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S U M M A R Y
Large-eddy simulations provide a strategy for modelling large-scale flow when the smallest
scales are not resolved. The approach relies on spatial filtering to eliminate scales smaller
than the grid spacing, but requires models for the influence of the subgrid scales. We investi-
gate four subgrid-scale models in numerical calculations of magnetoconvection in the Earth’s
core. Three of the models are based on eddy diffusivities, while the fourth is the similarity
model of Bardina et al. (1980). The predictions of the subgrid-scale models are tested using
a direct numerical simulation (DNS), which resolves the smallest dissipative scales. In order
to achieve the required resolution we restrict the calculations to a small volume of the core
with periodic boundary conditions. The grid is a cube with 128 × 64 × 32 nodes, oriented
so that the z-coordinate is aligned with the rotation axis and the y-coordinate is parallel to an
imposed magnetic field. The direction of gravity may be oriented arbitrarily in the x–z plane
and several representative cases are considered. Output from the DNS is filtered on to a coarser
grid prior to evaluating the subgrid-scale models. The results are compared with estimates
of the subgrid-scale heat and momentum fluxes calculated from the fully resolved solution.
Substantial anisotropy in the subgrid-scale fluxes is caused by the influences of rotation and the
imposed magnetic field. Models based on scalar eddy diffusivities are incapable of reproducing
this anisotropy, whereas the similarity model gives a good match to the amplitude and spatial
distribution of the subgrid-scale fluxes.
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1 I N T RO D U C T I O N

Convection in the Earth’s core occurs over a broad range of spatial
scales. The largest spatial scales for fluid motion (L ≈ 106 m) are
imposed by the geometry of the core, whereas the smallest dissi-
pative scales (l < 10−1 m) are set by the low viscosity and chem-
ical diffusivity of liquid iron alloys (Dobson 2000; Vocadlo et al.
2000). This vast range of spatial scales prevents direct simulation of
convection-driven geodynamos (e.g. Roberts & Glatzmaier 2000).
Instead, numerical modellers deal with the problem of limited spa-
tial resolution by parametrizing processes that involve the subgrid
scales (SGS). Strategies for dealing with SGS processes are often
based on eddy diffusivities. Spatially constant eddy diffusivities and
hyperdiffusivities are routinely used in numerical geodynamo mod-
els for computational expediency, although a more elaborate scheme
have been devised to determined eddy diffusivities from the large-
scale flow (see Lesieur & Métais 1996; Meneveau & Katz 2000,
for recent reviews). Perhaps the best known example is the eddy-
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diffusivity model of Smagorinsky (1963), which is still widely used
in many applications (e.g. Cantin et al. 2000).

Debate over the relative merits of constant diffusivities versus hy-
perdiffusivities (Zhang & Jones 1997; Grote et al. 2000) has demon-
strated that differences in the SGS models can substantially influence
the large-scale fields. These difficulties are compounded by the pos-
sibility that small-scale convection in the core is highly anisotropic
due to the influence of rotation and a strong large-scale magnetic
field (Braginsky & Meytlis 1990; St Pierre 1996; Shimizu & Loper
1997; Matsushima et al. 1999). Scalar diffusivities are inadequate
for describing SGS processes in this case (Canuto & Cheng 1997).
Few SGS models have been devised to deal with anisotropy, although
the tensor diffusivity model of Matsushima (2001) is one exception.
An alternative approach is the similarity model of Bardina et al.
(1980), which relies on explicit filtering of the large-scale fields to
estimate the SGS fluxes of heat and momentum. This method avoids
the use of eddy diffusivities and yields anisotropic SGS fluxes when
the large-scale fluxes are anisotropic.

The suitability of the similarity method for modelling convection
in the Earth’s core is tested using idealized calculations of magneto-
convection in a rapidly rotating fluid. Direct numerical simulations
(DNS) reveal substantial anisotropy in the structure of small-scale
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convection, as reported previously in the numerical studies of St
Pierre (1996) and Matsushima et al. (1999). Output from the DNS
is filtered on to a coarser grid for use in the similarity model. Es-
timates of the SGS heat and momentum fluxes are compared with
explicit calculations using the fully resolved (e.g. unfiltered) solu-
tion. Comparisons are also made with the Smagorinsky model and
with models based on spatially constant eddy diffusivities and hy-
perdiffusivities. None of the eddy-diffusivity models yield satisfac-
torily estimates for the SGS fluxes. The spatial correlation between
the predicted and calculated SGS fluxes is typical poor and occa-
sionally negative. In contrast, the similarity method accounts for the
strong anisotropy observed in the DNS and reproduces the spatial
distribution of the SGS fluxes.

2 L A RG E - E D DY S I M U L AT I O N S

Large-eddy simulations (LES) use spatial filtering to eliminate
scales that are smaller than the grid spacing �. Each field in the cal-
culation (velocity V, for example) is convolved with a filter function
G(x) to define the large-scale field (e.g. Leonard 1974)

V̄(x, t) =
∫

G(x − x′)V(x′, t) dx′. (1)

Analogous expressions define the large-scale temperature T and
magnetic field B in the magnetoconvection calculations. The widely
used Gaussian filter is expressed in one spatial dimension by

Gi (xi ) =
√

6

π

1

�
exp

(−6x2
i /�

2
)
. (2)

The 3-D filter in eq. (1) is obtained by multiplying 1-D filters (e.g.
G(x) = G1(x1)G2(x2)G3(x3)). Another useful filter is

Gi (xi ) = 2 sin(πxi )/�

πxi
, (3)

which corresponds to a truncated Fourier expansion with wavenum-
bers |ki| < π/�.

Applying the filter to the governing equations yields a set of
equations for the large-scale fields. To illustrate we filter the energy
equation for an incompressible fluid

∂T

∂t
+ V · ∇T = κ∇2T (4)

to obtain

∂T

∂t
+ V · ∇T = κ∇2T − ∇ · I, (5)

where

I = VT − V T (6)

is the SGS heat flux. (I represents a correction for the omitted inter-
actions between V and T when the large-scale heat flux is calculated
from VT instead of V T .)

The SGS momentum flux emerges from the momentum equation
in a similar way. The inertial non-linearity at large scales can be
decomposed into two parts

V · ∇V = V · ∇V + ∇ · T, (7)

where

Ti j = Vi Vj − V i V j (8)

is the SGS momentum flux (or stress tensor). The same procedure
is applied to all other non-linear terms in the equations governing

magnetoconvection (see Section 4). These terms include the Lorentz
force B · ∇ B/µ in the momentum equation and ∇ × (V × B) in the
magnetic induction equation. Applying the filter to the large-scale
Lorentz force gives

1

µ
B · ∇B = 1

µ
(B · ∇B + ∇ · M), (9)

where

Mi j = Bi Bj − Bi B j (10)

is the SGS Maxwell stress. Similarly, the large-scale induction term
is

∇ × (V × B) = ∇ × (V × B) + ∇ · α, (11)

where

αi j = (Bi Vj + Vi Bj ) − (Bi V j + V i B j ) (12)

is the SGS induction term. This term accounts for both generation
and dissipation of the large-scale magnetic field by small-scale mo-
tion (Krause & Radler 1979; Moffatt 1970).

In order to implement the LES approach, we require models for
each of the SGS terms in this section. Several models for the heat
and momentum flux are described in Section 3. Discussion of the
SGS Maxwell stress and induction terms is deferred until Section 6.

3 S G S M O D E L S

We turn now to the question of evaluating the SGS terms when only
the large-scale fields are known. SGS processes are parametrized
most commonly by means of eddy diffusivities. In some cases the
eddy diffusivities are constant or depend on the wavenumber of
the flow. In other cases the eddy diffusivities vary with the strain
rate of the large-scale flow. Alternative approaches rely on explicit
filtering of the large-scale fields. The similarity model of Bardina
et al. (1980) applies a coarse filter to the large-scale (e.g. resolved)
fields with the aim of approximating the SGS terms in Section 2. We
summarize four commonly used SGS models in this section. Each
of these models is subsequently tested using the output of a fully
resolved numerical simulation.

3.1 Eddy-viscosity model

Eddy-viscosity (or diffusivity) models approximate the SGS pro-
cesses by analogy with the effects of molecular viscosity (or dif-
fusivity). Small-scale motions with velocity v and a characteristic
length-scale l are parametrized in terms of an effective viscosity ν t

≈ vl. A shortcoming of this analogy is the lack of separation be-
tween the large and small scales in turbulent flows. Normally, the
distinction between the large and small scales is imposed by the
choice of grid spacing in the numerical calculations. Near the scale
of truncation the large (resolved) and small (unresolved) scales are
comparable, so the analogy breaks down. Interactions between the
large and small scales are liable to depend on their relative size, so
we would not expect the effective viscosity to be constant across the
resolved scales. In fact, numerical calculations in this study show
that the eddy-viscosity model overestimates the influence of the SGS
heat flux on the largest scales (see Section 5.1).

The scalar form of the eddy-viscosity model defines the deviatoric
part of the stress tensor as

Ti j − 1

3
Tkkδi j = −2νt Si jδi j , (13)
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where

Si j = 1

2

(
∂V i

∂x j
+ ∂V j

∂xi

)
(14)

is the strain-rate tensor of the large-scale flow, ν t is the eddy viscos-
ity and δi j is the Kronecker delta. (The sign convection in (13) is
customary in LES literature and follows from the definition of T in
eq. (8).) Similarly, the SGS heat flux is defined in the eddy-diffusion
approximation by

Ii = −κt
∂T

∂xi
, (15)

where κ t is the eddy diffusivity. Because the eddy viscosity and dif-
fusivity are usually much larger than the molecular values, diffusion
of heat and momentum are controlled by turbulent transport. When
ν t and κ t are spatially constant, the resulting equations for the large-
scale fields are indistinguishable from those in which the molecular
diffusivities are increased to the turbulent values.

3.2 Hyperviscosity model

A variant of the eddy-viscosity model replaces derivatives in the
dissipative terms with higher-order operators. The approach is called
hyperviscosity because it enhances the damping of motion as the
length-scale decreases. When the eddy viscosity in (13) is spatially
constant, the effective body force on the large-scale flow can be
written as

−∇ · T = νt∇2V. (16)

Replacing ∇2 with −∇4, for example, is equivalent to replacing
ν t with an eddy viscosity that depends on the wavenumber of the
motion. For a spectral method based on 3-D Fourier transforms,
the effects of hyperdiffusion are included in the calculations by
replacing ν t with ν t k2 in the Fourier-transformed equations. (k is
the amplitude of the wavenumber vector.) A slightly modified form
is adopted here to permit non-zero stress T and heat flux I in the
presence of constant velocity and temperature gradients. The model
for hyperviscosity and hyperdiffusion is

νt(k) = ν0

[
1 + Aν(k/kc)

2
]

(17)

κt(k) = κ0

[
1 + Aκ (k/kc)

2
]
, (18)

where kc = π/� is the cut-off wavenumber (or truncation) in the
Fourier expansion, while ν0, κ0, Aν and Aκ are constants.

Representations similar to those in eqs (17) and (18) are used in
some geodynamo models (e.g. Glatzmaier & Roberts 1995, 1996;
Kuang & Bloxham 1997, 1999). An important difference is that the
wavenumber in the geodynamo models refers only to the angular
part of the operator ∇2 in spherical coordinates. This means that
diffusion is handled differently in the horizontal and radial directions
(Busse 2000; Grote et al. 2000), and this difference may give rise to
anisotropy which is unrelated to the effects of rotation and a large-
scale magnetic field. While there is some basis for hyperdiffusion in
numerical geodynamo models (Buffett & Bloxham 2002), there is
presently no reason to distinguish between the radial and horizontal
directions.

3.3 Smagorinsky model

The model of Smagorinsky (1963) was originally devised for calcu-
lating large-scale atmospheric flow, although it is more widely used

in engineering applications. The form of the eddy viscosity uses
� as the characteristic length-scale and defines the characteristic
velocity in terms of an invariant of the strain-rate tensor Si j for the
large-scale flow. The model gives

νt = (CS�)2|S|, (19)

where |S| = (2Si j Si j )1/2 and CS is a constant. Lilly (1967) de-
termined CS by matching the kinetic energy dissipation of the
Smagorinsky model with that predicted by a Kolmogorov spectrum
in the inertial range. However, this estimate for CS has little rele-
vance for buoyancy-driven flow, so CS is treated as an adjustable
constant. The eddy diffusivity in the Smagorinsky model is

κt = Pr−1(CS�)2|S|, (20)

where Pr = ν t/κ t is the turbulent Prandtl number. Estimates for Pr
are obtained from comparisons with the DNS.

3.4 Similarity model

Numerical simulations (Clarke et al. 1979) and experiments (Liu
et al. 1994) show that the deviatoric part of the SGS stress tensor T ij

is not well correlated with the large-scale strain rate Si j of a turbulent
flow. These results highlight a limitation of eddy diffusivities and
motivate the search for alternative strategies. Bardina et al. (1980)
devised a scheme known as the similarity method, which relies on
explicit filtering of the resolved fields. Their approach was later
simplified and given its currently standard form by Germano (1986).

The similarity model is based on two assumptions: that the scales
immediately below � have the greatest influence on the resolved
flow, and that flow at scales below � is similar to that at scales im-
mediately above �. In effect, the similarity method uses the structure
of the resolved fields to infer the structure of the subgrid fields.

The SGS heat flux is approximated in the similarity model by
(Germano 1986)

I = CI (Ṽ T − Ṽ T̃ ), (21)

where CI is a constant and the tilde represents a second spatial filter
with a width greater than �. To interpret eq. (21) it is instructive to
consider how this estimate for I changes when the LES fields V̄ and
T̄ are replaced with the fully resolved fields V and T . The resulting
estimate for I (with CI = 1) is identical to the definition of the SGS
heat flux on a coarser grid. The grid spacing is defined by the width
of the second filter (say 2�). We cannot evaluate this estimate for
I in practice because it includes contributions from scales below
�. However, when these contributions are small compared with the
contributions from scales between � and 2�, the approximation
in eq. (21) provides a good estimate for the SGS heat flux on the
coarser grid. The constant CI is used to extrapolate I to a finer grid
spacing (e.g. �) or to compensate for the neglect of flow at scales
below �. Similar reasoning for the SGS stress tensor yields

Ti j = CT (Ṽi V j − Ṽi Ṽ j ), (22)

where CT is a second constant.
We test these approximations and evaluate the constants using a

fully resolved DNS. Output from the DNS is filtered on to a coarser
grid by applying either a Gaussian or spectral truncation filter to V, T
and B. This defines the resolved fields V̄, T̄ and B̄ on the coarser grid.
A second filter is applied to these fields when evaluating eqs (21) and
(22). The results are compared with numerical estimates of eqs (6)
and (8), which are evaluated using the fully resolved fields. Similar
comparisons are made using the other SGS models described in this
section.
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Figure 1. Schematic illustration of the computation volume (a) inside the
liquid core and (b) in relation to the imposed magnetic field B0 and gravity
g. The z-axis of the coordinate frame is aligned with the rotation vector �.

4 D I R E C T N U M E R I C A L S I M U L AT I O N

In order to resolve the small dissipative scales in the DNS, we restrict
our calculations to a small cube with periodic boundary conditions.
The cube can be positioned anywhere in the interior of the core,
although the grid is oriented with the z-coordinate aligned in the
direction of the rotation axis and the y-coordinate aligned with an
imposed magnetic field (Fig. 1). The geometry of the model is the
same as that used by Matsushima et al. (1999). Because the imposed
magnetic field is intended to represent the azimuthal field in the core,
the gravity vector g is confined to the x–z plane; the orientation of
g depends on the colatitude θ of the volume in the core. In one
calculation we assume that g is parallel to the rotation vector �,
corresponding to a volume in the polar regions of the core. A second
calculation with θ = π/4 represents a volume at mid-latitudes.

Convection is modelled in a rapidly rotating Boussinesq fluid.
The governing equations are written in dimensionless form using

the size of the cube as the length-scale l and the magnetic diffusion
time l2/η as the timescale. The imposed magnetic field B0 is used
to scale the magnetic perturbation B and the initial temperature
gradient ∇ T 0 is parallel to the direction of gravity. The magnitude
of the temperature gradient is |∇T 0| = β, and we use βl to scale the
temperature perturbation T . The evolution equations for T , B and V
are written in dimensionless form as (Braginsky & Roberts 1995)(
∂t − q∇2

)
T = −V · ∇T − V · 1g (23)

(
∂t − ∇2

)
B = 1y · ∇V + ∇ × (V × B) (24)

Ro
(
∂t − Pm∇2

)
V = −∇ P − 1z × V − RaT 1g

−Ro(V · ∇V) + �(1y + B) · ∇B, (25)

where 1g is the unit vector in the direction of gravity and (1x , 1y ,
1z) are the basis vectors of the coordinate system. (Coordinates x, y
and z are used interchangably with x1, x2 and x3.) In addition, we
require

∇ · B = ∇ · V = 0. (26)

The dimensionless parameters include the magnetic Rossby number

Ro = η

2�l2
, (27)

the Rayleigh number

Ra = αgβl2

2�η
(28)

and the Elsasser number

� = B2
0 σ

2�ρ
. (29)

The viscosity ν and thermal diffusivity κ appear in the dimension-
less equations through the magnetic Prandtl number Pm = ν/η and
the Roberts number q = κ/η, respectively. We adopt molecular val-
ues for the viscosity and thermal diffusivity in the core so that we
are not forced to make ad hoc assumptions concerning turbulent
diffusivities in the DNS. The length-scale l and temperature gradi-
ent β are set to give a Rayleigh number which is twice the critical
value (see Table 1). When we choose l = 103 m, the corresponding
value of β yields an unstable density stratification, comparable to
that inferred for the Earth’s core by Braginsky & Meytlis (1990).
Such small length-scales are necessary to obtained fully resolved
calculations with molecular diffusivities. However, this does not re-
strict the validity of the SGS models to small scales. We could easily
incorporate any of these SGS models into large-scale magnetocon-
vection calculations, but we would have no means of testing the

Table 1. Physical parameters for numerical calculation.

Parameter Symbol Value

Size of cube l 1000 m
Rotation rate � 0.73 × 10−4 s−1

Imposed field B0 2 mT
Conductivity σ 4 × 105 S m−1

Mag. diffusivity η 2 m2 s−1

Gravity g 8 m s−2

Thermal expansion α 10−5 K−1

Thermal gradient β 8.0 × 10−9 K m−1 (a)
6.6 × 10−9 K m−1 (b)

The thermal gradient is adjusted for cases (a) θ = 0 and (b) θ =
π/4 to ensure that the Rayleigh number is twice the critical value.
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SGS models. Instead, we prefer to test the SGS models under real-
istic conditions in the core, even though this makes the computation
volume quite small.

The governing equations are solved by expanding V, B and T in
Fourier series. The expansion for V is

V(x, t) =
∑

k

Vk(t)eik·x, (30)

where the wavenumber vector, k = (k1, k2, k3), is truncated at ki

= π/� and Vk is the corresponding Fourier component. Similar
representations for B and T yield Fourier components Bk and T k ,
respectively. The Fourier-transformed equations become(
∂t + qk2

)
Tk = f T

k (31)

(
∂t + k2

)
Bk = ik2Vk + fB

k (32)

Ro
(
∂t + Pmk2

)
Vk = −ikPk + ik2�Bk + fV

k , (33)

where

f T
k = −Vk · 1g − (V · ∇T )k (34)

fB
k = ∇ × (V × B)k (35)

fV
k = �(B · ∇B)k − Ro(V · ∇V)k − RaTk1g − 1z × Vk . (36)

Pressure is eliminated from eq. (33) by contracting with i k and
using the condition k · Vk = k · Bk = 0 to obtain

Pk = − ik · fV
k

k2
. (37)

The gradient in pressure is combined with all other terms on the
right-hand side of eq. (33) to define a net forcing term, which we de-
note by FV

k . The forcing terms on the right-hand sides of eqs (31) and
(32) are similarly denoted by F T

k and FB
k , respectively. Allowances

for remote boundaries are made by modifying FV
k . When the fluid

is infinite, the geostrophic condition 1z · ∇V = 0 permits vertical
motion that is independent of z. However, such flow is not permitted
in a finite fluid because the velocity normal to the boundary must
vanish. This condition is enforced in the numerical calculations by
requiring 1z · FV

k = 0 when k3 = 0.
Time stepping is done using integrating factors for the diffu-

sion terms (e.g. Rogallo & Moin 1984), whereas all other terms
are treated explicitly. Solutions for T k(t) and Vk(t) are advanced by
directly integrating eqs (31) and (33) with imposed forcing terms
F T

k and FV
k . It is reasonable to assume that the integrating factors

exp(qk2t) and exp(Pm k2t) are constant over one time step because
q and Pm are small (see Table 2). When FT

k and FV
k are also assumed

to be constant over one time step, we obtain

Tk(t + �t) = Tk(t)e−qk2�t + �t
[
F T

k (t)
]

e−qk2�t (38)

Vk(t + �t) = Vk(t)e−Pmk2�t + �t

Ro

[
FV

k (t)
]
e−Pmk2�t . (39)

Little advantage is gained by using higher-order methods because
sufficient accuracy is achieved with the short time step imposed by
treating the Coriolis force explicitly. On the other hand, substantial
improvements are possible if the integrating factor is generalized to

include the effects of viscous and Coriolis forces in the integration
for Vk(t). (Tests show that this method of solution is about 20 times
faster in this particular application.) The induction equation is han-
dled differently because the magnetic diffusivity is not small. When
the integrating factor exp (k2t) is included in the integral over one
time step, the solution for Bk(t) becomes

Bk(t + �t) = Bk(t)e−k2�t + 1

k2

(
1 − e−k2�t

)
FB

k (t). (40)

The non-linear terms in FT
k , FV

k and FB
k are evaluated using a

pseudospectral method (Orszag 1971). We first evaluate the fields
V, B and T on a finer grid (196 × 96 × 48) by padding the Fourier
transforms Vk , Bk and T k with zeros and transforming the expanded
representation to the spatial domain. The non-linear terms are then
calculated in the spatial domain and the result is transformed to the
spectral domain. De-aliasing of the non-linear terms is done using
the 3/2 rule (e.g. Canuto et al. 1988), which reduces the effective
grid to 128 × 64 × 32.

The numerical accuracy of the method is assessed by evaluating
the energy balance every 100 time steps. The buoyancy flux, RaT
V · 1g , is integrated over the volume of the grid and compared with
the sum of the energy sinks, which include the ohmic and viscous
losses, and the rates of change of kinetic and magnetic energy. (The
rates of change of magnetic and kinetic energy are evaluated using
three successive time steps.) The error in the energy balance relative
to the buoyancy flux is typically 10−5.

Fig. 2 shows the temporal evolution of the net buoyancy flux and
ohmic dissipation from a representative calculation with θ = 0. The
energy released by the motion of buoyant fluid is almost completely
balanced by ohmic losses. Viscous losses are much smaller, and
mainly associated with geostrophic flow in the direction of the im-
posed magnetic field. Short-wavelength variations in the geostrophic
flow produce large rates of shear. However, the viscosity of the fluid
is low enough to prevent the viscous losses from contributing sig-
nificantly to the energy balance.

Small fluctuations in the buoyancy flux are evident in the ex-
panded view of Fig. 2. These fluctuations are due to inertial waves
that advect temperature anomalies through the gravity field (Zhang
1994). There is no evidence of oscillations in the ohmic dissipation,
which means that the waves do not distort the imposed magnetic
field. This restriction on the form of the inertial waves is probably
the result of magnetic damping. Waves that distort the imposed mag-
netic field are so heavily damped by ohmic losses that they are not
excited to observable levels. Those waves that are evident in Fig. 2
propagate in directions that do not cause significant distortion of the
imposed field. (These waves are characterized by wavenumbers with
k2 = 0.) Small fluctuations in the buoyancy flux due to these waves
are superimposed on a much larger variation due to quasi-steady mo-
tion of thermal anomalies. Whether the inertial waves influence the
quasi-steady motion is not readily apparent from the DNS because
it is not possible to isolate one effect from the other in the DNS.
However, it may be possible to gain insights into this question by re-
peating the calculations with an implicit time-stepping method that
filters inertial waves. Small differences in the quasi-steady motion
would imply that inertial oscillations have only a small influence on
convection.

The influences of rotation and an imposed magnetic field cause
substantial anisotropy in the structure of convection. Fig. 3 shows
isosurfaces of the temperature perturbation at T = 0.4 (red) and
T = −0.4 (blue) from a sequence of perspectives. Each image is
identified by the angle φ between the line of sight and the y-axis. The
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Figure 2. Time variations in the net buoyancy flux and ohmic dissipation from a representative calculation with θ = 0. The inset highlights the oscillations in
the buoyancy flux due to inertial waves. No oscillations are evident in the ohmic dissipation, which means that these waves do not distort the imposed magnetic
field. Suppression of the waves that distort the imposed magnetic field is due to the heavy damping by ohmic dissipation, which keeps the amplitude of these
waves small.

image in Fig. 3(a) with φ = 0 shows a view along the y-axis. This
perspective reveals narrow regions of warm and cold fluid, which
extend in the direction of the rotation axis. As the line of sight shifts
it becomes clear that these temperature anomalies have a plate-
like structure with an orientation in the y–z plane. This structure
is consistent with the predictions of Braginsky & Meytlis (1990),
and accounts for the finer numerical resolution required in the
x-direction.

Power spectra for T , B and V are shown in Fig. 4 as a function
of k1. These 1-D spectra are obtained by summing the power in
wavenumbers k2 and k3 at a given value of k1. Calculations with
θ = 0 and π /4 yield spectra with broadly similar amplitude and
shape. Differences in the position of the peak of Vk reflect differ-
ences in the wavenumber of the most unstable mode. All wavenum-
bers above k1 ≈ 16 are stable to convection, so temperature anoma-
lies at larger wavenumbers are due to non-linear transfers from large
scales to small. The low viscosity and thermal diffusivity of the fluid
permit temperature anomalies to cascade well beyond the spatial
limit of convective instabilities.

We use the long-wavelength part of the DNS in the next section to
evaluate the SGS models. Each field is filtered on to a coarser grid by
applying either a Gaussian or spectral truncation filter. The filtered
fields V̄, B̄ and T̄ serve as inputs for evaluating the SGS models.
The predictions are compared with estimates of the SGS heat flux
and stress calculated using eqs (6) and (8), respectively. Numerical
comparisons show that the choice of filter (either Gaussian or spec-
tral truncation) has little influence on the predictions of the SGS
models. However, the choice of filter does influence the SGS quan-
tities calculated using eqs (6) and (8). When the spectral truncation
filter is used in eqs (6) and (8), the SGS heat flux and stress exhibit
spatial ringing, which is not evident in the estimates obtained us-
ing the Gaussian filter. Fortunately, these differences become small
when we confine our comparison to the short-wavelength part of
the SGS estimates. More specifically, spatial correlations between

the different estimates improve substantially when these estimates
are high-pass filtered before comparison. This is encouraging be-
cause the SGS heat flux and stress have the greatest influence on the
smallest resolved scales, and this is where the choice of filter has
the smallest influence. For the purpose of testing the SGS models in
the next section, we apply a Gaussian filter with � = π/32 to eval-
uate the SGS heat flux and stress in eqs (6) and (8). Representative
examples are shown in Fig. 5, where the vertical heat flux I 3 and
the shear stress T 12 are plotted on a horizontal surface through the
middle of the volume. Root-mean-square (rms) amplitudes for I i

and the shear components of T ij are listed in Table 3. These results
are compared with the predictions of the SGS models in the next
section.

5 C O M PA R I S O N O F S G S M O D E L S

The SGS models in Section 3 are evaluated using the fields V̄,
B̄ and T̄ , which are defined by applying a Gaussian filter with
� = π/32 to the fully resolved solution. Tests are also performed
using fields that are filtered with � = π/16, although the results are
qualitatively similar to those obtained with �=π/32. In this section
we make detailed comparisons of the SGS models computed using
a truncation at � = π/32 and tabulate the results for the coarser
grid.

5.1 Predictions of the eddy-viscosity model

The SGS stress is parametrized in the eddy-viscosity model by an
effective viscosity ν t, which depends on a characteristic length and
velocity for the SGS flow. The grid spacing � = π/32 is the natural
choice for the characteristic length and the kinetic energy of the SGS
flow is used to define a velocity. With these definitions the turbulent
viscosity and diffusivity are ν t = κ t = 7 × 10−5.
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A

C D

B

Figure 3. Isosurfaces of temperature perturbation at T = 0.4 (red) and T = −0.4 (blue). A sequence of perspectives are identified by the angle φ between the
line of sight and the y-axis. We show (a) φ = 0, (b) φ = π/6, (c) φ = π/3 and (d) φ = π/2. The view from φ = 0 is along the y-axis. As φ increases, the point
of view shifts towards the x-axis. Plate-like temperature anomalies are oriented in the y–z plane.

The shear stress T 12 predicted with the eddy-viscosity model is
shown in Fig. 6(a). By definition, the spatial distribution of the pre-
dicted shear stress reflects the strain rate of the large-scale flow.
The narrow regions of T 12 in this prediction imply narrow bands
of shear in the direction of the y-axis, probably associated with
the geostrophic component of flow. Similar patterns of shear stress
are evident in the SGS estimate (Fig. 5a), although the amplitude
of the two results differ by a factor of 4. In addition, the location of
positive (black) and negative (white) regions of T 12 are misaligned.
Consequently, the spatial correlation γ between the model predic-
tion and the SGS shear stress is poor (γ = −0.23).

Fig. 7(a) shows the vertical heat flux I 3 predicted with the eddy-
diffusion model. Broad regions of positive (upward) heat flux are
predicted on a weaker background flux. In contrast, the SGS es-
timate (Fig. 5b) has more small-scale structure, and even regions
where the heat flux is negative. The spatial correlation between the
model prediction and the SGS heat flux is surprisingly good (γ =
0.40), especially considering the differences in the spatial variabil-
ity of I 3. Much of this correlation is due to the long-wavelength
part of I 3. When the long-wavelength part I 3 is isolated by fil-

tering wavenumbers ki > 16 from both the eddy-diffusion model
and the SGS estimate, the correlation increases to γ = 0.52. Con-
versely, when the short-wavelength part of I 3 is isolated by filtering
wavenumbers ki < 16, the correlation decreases to γ = −0.11. Poor
correlation at short wavelengths is a problem because the SGS es-
timates have their greatest influence on this part of the solution.
In contrast, the long-wavelength part of the solution is governed
mainly by the resolved scales, so the SGS model has much less
direct influence at larger scales.

A second issue is the relative amplitude of SGS predictions at
large and small scales. The net vertical heat flux in the eddy-diffusion
model is nearly equal to the vertical heat flux in the SGS estimate,
despite the differences in spatial variability. Most of the heat flux in
the eddy diffusion model occurs at long wavelengths, whereas the
explicit calculation of I 3 gives a larger fraction of the heat flux at
shorter wavelengths. This indicates that the eddy-diffusion model
overestimates the SGS heat flux at long wavelengths and underes-
timates the heat flux at shorter wavelengths. This is precisely the
shortcoming that hyperdiffusion is intended to correct (Glatzmaier
2002).
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Figure 4. 1-D power spectra for T , V and B from representative calculations
with (a) θ = 0 and (b) θ = π/4. The vertical (dashed) lines indicate the
position of a spectral truncation at � = π/32 and � = π/16.

5.2 Predictions of the hyperviscosity model

Eq. (17) for ν t in the hyperviscosity model depends on the ampli-
tude Aν of the scale dependence and the effective viscosity ν0 at
long wavelength. Predictions for T 12 are made using Aν = 10 and
ν0 = 1.1 × 10−5, which ensures that the rms variation in T 12 is
equal to that obtained using the eddy-viscosity model in Section
5.1. The predicted stress (Fig. 6b) is remarkably similar to the stress
predicted with the eddy-viscosity model (Fig. 6a). This similarity
can be explained by noting that the strain rate S12 is associated
with a narrow range of spatial scales, so that the consequences of
a scale-dependent viscosity are not discernible. In fact, the spatial
correlation between the eddy-viscosity and the hyperviscosity mod-
els is γ = 0.9. It follows that both models have equally poor spatial
correlation with the SGS estimate of stress (Table 4).

The influence of a scale-dependent diffusivity is much more ev-
ident in the prediction of the vertical heat flux (Fig. 7b). Use of
hyperdiffusion emphasizes short-wavelength features in the heat
flux, and even produces regions where the heat flux is negative.
The Fourier components of the predicted heat flux have amplitudes
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Figure 5. Estimates of the SGS quantities calculated from the DNS using
(6) and (8). The shear stress T 12 in (a) and the vertical heat flux I 3 in (b)
are plotted on a horizontal surface through the middle of the computation
volume. Comparisons with the predictions of the SGS models are made at
the same time step.

that are much more compatible with those of the SGS heat flux in
Fig. 5(b), although the peaks in the predicted heat flux are mislo-
cated. The spatial correlation between the hyperdiffusion model and
the SGS heat flux is γ = 0.23, which is worse than the correlation
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Table 2. Dimensionless parameters.

Parameter Symbol Value

Magnetic Rossby Ro 0.014
Rayleigh Ra 0.0022 (a)

0.0018 (b)
Elsasser � 1.1
Magnetic Prandtl Pm 6 × 10−5

Roberts q 6 × 10−5

The Rayleigh number for (a) θ = 0 and (b) θ = π/4.

obtained with the eddy-diffusion model. The poorer performance is
due to the increased amplitude of the short-wavelength part of I 3,
which is poorly correlated with the SGS estimate of I 3. While the
hyperdiffusion model appears to reproduce the correct amplitude
of Fourier components in I 3, it fails to predict the phase of these
components correctly.
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Figure 6. Predictions of the SGS models for shear stress T 12. The models include (a) the eddy-viscosity model, (b) the hyperviscosity model, (c) the
Smagorinsky model and (d) the similarity model (see the text for the parameter values used in the model calculations).

Table 3. Amplitude of SGS heat flux and
stress.

Quantity rms amplitude

T 12 1.62 × 10−6

T 13 0.65 × 10−6

T 23 4.67 × 10−6

I 1 3.40 × 10−3

I 2 19.2 × 10−3

I 3 16.9 × 10−3

5.3 Predictions the Smagorinsky model

The constant CS in the Smagorinsky model is adjusted to reproduce
the rms amplitude of the SGS estimate of T 12. The value recovered
by this procedure is CS = 0.12, which is only slightly larger than
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Table 4. Summary of the eddy-diffusion models.

Model Quantity Amplitude Correlation
ratio†

Eddy viscosity T 12 3.88 −0.24
T 13 4.71 −0.07
T 23 0.21 0.21
I 1 6.72 −0.05
I 2 0.38 0.39
I 3 0.64 0.40

Hyperviscosity T 12 3.88 −0.19
T 13 4.82 −0.09
T 23 0.15 0.17
I 1 29.1 −0.09
I 2 1.21 0.29
I 3 0.94 0.23

Smagorinsky T 12 1.00 −0.28
T 13 1.53 −0.14
T 23 0.03 0.28
I 1 9.91 −0.14
I 2 0.54 0.57
I 3 0.82 0.41

† Model prediction divided by the SGS estimate from eq. (6) or eq. (8).

the value CS = 0.1 customarily adopted in other applications (e.g.
Moin & Kim 1982). The resulting prediction for T 12 is shown in
Fig. 6(c). Comparison with the SGS estimate in Fig. 5(a) reveals
some consistent features, including the spatial variability of T 12

and the long-wavelength structure, which places the largest stresses
(positive or negative) in the same general location. However, the sign
of the largest-amplitude stresses in the SGS estimate are negative,
whereas the largest stresses in the Smagorinsky model are positive.
Consequently, the spatial spatial correlation is poor (γ = −0.28).

Better predictions are obtained for the vertical heat flux I 3

(Fig. 7c). The turbulent Prandtl number Pr = 0.14 is chosen by
matching the net heat flux in the prediction to the value calcu-
lated from the SGS estimate (Fig. 5b). The pattern of upwelling
in the Smagorinsky model is similar to the prediction of the eddy-
diffusivity model, although there is much more small-scale struc-
ture in the Smagorinsky model. The spatial correlation between the
Smagorinsky model and the SGS estimate is γ = 0.41, which is only
slightly better than the correlation obtained with the eddy-diffusivity
model.

5.4 Predictions of the similarity model

Two filters must be specified to define the similarity model. The first
is required to define the fields V̄, B̄ and T̄ , and the second is used
to evaluate eqs (21) and (22) for the SGS heat flux and stress. We
use a Gaussian filter with � = π/32 to determine V̄, B̄ and T̄ , and
adopt a Gaussian filter with a width of 4�/3 as the second filter. The
width of the second filter is chosen on the basis of the numerical
resolution required to de-alias the non-linear terms using the 3/2
rule (e.g. Canuto et al. 1988). For an effective grid spacing of �,
the non-linear terms must be evaluated on a grid with spacing 2�/3.
Thus a filter width of 4�/3 is twice as coarse as the grid used to
evaluate the non-linear terms.

The Gaussian filters are applied by Fourier transforming the con-
volution integral in eq. (1). The Fourier components of the filtered
field (say V̄k) are related to the Fourier components of the unfiltered
field by

V̄k = G(k, �)Vk, (41)

where

G(k, �) = e−�2k2/24 (42)

is the Fourier transform of the 3-D Gaussian filter with width �.
The same procedure is used for the second Gaussian filter, which
gives

Ṽk = G(k, 4�/3)V̄k . (43)

Fourier components of the non-linear terms in the similarity model
are evaluated using the pseudospectral method described in Sec-
tion 4.

The definition of the similarity model in eqs (21) and (22) includes
two constants CT and CI , which are used to adjust the amplitude of
the predicted heat flux and stress. We use CT = 0.95 and CI = 0.91
to make the rms amplitudes of T 12 and I 3 equal to the amplitudes
of the SGS estimates. The resulting predictions for T 12 and I 3 are
shown in Figs 6(d) and 7(d), respectively. In both cases the predic-
tions are remarkably similar to the SGS estimates in Fig. 5. The
spatial correlation between the predictions and the SGS estimates
exceeds 90 per cent for both T 12 and I 3 (Table 5), and there is virtu-
ally no difference in these spatial correlations if the SGS estimates
are separated into long- and short-wavelength parts. Comparable
agreement is achieved in the other components of heat flux and
stress, even though the amplitudes vary substantially with direction
(see Table 3). Differences in the amplitudes of T ij and I i reflect the
presence of anisotropy in the SGS estimates, so it is encouraging
that the similarity model reproduces these amplitude differences.
We return to this point in the next section.

Spatial correlations with the SGS estimates continue to be good
when V̄, B̄ and T̄ are defined using a more severe truncation at � =
π/16 (Table 5). This is somewhat surprising because the wavenum-
ber k1 ≈ 16 separates the convectively stable and unstable regimes.
If the structure of flow at k1 < 16 is not to be representative of flow at
k1 > 16, then the extrapolation implicit in the similarity model may
not be valid. Despite these concerns the results are quite good, al-
though the rms amplitudes are smaller than the corresponding SGS
estimates from eqs (6) and (8). This shortcoming can be corrected
by adjusting the constants CT and CI . Of course, this assumes that
the SGS estimates of the heat flux and stress are known. When the
SGS estimates are not known, the constants CT and CI must be
estimated from the resolved flow.

The choice of filters in the similarity method appears to affect
the amplitude of the SGS predictions, but not the spatial correlation
with the SGS estimates. For example, when V̄, B̄ and T̄ are defined
by spectral truncation rather than Gaussian filtering, the predictions
of the similarity model increase in amplitude by about 30 per cent
because these filtered fields have a larger amplitude. However, the
spatial correlations of these two similarity predictions differ by less
than 1 per cent when G(k, 4�/3) is used as the second filter in both
calculations. This implies that the nature of the truncation used to
define V̄, B̄ and T̄ has only a small influence on the spatial distri-
bution of the predicted SGS heat flux and stress. Different choices
for the width of the filter in eq. (42) also affect the amplitudes, but
again the spatial correlations are nearly unchanged. As an example,
we consider another similarity prediction where V̄, B̄ and T̄ are de-
fined by spectral truncation at ki = 32, and a narrower filter with �

instead of 4�/3 is used in eq. (43). The amplitudes of the predicted
SGS heat flux and stress decrease relative to the previous example,
but the spatial correlations are not altered. These examples suggest
that the predictions of the similarity model are robust with respect
to the choice of filter. However, changes in the amplitude of the SGS
predictions indicate that the constants CT and CI must be adjusted
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Figure 7. Predictions of the SGS models for vertical heat flux I 3. The models include (a) the eddy diffusion model, (b) the hyperdiffusivity model, (c) the
Smagorinsky model and (d) the similarity model (see the text for the parameter values used in the model calculations).

for the problem of interest, preferably using information from the
resolved fields.

6 D I S C U S S I O N

The structure of convection in the DNS causes anisotropy in the SGS
heat flux and stress (see Table 3). Evidence for a direction depen-
dence is readily seen in the SGS heat flux, where I 1 is substantially
smaller than I 2 and I 3. These particular differences are attributed to
the plate-like temperature anomalies in Fig. 3, which produce rel-
atively weak flow in the x-direction. None of the SGS models that
rely on scalar eddy diffusivities can account for this anisotropy, so
there is no single choice of model parameters that yields satisfac-
tory results. The parameters of the model can be adjusted to match
one component of the SGS estimates, but the remaining compo-
nents are bound to be inaccurate. These difficulties are evident in

Table 4, where the rms amplitudes of the model predictions are nor-
malized by the amplitudes of the corresponding SGS estimates. For
example, the eddy diffusion model overestimates I 1, but underesti-
mates I 2 and I 3 when κ t = 7 × 10−5. Choosing other values for the
eddy diffusivity simply shifts all of the components of I to higher or
lower values without altering their relative magnitude. Similar prob-
lems occur in the predictions of the hyperviscosity and Smagorinsky
models.

The similarity model is much more successful in reproducing the
anisotropy in the SGS estimates (Table 5). The amplitudes of the
model predictions are in good agreement with the SGS estimates,
particularly when V̄, B̄ and T̄ are truncated at � = π/32. The pre-
dictions of the similarity model underestimate the SGS quantities,
but substantial improvements are possible if the model constants CT

and CI are suitably adjusted. The fact that the relative amplitudes of
the SGS estimates are reliably reproduced by the similarity model
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Truncation Quantity Amplitude Correlation
ratio†

� = π/32 T 12 1.00 0.92
T 13 1.05 0.94
T 23 0.86 0.87
I 1 0.91 0.83
I 2 0.97 0.84
I 3 1.00 0.92

� = π/16 T 12 0.69 0.88
T 13 0.70 0.84
T 23 0.47 0.75
I 1 0.73 0.76
I 2 0.51 0.80
I 3 0.68 0.89

†Model prediction divided by the SGS estimate from eq. (6) or eq. (8).

means that the anisotropy in the SGS heat flux and stress is ac-
curately modelled. More elaborate schemes to fine tune CT and CI

should ensure a good match to the amplitude and spatial distribution
of the SGS estimates.

Expressions for the SGS Lorentz force and magnetic induction
are not evaluated in this study because both quantities are very
small at the small spatial scales considered here. In principle, the
similarity model is easily extended to account for these terms, but
the success of the method depends on the validity of the underly-
ing assumptions. In particular, it is assumed that unresolved flow
at scales immediately below � has the greatest influence on the
resolved scales. This is plausible for the SGS Lorentz force, but it
may not be true for the SGS induction term. Analysis of the numer-
ical geodynamo model of Kuang & Bloxham (1999) indicates that
the largest contributions to the dipole field arise from small-scale
flow with a local magnetic Reynolds number (Rm) of approximately
Rm ≈ 1 (Buffett & Bloxham 2002). If the truncation used in a nu-
merical geodynamo model is too coarse to include the length-scales
corresponding to Rm ≈ 1, then the generation of the dipole field
by motion at the resolved scales may not be representative of the
induction by unresolved motion at Rm ≈ 1. In this case the largest
contribution to the dipole might come from flow at scales well below
�. In order to accurately simulate the geodynamo without resorting
to specialized models for the effects of magnetic induction at Rm ≈
1, it is necessary to resolve the flow down to scales where Rm ≈ 1.
Resolving smaller scales associated with viscous and thermal dissi-
pation should be unnecessary if SGS models such as the similarity
model can be successfully applied to the geodynamo.

Previous use of the similarity model in numerical simulations of
homogeneous turbulence indicates that this model does not dissipate
enough energy at the resolved scales (Meneveau & Katz 2000). In
addition, backscattering of energy from the unresolved scales can
cause instabilities in the numerical simulations. As a result, many
studies combine the similarity model with a Smagorinsky model
to enhance the dissipation of energy at the resolved scales and to
ensure numerical stability (Vreman et al. 1997; Winckelmans et al.
2001). The geodynamo problem is somewhat different from conven-
tional turbulence because most of the kinetic and magnetic energy
generated by buoyancy at a particular scale is dissipated at that
scale (Olson et al. 1999; Buffett & Bloxham 2002). This may make
geodynamo simulations less vulnerable to numerical instabilities
of the sort that arise in LES studies of homogeneous turbulence.
On the other hand, non-linear interactions between the velocity and
magnetic fields in geodynamo simulations may create new difficul-

ties. Implementing the similarity model in geodynamo simulations
should be relatively straightforward, but testing the validity of the
model is a more difficult challenge.

The discussion so far has focused on the SGS heat flux and stress
in the interior of the fluid. The influence of boundaries introduce
complications that must be taken into account before these methods
can be fully exploited in the geodynamo problem. Further compli-
cations arise when the method is applied in spherical geometries,
although these difficulties are mainly technical in nature. For ex-
ample, the integrals required to transform the convolution integral
in eq. (1) to the spectral domain are more difficult to evaluate in
spherical geometries, but the general approach does not change.
Finally, we require methods for evaluating the constants in the sim-
ilarity model. In this study the constants CT and CI are of the order
of unity, so we might expect a reasonable first approximation using
models with CT = CI = 1. More elaborate (and computationally ex-
pensive) schemes to adjust the model parameters may be necessary
if the use of preset constants is insufficient.

7 C O N C L U S I O N S

Four subgrid-scale models are applied to the problem of magneto-
convection in the Earth’s core and the results compared with esti-
mates from a fully resolved DNS. Three of the models are based on
eddy diffusivities and the fourth is the similarity model of Bardina
et al. (1980). The models based on eddy diffusivities are incapable
of reproducing the anisotropy in the SGS estimates of heat flux and
stress. In addition, the predictions are often poorly correlated with
the spatial distribution of the known SGS quantities. In contrast, the
similarity model reproduces the anisotropy and gives a remarkably
good match to the spatial distribution of the SGS estimates. Differ-
ent choices of filters in the similarity model appear to influence the
amplitude of the SGS predictions, but have relatively little influence
on their spatial distribution.

Extensions of this method to account for the SGS Lorentz force
and magnetic induction are straightforward, although the predic-
tions for magnetic induction may be unreliable if the underlying
assumptions of the method are not satisfied. An accurate descrip-
tion of the SGS magnetic induction requires a discretization that
resolves the flow at scales where the local magnetic Reynolds num-
ber is of the order of unity. This resolution may be feasible with
current computational resources. Reliable geodynamo simulations
could then be realized with good SGS models for the heat flux and
stress. The analysis here suggests that the similarity model offers a
viable approach for achieving this goal.
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