1993; Neuman et al., 1996; Guadagnini and

Neuman, 1999a,b) and transient (Tartakovsky and

Neuman, 1998, 1999) saturated flows and transport

(Neuman, 1993; Guadagnini and Neuman, 2001) in

heterogeneous formations. The unifying feature of

these and similar physical phenomena is that they

are described by linear stochastic partial differential

equations. Recently, we extended our moment

equations approach to model a certain class of

nonlinear processes. These include steady-state

unsaturated flow (Tartakovsky et al., 1999; Lu

et al., 2000) and gas flow in heterogeneous porous

media (Tartakovsky, 1999, 2000; Tartakovsky and

Guadagnini, 2001).

In this paper, we consider steady-state flow in

partially saturated media with spatially distributed

uncertain hydraulic parameters. We carry out our

analysis along the lines of Tartakovsky et al.

(1999) and Lu et al. (2000) by relying upon the

Kirchhoff transform to derive the moment equations

for pressure head, c; in soils with relative hydraulic

conductivity described by the Gardner exponential

model, Kr ¼ expðacÞ: Applying the Kirchhoff

transform to the original stochastic unsaturated

flow equations has the unique advantage of fully

preserving the nonlinearity of KrðcÞ: This is in

contrast to the recent analyses by Indelman et al.

(1993), Li and Yeh (1998), and Foussereau et al.

(2000), which found it necessary to linearize KrðcÞ:

The downside of the analyses in Tartakovsky et al.

(1999) and Lu et al. (2000), as well as of the

linearization-free Gaussian approximation of Amir

and Neuman (2001), is that they require the pore-

size distribution parameter, a; to be a random

variable, which reduces the range of their practical

applicability. Our main goal is to eliminate this

limitation by allowing a ¼ aðxÞ to vary randomly

in space.

We formulate the stochastic boundary-value pro-

blem in Section 2. Then we derive in Section 3

deterministic boundary-value problems for (ensem-

ble) mean pressure head, kcl; and for the correspond-

ing pressure head variance, s2
c: The robustness of the

approximations used in our derivations is analyzed in

Section 4 for a two-dimensional example. In the

absence of a better yardstick, we demonstrate, and

comment upon, the accuracy of the moment equations

approach by comparing our results with those

obtained from a set of Monte Carlo simulations of

the original nonlinear problem.
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2. Problem formulation

Consider steady-state flow in a variably saturated

soil (flow domain V) that is described by the Darcy

law

qðxÞ ¼ 2Kðx;cÞ7½cðxÞ þ x3�; ð1Þ

where qðxÞ is the flux, Kðx;cÞ is the unsaturated

hydraulic conductivity, and x3 is the vertical coordi-

nate (taken to be positive upward). The Darcy law is

supplemented with the continuity equation

27·qðxÞ þ f ðxÞ ¼ 0 x [ V ð2Þ

where f ðxÞ is a randomly prescribed source function.

These equations are subject to the boundary con-

ditions

cðxÞ ¼ CðxÞ x [ GD ð3Þ

2qðxÞ·nðxÞ ¼ QðxÞ x [ GN: ð4Þ

Here CðxÞ is the random pressure head on Dirichlet

boundary segments GD; QðxÞ is the random flux across

Neumann boundary segmentsGN; n ¼ ðn1; n2; n3Þ
T is a

unit outward normal to the boundary G; and G ¼

GD < GN:Though it is not strictly necessary, we assume

for simplicity that the source and boundary functions

f ðxÞ; CðxÞ and QðxÞ are prescribed in a statistically

independent manner. The physical quantities, such as

K; c; and q; are representative of a measurement

volume centered about location x; which is small

relative to the flow domain size, but is large enough to

guarantee that Darcy’s law applies on its scale.

A choice of the functional dependence of unsatu-

rated hydraulic conductivity on pressure head, KðcÞ;

completes the description. In this study we employ the

Gardner exponential model,

Kðx;cÞ ¼ KsðxÞKrðx;cÞ; Krðx;cÞ ¼ eaðxÞc; ð5Þ

where Ks and Kr are the saturated and relative

hydraulic conductivities, respectively, and a is the

reciprocal of the macroscopic capillary length scale

(Raats, 1976). Since the constitutive parameters Ks

and a are highly variable in space and are typically

under-determined by data, we describe them as

random fields. This and the uncertain forcing terms

render Eqs. (1)–(4) stochastic.

Choosing the Gardner model allows us to use the

Kirchhoff transformation to derive the moment

equations for boundary-value problem (1) – (4),

which preserve the constitutive nonlinearity. By

applying the Kirchhoff transform, Tartakovsky et al.

(1999) have developed the first and second moment

equations for stochastic steady-state unsaturated flow

with the random variable a: These recursive moment

equations have then been solved analytically in one

dimension. More recently, Lu et al. (2000) have

developed a finite elements algorithm to solve our

moment equations in two dimensions. They have

analyzed both mean uniform and divergent flows,

with and without conditioning on discrete measure-

ments of Ks: Using Monte Carlo simulations as a

yardstick, the authors have demonstrated that their

numerical solutions are remarkably accurate (more so

in the conditional than in the unconditional case) for

strongly heterogeneous soils with log-conductivity

variance as large as 2.

These results are based on the formalism that

treated a as a space-independent random variable.

The authors justified this assumption on the basis of

published data concerning the spatial variability a;

which are quite ambiguous. Whereas the spatial

variability of Ks has been studied extensively, there

have been relatively few studies on the spatial

statistics of a: While measuring Ks is relatively

straightforward, the soil parameter a can be deter-

mined only by indirect methods. These include least

square analyses of the data for relative conductivity

(Russo, 1983, 1984; Ünlü et al., 1990), for water

retention (Wierenga et al., 1991), and for sorptivity

(White and Sully, 1992), as well as an inversion of the

infiltration experiments (Russo and Bouton, 1992).

Fig. 1 summarizes the experimentally determined

values of a for several soil types. While most of these

studies suggest that both Ks and a are log-normal,

others found a to be approximately normal. Variance

of ln a was found to be either larger or smaller than

that of ln Ks: Similarly, no general consensus exists

about the relative magnitude of correlation scales for

ln Ks and ln a and about cross-correlation between the

two. For example, Russo and Bouton (1992) reported

the vertical and horizontal correlation scales of ln a to

be approximately three times smaller than the

respective correlation scales of Ks; while Ünlü et al.

(1990) found them to be larger. Analyzing three

different soil types, Raga and Cooper (1993a,b)

pointed out the lack of cross-correlation between
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ln a and ln Ks: Russo and Bouton (1992) reported a

weak cross-correlation. Similar findings can be found

in Russo (1983, 1984) and Wierenga et al. (1991). At

the same time, other studies resulted in moderate

(Russo et al., 1997) or high (Ünlü et al., 1990) cross-

correlations. It therefore comes as no surprise that

stochastic models of unsaturated flow range from

those disregarding such cross-correlations (Tarta-

kovsky et al., 1999; Lu et al., 2000) to those

incorporating them fully (Yeh, 1989).

Our approach places the following restrictions on

statistics of the random fields Ks and a: In general, we

do not require the random field Ks to be statistically

homogeneous and allow for an arbitrary (reasonable)

spatial correlation structure. Thus the moment

equations in Section 3 are written for the second-

order statistically homogeneous Ks field, and our

numerical example in Section 4 additionally assumes

Ks to be log-normal with anisotropic exponential

correlation function for Y ¼ ln Ks: Although our

theory requires the random field a to be first-order

statistically homogeneous and arbitrary otherwise, in

the example in Section 4 we take a to be the second-

order statistically homogeneous Gaussian random

field with an anisotropic exponential correlation

function. The derivations in Section 3 do not make

any assumptions regarding the cross-correlation

between Ks and a; or the lack thereof. The numerical

example in Section 4 assumes no correlation between

the two. Of course, such a relative generality of our

moment equations does not guarantee their robustness

for all possible permutations of the Ks and a statistics.

In fact, we expect the solutions of these equations to

be excellent approximations of the ‘true’ distributions

of kcl and s2
c in some cases, while failing to do so in

others. Our example in Section 4 only begins to

explore this issue.

3. General theory

Our goal is to take full advantage of the Kirchhoff-

transform-based approach of Tartakovsky et al.

(1999), since it possesses the unique ability to fully

Fig. 1. Values of the Gardner parameter a for several soil types.
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preserve the nonlinearity of the constitutive relation-

ship between relative hydraulic conductivity and

pressure head. A spatially distributed random field a

requires an extra step for the Kirchhoff transform to be

useful.

3.1. Partial mean-field approximation

We employ a partial mean-field approximation,

Krðx;cÞ < ~KrðcÞ ; ekalc; ð6Þ

to eliminate the explicit spatial dependence of Krð

x;cÞ: Of course, this requires the random field aðxÞ to

be first-order statistically homogeneous.

Quite often mean-field approximations, wherein

the random system parameters are replaced with their

ensemble means, proved to be at least as accurate as

linearizations of the underlying stochastic differential

equations (Tartakovsky and Guadagnini, 2001; Tarta-

kovsky and Winter, 2001). Here we employ the partial

mean-field approximation by keeping saturated

hydraulic conductivity, Ks; random. In what follows,

we explore the conditions under which this approxi-

mation remains accurate.

Clearly, the partial mean-field approximation (6) is

analogous to retaining the leading term in the Taylor

expansion of expðacÞ about the mean kal: Hence its

accuracy requires the random fluctuations of a around

kal to be small. We explore this requirement in

Section 4.

3.2. Moment equations

Combining Eqs. (1) and (2), while employing

approximation (6), yields

7·{KsðxÞ ~KrðcÞ7½cðxÞ þ x3�} þ f ðxÞ ¼ 0 x [ V: ð7Þ

Upon applying the Kirchhoff transform,

FðxÞ ¼
ðcðxÞ

21

~KrðtÞdt ¼ kal21 ekalc; ð8Þ

Eq. (7) takes the form of a linear partial differential

equation,

7·½KsðxÞ7FðxÞ� þ kal
›

›x3

½KsðxÞFðxÞ�

þ f ðxÞ ¼ 0 x [ V: ð9Þ

Transforming boundary conditions (3) and (4) yields

FðxÞ ¼ HðxÞ; HðxÞ ¼ kal21 ekalC x [ GD ð10Þ

KsðxÞ7FðxÞ·nðxÞ þ kaln3ðxÞKsðxÞFðxÞ

¼ QðxÞ x [ GN: ð11Þ

Stochastic averaging of Eqs. (9)–(11), combined with

the perturbation expansion of the mean pressure head

into an asymptotic expansion kFl ¼ kFð0Þlþ kFð1Þlþ
· · · in the variance s2

Y of Y ¼ ln Ks; yields for i ¼ 0; 1

(see Tartakovsky et al. (1999) for more details)

kFðiÞðxÞl ¼
ð
V

fiðyÞGðy; xÞdy 2 kal
ð
GD

HiðyÞn·

7yGðy; xÞdy þ
ð
GN

QiðyÞGðy; xÞdy: ð12Þ

Here the kernel Gðy; xÞ is given by the zeroth-order

mean Green’s function for Eqs. (9)–(11) and

f0 ; kf l; H0 ; kal21 ekalkCl
; Q0 ; kQl;

ð13aÞ

f1 ; 7·
s2

Y

2
7kFð0Þl2 rð1Þ

" #
2 kal

›

›x3

�
s2

Y

2
kFð0Þlþ Cð1Þ

KsF

" #
; ð13bÞ

H1 ; 0; ð13cÞ

Q1 ; 2n·
s2

Y

2
7kFð0Þl2 rð1Þ

" #

þ kal21n3

s2
Y

2
kFð0Þlþ Cð1Þ

KsF

" #
: ð13dÞ

The first-order approximations of the mixed moments

rðxÞ ¼ 2kK 0
sðxÞ7F

0ðxÞl and CKsF
ðxÞ ¼ kK 0

sðxÞF
0ðxÞl

are given by

rð1ÞðxÞ ¼
ð
V

CY7x7
T
y G7ykF

ð0Þldy

2 kal21
ð
V

CY kF
ð0Þl7x

›G

›y3

dy ð14aÞ
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Cð1Þ
KsF

ðxÞ ¼ 2
ð
V

CY7yG·7ykF
ð0Þldy

þ kal21
ð
V

CY kF
ð0Þl

›G

›y3

dy ð14bÞ

where CY ðx; yÞ ¼ kY 0ðxÞY 0ðyÞl is the covariance of Y 0:

The variance of the Kirchhoff transform, s2
F; is found

in a similar manner (Tartakovsky et al., 1999).

Once Eq. (12) have been solved, one can continue

by developing first-order approximations kc½1�l ¼
kcð0Þlþ kcð1Þl for the mean pressure head and

associated second moments,

kcð0Þl ¼ lnkFð0Þl; kcð1Þl ¼
kFð1Þl
kFð0Þl

2
½s2

F�
ð1Þ

2kFð0Þl2

ð15Þ

and

½s2
c�

ð1Þ ¼
½s2

F�
ð1Þ

kFð0Þl2
: ð16Þ

4. Computational example

To illustrate our computational approach and to

ascertain the accuracy of our partial mean-field

approximation, we consider infiltration in a vertical

cross-section of a heterogeneous soil. The flow

domain is taken to be a rectangle of width 40 and

height 3. (Here and below some suitable consistent

units are used for all physical parameters.) The top

boundary, x3 ¼ 3; represents the soil surface, and the

water table defines the bottom boundary, x3 ¼ 0:

Infiltration at a constant rate Qi ¼ 0:01 occurs at the

left portion of the top boundary, x1 [ ½0; 5�: The rest

of the soil surface, x1 [ ½5; 40�; experiences the

outflow at a constant rate Q0 ¼ 0:0002: At the water

table, x3 ¼ 0; the pressure head c ¼ 0: Both vertical

boundaries are assumed no-flow. Loosely, such an

example might represent evaporation taking place due

to localized irrigation.

The soil is assumed to be statistically homo-

geneous and anisotropic with correlation lengths, lY

and la; for both Y ¼ ln Ks and a equal to 4.0 and 2.0

along the horizontal and vertical directions, respect-

ively. The anisotropic exponential correlation

function is selected for both random fields. We use

the following values for the soil parameters and their

statistics: kYl ¼ 1:0 (or KG ¼ 2:718), s2
Y ¼ 0:25;

kal ¼ 1:0: Variance s2
a takes on several values as

described below. The flow domain is subdivided into

40 £ 30 rectangular elements 1.0 by 0.1 each.

We use the nonlocal finite element code of Lu

et al. (2000) to solve our partial mean-field moment

equations. Here we focus on the numerical solutions

of our equations and their comparison with Monte

Carlo simulations. A detailed description of both

methods can be found in Lu et al. (2000). To insure

the compatibility between the two computational

methods, we used in the moment equations the

parameter values approximated from sample realiz-

ations of Monte Carlo runs. In practical applications,

one would normally infer these values geostatisti-

cally from measurements by methods such as

kriging.

The Monte Carlo simulations commence with

generating, by means of a Gaussian sequential

simulator GCOSIM (Gómez-Hernández, 1991),

2000 unconditional realizations of a random field

with zero mean and unit variance. These random

fields (1000 realizations each) are then scaled as

realizations of Y and a with mean and variances as

specified above. We allow the variance of a to vary

from case to case, to reproduce the coefficient of

variation, CVa; ranging from 0.0 to 0.5. Again, we

assume that the Y and a fields have the same

correlation scales and that Y and a are uncorrelated.

To analyze the flow statistics, we assign to each

element constant Y and a values corresponding to the

point value generated at its center by GCOSIM. The

unconditional auto-covariance obtained from Monte

Carlo simulations compared favorably with that given

theoretically.

Fig. 2 compares the mean pressure head

distribution and its variance computed with the

two methods for CVa ¼ 0:0; i.e. for deterministic

a: The streamlines are drawn based on the results

of the moment equations. It should be noted that

the equipotential lines are not perpendicular to the

streamlines, partially due to the medium anisotropy

and partially due to the fact that the scale in the

vertical direction has been exaggerated for graphi-

cal reasons. Since a is deterministic, our partial

mean field approximation becomes exact, and the

only approximation is due to a closure of
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the moment equations by perturbation expansion

in s2
Y : As expected from our previous experience,

such a closure leads to the head statistics which

is in almost perfect agreement with the

head statistics obtained from Monte Carlo

simulations.

Figs. 3–5 provide the same comparisons for

CVa ¼ 0:1; 0.2, 0.5, respectively. It is clear that, at

least in our example problem where the medium is

weakly correlated along the horizontal direction (Y

and a correlation lengths are 1/10 of the horizontal

domain size) and strongly correlated along the

vertical direction (the characteristic vertical dimen-

sion of the domain spans 1.5 vertical correlation

lengths of Y), our partial mean-field approximation

captures satisfactorily the essential features of the

spatial pattern of the statistical moments of pressure

head. While discrepancies are almost absent for

moderate CVa; they tend to increase with CVa: This

is especially so for the head variance s2
c: However,

it is worthwhile to remember that our approximation

of s2
c represents but the leading term in the

perturbation expansion of the exact solution, while

the more accurate approximation of the mean head

consists of the two leading terms in a similar

expansion.

On the basis of the few field measurements

reported in the literature and reviewed in Section 2,

the range of spatial variability of a is still not clear

and may depend on several field factors. However, in

many soils a exhibits spatial variability which is much

smaller than that of saturated hydraulic conductivity

Ks: Since our partial mean-field approximation

remains robust for moderate values of CVa; we

expect our theory to provide accurate estimates of the

pressure head statistics for many practical

applications.

Figs. 5 – 7 demonstrate the influence of a

correlation structure of the aðxÞ field on the

accuracy of our predictions. In these simulations,

we used the same parameters as in Fig. 5 except

for the correlation length la: Fig. 6 is obtained by

setting la ¼ 40 and 4 in the horizontal and vertical

directions, respectively; while Fig. 7 is for infinite

la in both directions, i.e. for the random constant

a: This comparison demonstrates that the robust-

ness of our partial mean-field approximation

increases with the correlation length of a:

Fig. 2. Mean hydraulic head (a) and head variance (b) for CVa ¼ 0:0: Dashed curves are results from Monte Carlo simulations, and solid curves

are the results of the moment equations with partial mean-field approximation.
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Fig. 3. Mean hydraulic head (a) and head variance (b) for CVa ¼ 0:1: Dashed curves are results from Monte Carlo simulations, and solid curves

are the results of the moment equations with partial mean-field approximation.

Fig. 4. Mean hydraulic head (a) and head variance (b) for CVa ¼ 0:2: Dashed curves are results from Monte Carlo simulations, and solid curves

are the results of the moment equations with partial mean-field approximation.

D.M. Tartakovsky et al. / Journal of Hydrology 275 (2003) 182–193 189



Fig. 5. Mean hydraulic head (a) and head variance (b) for CVa ¼ 0:5: Dashed curves are results from Monte Carlo simulations, and solid curves

are the results of the moment equations with partial mean-field approximation.

Fig. 6. Mean hydraulic head (a) and head variance (b) for CVa ¼ 0:5 and la ¼ 40 and 4 in the horizontal and vertical directions, respectively.

Dashed curves are results from Monte Carlo simulations, and solid curves are the results of the moment equations with partial mean-field

approximation.
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5. Conclusions

Prediction of unsaturated flow in heterogeneous

soils with uncertain hydraulic properties is compli-

cated by the nonlinearity of the governing Richards

equation. The Kirchhoff transform provides a

unique advantage of preserving this constitutive

nonlinearity while deriving the moment equations

for pressure head, c: The earlier applications of

this approach (Tartakovsky et al., 1999; Lu et al.,

2000) assumed the parameter a in the Gardner

model of relative hydraulic conductivity, Kr ¼

expðacÞ; to be a random variable. This had an

effect of limiting the range of applicability of the

otherwise general theory. Our main goal was to

generalize the approach presented in Tartakovsky

et al. (1999) by allowing a to vary randomly in

space. We accomplished this through the partial

mean-field approximation that replaces the random

field aðxÞ with its constant ensemble mean, kal; in

the stochastic Richards equation.

We tested the accuracy and robustness of this

approximation by comparing the numerical sol-

utions of our moment equations with those

obtained from the Monte Carlo simulations of a

two-dimensional infiltration problem. One expects

the quality of our prediction to depend strongly on a

complex interplay between the two

parameters characterizing the random field aðxÞ;

its coefficient of variation, CVa; and its correlation

structure.

For moderately correlated a (when its corre-

lation length coincides with that of saturated

hydraulic conductivity), our results show that the

spatial pattern of the pressure head predictions and

the associated uncertainties is well reproduced by

the partial mean-field approximation for the coeffi-

cient of variation CVa as large as 0.2. The

accuracy of our solution decreases with CVa: As

expected, the accuracy of the pressure head

prediction is much higher than the accuracy of

the predictive uncertainty.

The accuracy of our solutions increases with the

correlation length of the random Gardner parameter

aðxÞ: A choice of the functional form of the

corresponding correlation function might be import-

ant, but we expect it to have a second-order effect on

the quality of our predictions.

Fig. 7. Mean hydraulic head (a) and head variance (b) for CVa ¼ 0:5 and la ¼ 1: Dashed curves are results from Monte Carlo simulations, and

solid curves are the results of the moment equations with partial mean-field approximation.
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