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Abstract

Water quality models generally require a relatively large number of parameters to define their functional relationships, and

since prior information on parameter values is limited, these are commonly defined by fitting the model to observed data. In this

paper, the identifiability of water quality parameters and the associated uncertainty in model simulations are investigated. A

modification to the water quality model ‘Quality Simulation Along River Systems’ is presented in which an improved flow

component is used within the existing water quality model framework. The performance of the model is evaluated in an

application to the Bedford Ouse river, UK, using a Monte-Carlo analysis toolbox. The essential framework of the model proved

to be sound, and calibration and validation performance was generally good. However some supposedly important water quality

parameters associated with algal activity were found to be completely insensitive, and hence non-identifiable, within the model

structure, while others (nitrification and sedimentation) had optimum values at or close to zero, indicating that those processes

were not detectable from the data set examined.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The ability to predict accurately dynamic water

quality behaviour in rivers is essential to address

problems characterised by unsteady river flow con-

ditions such as the control of combined sewer

overflows and the prediction of point source pollutant

spills. Here we investigate the dynamic performance

of an extension of a well-established water quality

model, QUASAR (Whitehead et al., 1997), which is

typical of many water quality models in using

continuously stirred tank reactors (CSTRs) as a

basis for both flow and water quality modelling. In

this application, a modified flow component, which

allows for the difference between solute and flood

wave velocity, is used to improve the model capability

to simulate unsteady flows (Sincock and Lees, 2002).

The combination of uncertainty in parameter

values within a water quality model structure, error

associated with the model structure and error in
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the observed data leads to uncertainty in the model

predictions, which should ideally be represented as an

integral part of the model output. There is therefore a

need for appropriate methods to represent output

uncertainty, and for techniques to investigate model

performance in terms of parameter sensitivity and

identifiability (see e.g. Wheater et al., 1993; Wheater

and Beck, 1995; Wagener et al., 2001). If sensitive

parameters are not identifiable there will be a high

level of uncertainty associated with parameter values

and a consequent high level of output uncertainty.

Parameter identifiability generally decreases with

increasing parameter numbers and is therefore a

particular issue for water quality models, which tend

to be complex, due to the need to represent multiple

processes and multiple outputs. In addition, if there is

a high degree of uncertainty associated with the value

of a parameter, it will be difficult to assign physical

significance to the parameter, interpret field data using

the model or transfer parameter values between

applications.

It should be noted that for models of only modest

complexity, different combinations of model par-

ameter values (and even different model structures)

are capable of producing outputs with similar

performance statistics, an effect known as ‘equifin-

ality’ (Beven and Binley, 1992). Hence it has been

proposed (Hornberger and Spear, 1981; Spear and

Hornberger, 1980; Beven, 2000) that if we accept that

there is no single correct or optimal model, then one

may adopt an alternative approach in which the

likelihood that a particular model/parameter set is

consistent with the available data is quantified. The

essence of such an approach is captured in the

Generalised Likelihood Uncertainty Estimation

(GLUE) methodology (Beven and Binley, 1992),

which provides a basis for estimating confidence

limits for model outputs.

Part of the lack of uniqueness lies in the use of a

single criterion for model performance; recently

attention has been focussed on the use of multiple

performance criteria, to extract more information

from a single output time-series, or from multiple

outputs (Gupta et al., 1998; Wagener et al., 2001).

This additional information can be used to improve

parameter identifiability, and to investigate trade-offs

in performance between different criteria, and hence

model inconsistencies and structural weaknesses.

It follows that a procedure for model development

and evaluation is required which investigates par-

ameter sensitivity, identifiability and uncertainty,

seeking an optimal trade-off between performance

and identifiability for a given application. Here we use

the Monte-Carlo Analysis Toolbox (MCAT), devel-

oped at Imperial College (Lees and Wagener, 2000),

to investigate model performance.

2. The QUASAR water quality model

QUASAR is a simple conceptual Cells In Series

model based on the conservation of mass for water and

solute within a completely mixed cell. It is a lumped

representation of a completely mixed river system,

with each cell in the cascade consisting of a single

CSTR. Within QUASAR the water quality component

is based on such a cascade in which changes in nitrate,

ammonium, temperature, BOD and DO are modelled.

DO is added to the system by modelling algae, aquatic

plants and phytoplankton which utilise water, carbon

dioxide and sunlight to photosynthesize, with the

resultant oxygen being released into the water column.

Respiration, which depletes the DO store in the water,

occurs through the day. These two processes result in

the highest DO concentration at mid-afternoon and the

lowest concentration during the early hours of the

morning. Loss of oxygen is via algae respiration and by

benthic oxygen demand (river bed or mud respiration).

Oxygen is added to the system by the reaeration of the

river at the surface. If there is ammonium in the water

column this will be converted to nitrate. During this

reaction oxygen is also consumed. Thus, there is a term

for oxygen depletion as a result of nitrification. The

biochemical oxygen demand is caused by the decay of

organic material in the stream. As the material decays it

consumes oxygen, thus the model contains a term for

oxygen depletion due to BOD decay.

QUASAR models both carbonaceous BOD and

nitrogenous BOD separately with the nitrogenous

BOD having been described above. The change in

carbonaceous biochemical oxygen is due to decay,

sedimentation and addition due to dead algae. As algae

die they contribute to the BOD; the rate of contribution

is proportional to the product of the concentration of

algae and the rate of BOD addition by dead algae. The

flow variable average residence time is used in
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the calculation of all the determinands within QUA-

SAR, namely temperature, ammonium, nitrate, BOD

and DO (Whitehead et al., 1997):

2.1. Temperature

dðT1Þ

dt
¼

U1 þ P1 2 T1

Tp

ð1Þ

where

U1 input temperature (8C)

P1 additional input temperature from tributaries,

spillages, etc. (8C)

T1 reach and output temperature (8C)

Tp residence time (s)

2.2. Ion ammonium concentration

dðX2Þ

dt
¼

U2 þ P2 2 X2

Tp

2 ½K0
1 £ 10ð0:0293T1ÞX2� ð2Þ

where

U2; input ammonium concentration (mg l21)

P2 additional input ammonium concentration

from tributaries, etc. (mg l21)

X2 reach and output ammonium concentration

(mg l21)

K0
1 nitrification rate coefficient at 20 8C (day21)

2.3. Nitrate concentration

dðX3Þ

dt
¼

U3 þ P3 2 X3

Tp

þ ½K0
1 £ 10ð0:0293T1ÞX2�

2 ½K0
2 £ 1:0698 £ 10ð0:0293T1ÞX3� ð3Þ

where

U3 input nitrate concentration (mg l21)

P3 additional input nitrate concentration from

tributaries, spillages, etc. (mg l21)

X3 reach and output nitrate concentration

(mg l21)

K0
2 denitrification rate coefficient at 20 8C

(day21)

2.4. Biochemical oxygen demand concentration

dðX4Þ

dt
¼

U4 þ P4 2 X4

Tp

2 ½K0
5 £ 1:047ðT1220ÞX4�

2 ½K10X4� þ ½K11·Cla� ð4Þ

where

U4 input BOD concentration (mg l21)

P4 additional input BOD concentration from

tributaries, spillages, etc. (mg l21)

X4 reach and output BOD concentration

(mg l21)

K0
5 rate coefficient for the loss of BOD at 20 8C

(day21)

K10 sedimentation rate coefficient (day21)

K11 BOD contribution by algae rate coefficient

(day21)

Cla reach Chlorophyll-a concentration (mg l21)

2.5. Dissolved oxygen concentration

dðX5Þ

dt
¼

U5 2 X5 þ Weir

Tp

þ P 2 ½ðK8 þ K9·ClaÞ

£ 1:08ðT1220Þ�2 bK0
3 £ 1:08ðT1220ÞX5c

þ ½ðð5:32v0:671:024ðT1220ÞÞ=ðd1:85ÞÞ·

� ðSC 2 X5Þ�2 b4:57 K0
1 £ 10ð0:0293T1ÞX2c

2 bK0
5 £ 1:047ðT1220ÞX4c ð5Þ

where

U5 input DO concentration (mg l21)

X5 reach and output DO concentration (mg l21)

Weir increase in oxygen concentration due to

aeration over a weir

P reach photosynthetic oxygen production

(mg l21)

K8 algae respiration coefficient (day21)

K9 algae respiration coefficient as a direct

proportion of Chlorophyll-a (day21)

K0
3 rate of oxygen uptake by sediment at 20 8C

(day21)

v stream velocity (m/s)
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d river depth (m)

SC saturation concentration for DO (mg l21)

3. Flow model component

The original QUASAR model (Whitehead et al.,

1997) is only applicable to slowly time-varying flow

(quasi steady-state) conditions, since the flow and

solute travel times are assumed equal. However,

under unsteady conditions, the travel time of a flow

wave can be approximated by the kinematic wave

velocity (celerity), which is greater than the water

velocity. An improved flow model can thus be

formulated based on celerity and not velocity. In the

case of the Bedford Ouse (with only daily data being

available at exact 24 h intervals) a quasi stead-state

model may suffice, however a truly generic unsteady

flow model is utilised here in order to progress the

state of the art and allow future applications to data

sets of higher quality.

The ratio m of the average kinematic wave speed,

or celerity c; to the average velocity of flow, u; is

given by

m ¼
c

u
¼

dQ
dA

� �

Q
A

� � ð6Þ

where Q is discharge and A is the cross sectional area

of flow. Note that for a wide rectangular channel m

may be approximated to 5/3 (Chapra, 1997).

A number of recent research developments have

been made in the area of hydrological flow routing

(Bentura and Michel, 1997; Permual, 1994; Camacho

and Lees, 1999). The main advance that these

developments have introduced is the inclusion of

a non-linear method of flood routing coupled with a

lag term. The increased flexibility and accuracy that

such approaches represent has lead to this concept

being adopted here, building on Bentura and Michel’s

lag and quadratic route model. The flow model can be

conceptualised as a series of n non-linear stores

followed by a time delay parameter, tfl; the effect of

which is simply to lag the routed hydrograph without

attenuation (Camacho and Lees, 1999). Note that tfl

varies with respect to discharge via a non-linear

relationship, where tfl ¼ cQd: Each non-linear store

in the cascade in turn is characterised by a storage

coefficient K and an exponent a (where 0 , a # 1;

note that a ¼ 1 equates to the linear case and a ¼ 0:5

equates to the quadratic case). Hence to allow for non-

linearity in each storage reservoir the storage–

discharge relationship is expressed as

S ¼ KQa ð7Þ

For S (storage) in m3 and Q in m3/s the factor K has

the dimension m323asa. Note that an attractive feature

of the linear reservoir (the unique case where a ¼ 1)

is that the storage coefficient, K; which is also equal to

the ratio of S=Q; can be directly interpreted as

representative of average travel time of the flow

in units of seconds. The storage coefficient, knl; for a

non-linear store may also be expressed as the ratio

of S=Q

knl ¼
S

Q
¼ KQa21 ð8Þ

hence the overall travel time, T ; of the flow wave is

given by

T ¼ nknl þ tfl ð9Þ

The celerity, c; of the flow wave for the reach length

under consideration, L; is given by

c ¼
L

nknl þ tfl

ð10Þ

where tfl varies with respect to discharge, tfl ¼ cQd:

Hence the travel time of the non-conservative

pollutant, Tp; is given by

Tp ¼ mðnknl þ tflÞ ð11Þ

It is this residence time that is utilised in Eqs. (1)–(5)

in the evaluation of these water quality determinands.

4. Numerical simulation and calibration methods

Calibration is carried out here in a two-step

procedure in which the flow parameters are first

optimised with respect to flow, prior to calibration of

the water quality relationships. The flow and water

quality components of the model are simulated using

standard numerical integration techniques, in this case

the adaptive step size fourth order Runge–Kutta
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algorithm provided in the MATLAB numerical soft-

ware package (Mathworks, 1996). The flow com-

ponent is optimised on a reach by reach basis between

stream flow gauging stations in the downstream

direction in order to obtain the optimum flow model

parameters K; a; c; d (where knl ¼ KQa21 and

tfl ¼ cQd) for an optimum number of cells, n;

determined by direct calibration (i.e. trials of number

of cells ranged from 1 upwards until no performance

advantage was gained by increasing the number of

cells further), with the reach length being that utilised

in Eqs. (1)–(5).

Both the flow and water quality components of the

model were calibrated using the MCAT developed at

Imperial College (Lees and Wagener, 2000). Some of

the functionality of the MCAT is describe here in the

context of assessing the sensitivity and identifiability

of this model. The MCAT uses a series of graphical

techniques to display Monte-Carlo results and support

analysis of model performance.

MCAT uses Regional Sensitivity Analysis (RSA)

(Hornberger and Spear, 1981; Spear and Hornberger,

1980) to assess the sensitivity of model parameters,

where sensitivity is defined as the effect of changes

in the parameters on the overall model performance

(as indicated by an objective function (for example

the Nash–Sutcliffe criteria—Nash and Sutcliffe,

1970). One of the approaches adopted in the

MCAT uses the extension to RSA introduced by

Freer et al. (1996). Essentially parameter sets are

drawn at random from prior distributions of feasible

values (which may simply be taken from a uniform

distribution) and used for Monte-Carlo simulations.

Simulations are ranked according to the selected

objective function, and split between a behavioural

set, which are feasibly consistent with the data

support, and a non-behavioural set, which is

discarded as being a totally unrealistic representation

of the system (as judged by an objective function). A

model fit is considered ‘behavioural’ if the corre-

sponding objective function is within a selected

threshold, for example a threshold of Nash–Sutcliffe

R2 ¼ 0 (Nash and Sutcliffe, 1970), all other results

are considered ‘non-behavioural’—i.e. the response

deviates so far from the observations that the model

cannot be considered to be a possible characteris-

ation of the system. The objective functions are then

transformed into likelihood values (i.e. the chance of

occurrence) split into ten quantile groups and the

cumulative frequency distribution is calculated and

plotted (Wagener et al., 2001). If the model

performance is sensitive to a particular parameter

there will be a large difference between the

cumulative frequency distributions of the quantile

groups. If the model performance is not sensitive to

a particular parameter, given an a priori uniform

distribution each group will plot on a straight line

(Wagener et al., 2001).

Sensitivity is only one of the essential requirements

of an identifiable parameter. A parameter is termed

identifiable if it is possible to determine its value with

relative confidence within the feasible parameter

space based on the model output produced. However,

the values of sensitive parameters that produce a

behavioural model output can be distributed over a

range of the feasible parameter space and can change

when estimated from different response modes

(Wagener et al., 2001). Hence MCAT uses an

identifiability analysis, which is based either on

simple inspection of the ‘dotty plots’ of Monte-

Carlo outputs for a given parameter, for example

taken from the upper performance quantile, or from an

automated analysis.

The performance using different objective func-

tions can be visualised using the ‘Multi Objective

plot’ function in MCAT. The best performing

parameter sets will not necessarily be the same for

different objective functions. In this situation a

‘trade-off’ can be identified between the best

performing parameter sets with respect to each

objective function. Points which lie along this

trade-off form the Pareto set, where: ‘a solution is

said to be Pareto optimal (i.e. part of the Pareto set)

if the value of any objective function cannot be

improved without degrading at least one of the other

objective functions’ (Chankong and Haimes, 1993).

The MCAT can be used to determine the parameter

values of the Pareto set and plot the model

simulations produced by it against the observed

time series. Finally, the GLUE (Beven and Binley,

1992) procedure, based on the RSA outlined above,

can be used within the toolbox to define confidence

limits in output time-series.

For both flow and water quality, calibration and

prediction periods were assessed using the Nash–
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Sutcliffe criteria (Nash and Sutcliffe, 1970):

R2 ¼ 1 2

XN

i¼1
ðoi 2 piÞ

2

XN

i¼1
ðoi 2 �oÞ

2
ð12Þ

where oi is the ith observed output variable, pi is the

ith predicted output variable, N is the number of

observations and the overbar denotes the mean for the

period of evaluation. Note that the Nash–Sutcliffe

criteria has a basic reliance on the square of the errors,

which thus focuses on fitting peak values.

The flow model was calibrated to find an optimum

set of parameters K; a; c; d for an optimum number of

cells, n: In addition, given the possible uncertainties in

estimation of ungauged inflows, an ‘Inflow’ term was

added to the flow model calibration procedure and is

represented by a fixed percentage of the upstream flow

rate for the calibration period.

Two principle methods of calibrating the water

quality component of the model were used to illustrate

both the relative suitability of the two methods and the

strengths and weaknesses of the model structure. The

first method involved the sequential calibration of the

rate coefficients in Eqs. (3)–(5) (note the absence of

ammonium as this determinand was not available in

the data set used in this work). It should be noted that

both the rate coefficients K0
1 (Eq. (3)) and K0

5 (Eq. (4))

are present also in Eq. (5), therefore the optimum

calibrated values of K0
1 (Eq. (3)) and K0

5 (Eq. (4)) are

placed directly into Eq. (5) and the rest of the rate

coefficients in Eq. (5) then calibrated.

Note that the value of the photosynthetic oxygen

production, P; (Eq. (5)) varies with time and is

dependent on temperature, chlorophyll-a and solar

radiation. However as no solar radiation data are

available, P has been optimised directly assuming a

constant value (recognising that this is a relatively

crude assumption). Note that temperature (Eq. (1))

has no water quality rate coefficients to calibrate and

is uniquely determined by the flow parameter Tp:

The second calibration approach is a simultaneous

calibration procedure in which K0
1 (Eq. (3)) and K0

5

(Eq. (4)) are calibrated together with the other rate

coefficients in Eq. (5). It should be noted that in the

sequential method, K0
1 and K0

5 are determined

independently of the other rate coefficients; in the

simultaneous method they can be dependent. It may

be expected that sequential and simultaneous

calibration should yield similar optimum parameters,

but the procedure adopted allows for the investigation

of parameter interactions.

5. Bedford Ouse case study

5.1. Study reach description

An application of the proposed model utilising the

MCAT was undertaken using data from the river Ouse

in eastern England (commonly known as the Bedford

Ouse) between Tickford Abbey and Harrold Mill

(flow) and Tickford Abbey and Sherington (water

quality). The component catchment areas are

66.6 km2 (Broughton Brook), 800.0 km2 (River

Ouse—Newport Pagnell), 277.1 km2 (River Ouzel)

and 1320.0 km2 (River Ouse—Harrold Mill). The

largest catchment—Harrold Mill—experiences a

mean annual rainfall of some 656 mm. The reach

length between River Ouse (Newport Pagnell) and

Harrold Mill (Fig. 1) is some 27.1 km and the reach

length between Tickford Abbey and Sherington is

some 2.6 km. Previous work on this river is reported

by Whitehead et al. (1979) who provide a more

detailed description of the area.

The flow gauging stations at River Ouse (Newport

Pagnell) and Harrold Mill (Fig. 1) define the upstream

and downstream boundaries of the system, respect-

ively. Fig. 2 shows the observed upstream and

downstream hydrographs utilised in the modelling

procedure. The overall upstream hydrograph is

considered to be equal to the sum of the individual

upstream hydrographs for the River Ouse (Newport

Pagnell), River Ouzel and Broughton Brook, whilst

the downstream hydrograph is the observed hydro-

graph at Harrold Mill. However, the hydrograph at

Broughton Brook for this period was not recorded and

consequently the hydrograph at this point was

established by factoring the flow data for the River

Ouzel in proportion to the area of the catchments. As

the Broughton Brook catchment is quite small

(66.6 km2) when compared with the River Ouzel

catchment (277.1 km2) this is considered adequate for

the present purpose. Tickford Abbey and Sherington

represent the upstream and downstream boundaries

for the water quality component of the modelling

procedure as no water quality data were available at
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Fig. 1. The study area.

Fig. 2. Observed discharges on the Bedford Ouse for 1973, 1974 and 1975.
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either of the flow gauging stations. Both flow and

water quality data were generally available for years

1973, 1974 and 1975 at daily intervals, although there

were time periods for which some or all of the water

quality determinands were not recorded.

5.2. Modelling methodology

The flow component of the model was calibrated

between upstream and downstream gauging stations

using data from 27th August to 21st December 1974.

The flow component of the model was then validated

between 19th February and 15th June 1975. Note that

unsteady flow periods were chosen for the flow

calibration, although the periods available were

limited due to gaps in the recorded data. The water

quality component of the model was calibrated

between Tickford Abbey and Sherington for the

same period as the flow component using the correctly

proportioned residence time predictions obtained

from the calibrated flow parameters to obtain the

calibrated rate coefficients (Eqs. (3)–(5)). Note that as

the residence time is only around 2–3 h for the 2.6 km

stretch used for assessing water quality behaviour and

that flow data are only available at 24 h intervals, the

model breaks down the daily water quality behaviour

into hourly components via direct linear interpolation

of the calibrated daily time series.

Ammonium was not included, due to the fact that

most of the observed upstream and downstream

concentrations were recorded as being ,0.2 mg l21

and therefore realistic calibration and validation of

ammonium behaviour was impractical. Where

ammonium levels were required in the calibration of

other water quality determinands for the periods in

which these ammonium levels were recorded in error,

the ammonium level was set to a default value of

0.2 mg l21. The optimum calibrated flow and water

quality parameters were used in predictive mode for

the period 1st April–15th June 1975.

6. Calibration and prediction results

6.1. Flow model component calibration

Uniform random parameter sampling for 20,000

simulations was undertaken to identify the region

representing an R2 value greater than 0.9 (i.e. 1 2 R2

below 0.1), used here to define the behavioural set.

Initial attempts indicated that the lag term, tfl (where

tfl ¼ cQd), had no effect on the behaviour of the flow

model. The lag term was therefore dropped, resulting

in a four parameter model (K; a; n and an Inflow

term), and the travel time of the non-conservative

pollutant, Tp; is given by

Tp ¼ mðnknlÞ ð13Þ

The value of n was determined by direct calibration

(i.e. trials of number of cells ranged from 1 upwards

until no performance advantage was gained by

increasing the number of cells further in this case)

and the best results were obtained for a single cell. Fig.

3 shows the behavioural Monte-Carlo results for the

three optimised flow model parameters for n equal to 1

(the minima are marked by a small square). Feasible

values of the parameter K range over the majority of

the calibration values. The Inflow term has a well-

defined minimum. The minimum value of the exponent

a is only very slightly non-linear (1.032 as opposed to 1

for a linear store), and equivalent performance is

obtained over a range from 0.8 to 1.2, hence had a

linear store been used the calibration procedure would

not have produced radically different parameters for

this particular river. We also observe a reduction in the

number of parameter sets that yield accurate cali-

bration results as the value of a increases above 1. A

calibration fit of R2 ¼ 0:9841 is encouraging. Fig. 4

displays a RSA (Hornberger and Spear, 1981; Spear

and Hornberger, 1980) of the behavioural flow model

parameters. Ten quantile groups are ranked from the

highest to the lowest likelihood, with the dark solid line

indicating the best calibration fit. The storage coeffi-

cient K and the a term are more sensitive within the

model structure than the Inflow term, as shown by the

larger difference between the cumulative frequency

distributions.Fig.5showsthecalibrationandvalidation

fit for the flow model (see also Table 1). Both calibra-

tion ðR2 ¼ 0:9841Þ and validation ðR2 ¼ 0:9366Þ

performance is generally excellent, with the exception

of the peaks which are systematically underestimated.

6.2. Water quality model component

Twenty thousand simulations were undertaken for

each water quality determinand, with ranges for
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Fig. 3. Flow model parameters calibrated with respect to 1 2 R2:

Fig. 4. Regional sensitivity plot of the calibrated flow model parameters.
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the rate coefficients being those obtained by Williams

(1994) and Lewis et al. (1997) in their work using the

QUASAR model with UK catchments under compar-

able conditions. Note that a threshold of 1-R2 ¼ 1:0 is

selected, with any result outside this limit being

considered non-behavioural.

6.2.1. Nitrate

As can be noted from Fig. 6, K0
2 ; the denitrification

rate coefficient, appears to be better defined than K0
1 ;

the nitrification rate coefficient. Note that the

implication of K0
1 being zero is that no nitrification

is identifiable in the calibration period chosen for the

Bedford Ouse. Elaborating on the reasons why the

various water quality model parameters could not be

identified from the calibration data, it is proposed that

the reason behind the nitrification coefficient being

zero is a result of the very low ammonium

concentrations at the model boundaries. The simu-

lation results (see also Table 1) indicate that the

calibration procedure has produced a fit of good

quality ðR2 ¼ 0:914Þ with most local and the overall

maxima being reasonably well re-produced.

6.2.2. BOD

Fig. 7 indicates that for sequential calibration both

K0
5 (the rate coefficient for the loss of BOD) and K10

(the sedimentation rate coefficient) are well defined

with the optimum values being near zero and at zero,

Fig. 5. Flow model calibration and validation for the period 27th August–21st December 1974 and 19th February–15th of June 1975,

respectively.

Table 1

Calibration results for the period of the 27th of August 1974 to the

21st of December 1974 and flow validation results for the 19th of

February to the 15th of June 1975

Calibration R2

Flow 0.9841

Temperature 0.9866

Nitrate 0.9141

BOD 0.4813

DO—sequential 0.9463

DO—non-sequential 0.9486

Validation

Flow 0.9366
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respectively. This indicates that there is little apparent

loss of BOD by decay and none by sedimentation

during the calibration period. K11; the rate coefficient

for the BOD contribution by algae, does not have a

well defined minimum. Fig. 8 shows use of the GLUE

methodology to generate 95% confidence limits for

the output. The bottom graph is added to make the

identification of regions with large uncertainties

easier, and represents the normalised width of the

confidence limits (Lees and Wagener, 2000). Fig. 8

indicates that whilst some of the observations are

within the GLUE uncertainty envelope, the majority

are outside, indicating that the model is not calibrating

with confidence. The model has overestimated the

observed maximum, but this may be due to the fact

that the data were only recorded on a daily timescale;

a short duration event may not have been detected.

6.2.3. DO—sequential calibration

Fig. 9 indicates that P is well defined; the same

cannot be said for the other parameters of the DO

model. Sequential calibration results (Table 1)

give a fit of R2 ¼ 0:946 demonstrating good

calibration performance. It is interesting to note

that as both K8 and K9 are completely insensitive

Fig. 6. Sequentially calibrated nitrate water quality model parameters.

Fig. 7. Sequentially calibrated BOD water quality model parameters.
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they make no meaningful contribution to the model

performance.

6.2.4. DO—simultaneous calibration

Here all of the parameters of the DO model

are optimised in a single calibration exercise.

Note from Fig. 10 that while P; K0
1 and K0

5

are well defined, K8; K9 (algae respiration descrip-

tors) and K0
3 (sediment oxygen uptake coefficient)

are not. Non-sequential calibration results

(Table 1) give a calibration fit of R2 ¼ 0:948;

demonstrating only very slightly better calibration

Fig. 8. GLUE output uncertainty limits for the sequentially calibrated BOD water quality model.

Fig. 9. Sequentially calibrated DO water quality model parameters.
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performance than for the sequential calibration

ðR2 ¼ 0:946Þ:

6.3. Water quality prediction under unsteady flow

conditions

Fig. 11 shows that temperature has been

predicted accurately ðR2 ¼ 0:9361Þ and nitrate

behaviour less so ðR2 ¼ 0:6466Þ: The most encoura-

ging aspect is that the overall maxima and most

local maxima have been predicted reasonably

accurately. Similar traits are seen for the BOD

prediction with an R2 ¼ 0:5068: Both the sequential

and non-sequential predictions for DO are

nearly identical (R2 ¼ 0:2355 and 0.3203, respect-

ively). All prediction results are summarised in

Table 2.

6.4. Multi-objective analysis

The sequential and non-sequential DO cali-

bration and predictions have in fact produced near

identical results, which is encouraging in that it

points to a robust model framework. The degree of

trade off between the calibration of the optimum

value of K0
1 for the nitrate model and K0

1 for the DO

model and K0
5 for the BOD model and K0

5 for the

DO model may be investigated by the use of a

‘Pareto front’ as mentioned earlier in the text

(Chankong and Haimes, 1993). This is done by

calibrating (using a Monte-Carlo procedure) both

the nitrate, BOD and DO models independently

(using the same objective function, 1 2 R2 in this

case) and then plotting the results against each

other in order to view the Pareto front. The results

are shown below in Fig. 12, with the larger dots

representing the results on the Pareto front. This

indicates that there is some trade off between the

optimum value of K0
1 for the nitrate and DO

models, but the optimum values for K0
5 for the

BOD and DO model are identical. The trade off

between the optimum value of K0
1 for the nitrate

and DO models is a source of concern as this

indicates that the model structure is incapable of

producing both the optimum behaviour of nitrate

and DO within the same framework However, there

is no trade off between the optimum value of K0
5

for the BOD and DO models which indicates

that both BOD and DO behaviour can be

accurately assessed within the water quality model

framework.

7. Conclusions

The calibration and validation of the flow com-

ponent of the model has indicated that the perform-

ance of such a model is capable of simulating

Fig. 10. Non-sequentially calibrated DO water quality model.
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unsteady flow events with a reasonable degree of

accuracy. Both sequential and non-sequential cali-

bration and validation approaches used in the DO

water quality component yield similar results—

although the non-sequential approach gave a slightly

more accurate prediction. RSA has proved to be an

extremely useful method for identifying which water

quality and flow parameters may be considered to be

Fig. 11. Predicted temperature, nitrate BOD and DO at Sherington for the period of the 1st of April to the 15th of June 1975.
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the most important for the model performance. For

example insensitive parameters within a given water

quality model may be fixed at a single value and used

in the predictive process with confidence, as opposed

to selecting an arbitrary value from a wide range of

possibilities. Despite the lack of information describ-

ing the photosynthetic oxygen production, P; a

reasonably accurate water quality calibration and

prediction process has been possible.

The most important implications of this work are

that (1) several water quality model parameters are

clearly unidentifiable—namely K8; K9 (algae respir-

ation descriptors) and K11 (BOD contribution by

algae) and (2) other water quality model parameters

such as K0
1 (nitrification rate coefficient) and K10

(sedimentation rate coefficient) were found to be

equal to zero—i.e. the processes were not apparent

during the calibration period. Further calibration

exercises need to be undertaken in order to highlight

how common such redundancy is, but the process

implications are obviously significant.

The use of multiple objective functions (the Pareto

front) provides a meaningful insight into the trade off

regions which exist in the water quality model. Whilst

the trade off between the optimum value of K0
1 for the

nitrate and DO models is a source of concern, there is

no trade off between the optimum value of K0
5 for the

BOD and DO models, which indicates that both BOD

and DO behaviour can be accurately assessed within

the water quality model framework. Furthermore the

essential framework of the QUASAR water quality

model has been seen to be capable of accurately

reproducing the water quality determinands under

consideration in this case. Methods developed in this

paper are generic and not limited solely to QUASAR.

The lack of fine temporal water quality data is a source

Fig. 12. ‘Pareto front’ (i.e. the ‘trade-off’ region) for nitrate and DO models (top) and for BOD and DO models (bottom).

Table 2

Prediction results at Sherington for the 1st of April to the 15th of

June 1975

Prediction R2

Temperature 0.9361

Nitrate 0.6466

BOD 0.5068

DO—sequential 0.2355

DO—non-sequential 0.3203
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of concern as it is hard to pin down the processes

without a detailed time scale. The analytical methods

used here in application to water quality problems

have proved to be extremely useful in identifying

which water quality and flow parameters may be

considered to be the most important for the model

performance.
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