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Abstract

Suppose that values in a finite sequence of data are labelled as either þ1 or 21 depending, respectively, on whether they are

either above or below the median. Using this sequence of þ1 and 21 s a unit-lag autocorrelation coefficient may be

determined. The present study establishes the probability distribution for the number of runs of a fixed length of 21 s (or þ1 s)

occurring in the labelled data. This distribution is calculated both with and without the constraint of the sample autocorrelation.

The distribution is compared with observed stream flow data to illustrate its use in detecting both deficits and excesses of low or

high flows of a given duration. The use of this distribution, which is not restricted to stream flow data, provides an extremely

convenient alternative to the more traditional methods of detecting anomalous behaviour and avoids requiring knowledge of the

form of the parent distribution.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The objective of the present study is to determine

the probability distribution governing the occurrence

of runs of random values above, or below, the median

in data of finite record length. This distribution is

determined for the cases in which the binary

autocorrelation of the record length is included and

not included. The study is independent of the parent

distribution of the data. As such it may be used either

in the calculation of the probability of a specific

number of runs (either side of the median) of given

length in a record or the detection of unusual temporal

behaviour in a record without the need for knowledge

of the parent distribution.

The identification of unusual behaviour in an

hydrological time sequence is often of value in

understanding hydrological processes. Various

methods of identifying anomalous behaviour of a

sequence are available, such as variable-lag auto-

correlation methods and Fourier methods, see for

example Mills (1965) and Hannan (1960). These

methods are often dependent on the form of the

underlying distribution of the given sequence and are

often indirect, sometimes having difficulty in deter-

mining unusual behaviour that has no dominant

periodic structure. No attempt is made here to survey

the vast literature on the topic. The above cited books

review this literature better than any note can here.
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The present study, seeks to present another

technique. This technique is independent of the form

of the underlying distribution and falls within

the special category of tests discussed by Sprent and

Smeeton (2001), Conover (1999), Neave and

Worthington (1988), Maritz (1981), and Hollander

and Wolfe (1973) amongst others. Essential to the

technique is the use of the median (rather than the

mean) and the consideration of runs of a specified

length. It contrasts with standard runs-analysis, which

often weights all runs equally irrespective of their

length, see Feller (1968).

In a particular observed time sequence, it is

convenient to label terms with values above the median

þ1 and the terms with values below the median 21.

Thus a sequence of þ1 and 21 s is generated. This

sequence is then compared with the theoretical

probability distribution of^1 values. Various standard

statistical tests to determine the significance of various

features of the data are then available.

Allowance is made for any unit-lag autocorrela-

tion in the data. The unit-lag autocorrelation

coefficient, r; used here, is defined by

r ¼
1

D 2 1

XD21

j¼1

SjSjþ1 ð1:1Þ

where Sj denotes the value of ^1 that is associated

with the jth term in the sequence, and D denotes the

number of terms in the sequence. (Note that the

values of S2
j are always 1 and hence factors involving

their mean value have been neglected from the

definition of the autocorrelation coefficient.) In

implementing the present study, the implementer

must decide if there is physical reason to regard the

value of r as a constraint.

Peel et al. (2003) investigated drought lengths

using a runs methodology in a complementary manner

with the present study. They analysed both annual

precipitation and runoff data, which they found to be

well described by a unit-lag autoregressive process.

The present study obtains the full distribution of runs

of any given length from which the expected number

of runs may be determined, if desired.

In Section 2 a probability distribution is introduced

that ignores any autocorrelation. In Section 3 a similar

distribution is introduced that includes the influence

of the unit-lag autocorrelation. With these

distributions it is a simple matter to compare any

given record with the theoretical behaviour and

conduct a statistical test on the significance of any

deviation between the two records as explained later.

The conclusions are given in Section 4.

The present manuscript is concerned with the

variation of some quantity with time. The analysis

fully generalises to include variations with time and

space by the use of empirical orthogonal functions,

see Kantz and Schreiber (1997). The orthogonality of

the resulting time functions enables the autocorrela-

tion of each function to be considered separately. The

different time sequences involved in such an expan-

sion will, in general, have different unit-lag auto-

correlations. The extension of the present study to

include variations in both time and space is not

considered further here.

2. Correlation absent

As already noted in a particular time sequence, it is

convenient to label terms with values above the

median with þ1 and the terms with values below the

median with 21. Thus generating a sequence of þ1

and 21 s. A derivation of the probability distribution

for the number of runs of a given length in data of

these þ1 and 21 s with no autocorrelation is derived

in Appendix A. The reader is referred to this appendix

for details. For present purposes the resulting

probability distribution for exactly N runs of length

M in the record of length D is

PrðD;M;NÞ¼
1

D!
ðTðNÞ2ðNþ1ÞTðNþ1Þ

þ
1

2
ðNþ1ÞðNþ2ÞTðNþ2Þ

2
1

6
ðNþ1ÞðNþ2ÞðNþ3ÞTðNþ3Þ…Þ

ð2:1Þ

where TðNÞ is defined by

TðNÞ¼
ððD=2Þ!Þ2

ðD=22NMÞ!N!

ðD=2þ1Þ!

ðD=2þ12NÞ!

�
ðD2N2NMÞ!

ðD=22NÞ!
ð2:2Þ
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and the numerical coefficient of the nth term, n¼

1;2;…; involving TðN21þnÞ in Eq. (2.1) is given by

an¼ð21Þn21 1

ðn21Þ!
for n$2 ð2:3Þ

Thus the coefficient of TðN21þnÞ in Eq. (2.1) is

ð21Þn
N

n21

 !
:

The sum in Eq. (2.1) is over all terms for which N,

D=ð1þMÞ:

It is useful to consider the form of the distribution

(2.1) in the case of D=2 q NM: In this case Eq. (2.2)

may be approximated by

TðNÞ <
D!

N!
222N2NMDN ð2:4Þ

and so Eqs. (2.1) and (2.3) imply

PrðD;M;NÞ <
1

N!
222N2NMDN 1 2 ð2222MDÞ

�

þ
1

2
ð2222MDÞ2 2 · · ·Þ <

1

N!
hN e2h

ð2:5Þ

where

h ¼ 22ð2þMÞD ð2:6Þ

Thus PrðD;M;NÞ is approximately distributed as a

Poisson distribution with mean (and hence variance)

h as given by Eq. (2.6). In the limit of large D=2; Eq.

(2.5) is exact. As a check on the formulation of this

distribution, we note that in the limit of large D=2 the

expected number of terms involved in runs is

X1
M¼0

D

2

M

2Mþ1
¼

D

2

1

4

X1
M¼0

d

dl
lM

�����
l¼1=2

¼
D

2

1

4

d

dl

X1
M¼0

lM

�����
l¼1=2

¼
D

2

1

4

d

dl

1

1 2 l

����
l¼1=2

¼
D

2
ð2:7Þ

as expected because the sum of all terms labelled

either ^1 must be half the record length.

To gauge the error in using Eq. (2.5) we

consider a hypothetical data record 12 years long

ðD ¼ 12Þ and we are interested in runs of length 3

years ðM ¼ 3Þ below the median. Then the full

distribution, Eq. (2.1), predicts that there are no

runs of this length with a probability of 0.60, one

run with a probability of 0.38 and two runs with a

probability of 0.02. (Even for this modest example

the numerical values of TðNÞ in Eq. (2.2) are of the

order of 108: However their calculation is rapid and

is easily done with a hand held calculator.) By

comparison, the asymptotic form of the distribution,

Eq. (2.5), yields for no runs a probability of 0.69,

one run a probability of 0.26 and for two runs a

probability of 0.05. However, for a data record of

50 years ðD ¼ 50Þ; there is no substantial dis-

crepancy between the full solution and the

approximate solution.

To illustrate the above distribution we consider

annual flow in the Atbara (a Sudanese tributary of the

Nile). The record is 52 years long (with, of course, 26

years of flows above and below the median). These

values are clustered and produce 14 runs below the

median and 14 above. Thus assuming no autocorrela-

tion in the data, the distribution of runs of flows either

above or below the median is given by the Poisson

distribution, Eqs. (2.5) and (2.6). We consider the

predicted 95% mode-centred interval (or the one sided

95% interval if the mode is too low to allow mode-

centring of the interval) of the number of runs of

length M at Atbara. This interval covers all N below

12 for run length M ¼ 1; below 7 for M ¼ 2; below 5

for M ¼ 3; below 3 for M ¼ 4; and below 3 for M ¼ 5

as shown in Fig. 1 by crosses. From Fig. 1 it can be

seen that the observations of runs, both above and

below the mode, lie within these bounds with the

bounds being very conservative for runs of small

length. Of importance here is that the conservative

nature of these estimates make the above test of

limited value.

Generally hydrologists, and other earth scientists,

are interested in records for which there is a physical

reason to believe there is a correlation. The above

distribution has been included here for completeness.

3. Correlation present

In Section 2, no allowance was made for any

autocorrelation in the data. In many situations of

hydrological interest autocorrelation is important. It is

R.L. Hughes / Journal of Hydrology 278 (2003) 253–266 255



a simple matter to determine the unit-lag autocorrela-

tion in any particular record. The present section

presents the probability distribution of runs (above

and below the median) when the observed unit-lag

autocorrelation in the data is imposed.

The cases where the two ends of the sequence of

data are (i) either both labelled þ1 or 21 and (ii) of

different labels, that is one is þ1 and the other is 21,

must be treated separately. These two cases are treated

in Appendices B and C, respectively. The two cases

have mutually exclusive possibilities for their auto-

correlation coefficients.

For illustrative purposes only, we

consider three rivers in Africa, the Atbara (considered

inSection2without imposingtheconstraintof its lackof

autocorrelation), the Zaire, and the Zambezi. Figs. 1–3

plot the occurrence of specified lengths of flows above

and below the median for these three rivers. All three

rivers have impoundments, whether controlled or

uncontrolled. Hence the examples considered are

illustrative only.

Thefirstcaseconsideredhere is thatof theAtbara.As

seen from Fig. 1, the 26 values occur above the median

and the 26 values below the median in the record of

length 52 years. Labelling values above and below the

median þ1 and 21, respectively, and determining the

unit-lag autocorrelation coefficient of this record ofþ1

and21 syields20.059, comparedwithaconventional

product-moment correlation of20.091 for the original

data. (Note the small autocorrelation was why this river

was chosen for analysis in Section 2 where the

autocorrelation was ignored.)

Using Appendix C (because the end values have

different values) the 95% mode-centred confidence

interval is covered by the range 5–9 for runs of length 1

year. As the observed occurrence of runs, both above

andbelowthemedianthat is8and7,respectively, iswell

within both the 95% covered modally centred range, we

conclude that the behaviour is as expected. A similar

calculationmay bedone for each of the record lengths in

Fig. 1.

Of interest also is the maximum length of runs in

the data. These are runs of 5 years duration for above

median flows and 4 years duration for below. Again

using the distribution derived in Appendix C, the

probability of having a run exceed 4 years is 0.50.

(The probability of no 4 year, 5 year, 6 year and 7 year

runs being 0.40, 0.69, 0.87 and 0.95, respectively.)

Such behaviour is consistent with the occurrence of

maximum run lengths of 5 and 4 years for above and

below median runs, respectively.

We conclude that no anomalous behaviour appears

to be occurring in the Atbara. However, the tests

applied to the above data are clearly much more

stringent when the autocorrelation is a constraint, as

here, than when it is not used as in Section 2.

The second case considered is that of the Zaire,

shown in Fig. 2. The record length for the Zaire is of

odd length. As such the median must occur in the

record. The theory presented in Appendices B and C

Fig. 1. Occurrence of runs of flow values either above or below the median for the Atbara in north-eastern Africa. Run lengths are in years, and X

marking the 95% confidence interval (without autocorrelation).
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assumes that records are of even length. In the

example the value represented by the median is

neglected from the analysis. Thus the record is 56

years in length, rather than 57 years, and there are 28

values above and below the median.

Again labelling values either þ1 or 21 depending

on whether the values are above or below the median,

respectively, and determining the unit-lag autocorre-

lation coefficient of this newly labelled sequence

gives a correlation coefficient, using Eq. (1.1), of 0.13

(compared with a product moment correlation of 0.54

for the original flow record). Using Appendix B,

because the end values are of the same type, the mode

of runs of length 1 is 5. The 95% modally centred

range is 2–8 (a tighter non-centred range of 3–8 is

also acceptable at the 95% level). Therefore the

behaviour of runs of length 1 year is within the limits

of normal behaviour. Similarly for runs of length 2

years giving 0–6 with mode 3, 3 years giving 0–4

with mode 1, and 4 years giving a range 0–3 with

mode 1. Runs of length 5 years or more have a mode

of 0 and the probability of having a run of 12 as

observed is 0.0019. Thus, unless the present case has

been biased by its choice for discussion here, we

conclude that the presence of a single run of length 12

years is anomalous with respect to a binary correlation

of 0.13 at the 95% level.

The final case considered here is that of the

Zambezi in Fig. 3. In this case there are 54 years of

observations. Labelling the data þ1 or 21 depending

Fig. 2. Occurrence of runs of flow values either above or below the median for the Zaire in central Africa. Run lengths are in years, and X

marking the 95% confidence interval (with autocorrelation).

Fig. 3. Occurrence of runs of flow values either above or below the median for the Zambezi in southern Africa. Run lengths are in years, and X

marking the 95% confidence interval (with autocorrelation).
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on its position relative to the median, Eq. (1.1) gives

the binary lag-1 autocorrelation coefficient of the data

as 0.51 (compared with the product-moment corre-

lation of the raw data of 0.46, a result that is

proportionately much closer than in the previous

two cases). Like the Atbara, but unlike the case of the

Zaire, the case of the Zambezi has þ1 at one end and

21 at the other end of the record. Thus the calculation

in Appendix C is appropriate.

For runs of length 1 year the 95% predicted range

is 0–3 runs. Thus the occurrence of four runs below

the median is anomalous. The maximum number of

runs at the 95% confidence level for runs of length 2

and 3 years is three, for runs of length 4–6 years is

two, and for runs of length 7–12 years is one. Thus the

remaining behaviour observed in the record is

acceptable at the 95% level with the exception of

the run below the median of length 15 years. This

latter run has a probability of only 0.014 of occurring.

Furthermore, the probability of having a run of length

15 years or greater is predicted to be 0.028 which is

unacceptable at the 95% level.

These few examples illustrate the ways in which the

probability distribution presented here may be used.

The distribution is extremely valuable where there is

reason to believe that a record contains unit-lag

autocorrelation and one is searching for anomalous

behaviour.

In passing it is noted that a simple expression for

the probability, similar to the Poisson distribution

(2.5), may be obtained from Appendices B and C in

the case of large D such that both D=2 q MN and

D=2 q 1
4
ðD 2 1Þð1 2 rÞ which are the conditions of a

long record with high autocorrelation. In this case

PrðD;M;NÞ <
1

N!
jN e2j ð3:1Þ

where j ¼ Dð1 2 rÞ2=8: For the Zambezi, where the

binary autocorrelation coefficient is 0.51, the mean j is

equal to 1.8 irrespective of M: Such behaviour is

consistent with that of Fig. 3 although there is a slow

decay (slower than in Figs. 1 and 2 for which the

correlation coefficient was lower) with M: As noted

earlier, Eq. (3.1) is only valid when D=2 q MN that is

when M p D=2j , 15 here. As we have seen the

distribution is no longer independent of M

but decays rapidly with M when M is just less than

M , 15 making the occurrence of an event of length 15

in Fig. 3 is anomalous.

4. Conclusions

The distributions developed here are applicable to

the analysis of a wide variety of discrete time series with

significant applications in hydrology. Provided only a

few calculations are required the calculation of

probabilities in the case where the autocorrelation is

ignored may be performed simply on a hand calculator.

However, although the distributions developed here are

conceptually simple their implementation is tedious if

autocorrelation is included. If a machine is to be used,

the implementation requires significant computer

programming because of the large numbers generated

by the factorials generated by combinatorial mathemat-

ics. Once programmed, the use of these distributions

provides a very simple means of determining anom-

alous behaviour.

The distributions discussed here are derived in their

entirety in each of the three appendices, Appendices A,

B and C. In Appendix A no account is made of the unit-

lag autocorrelation coefficient. The resulting distri-

bution is less constrained and less likely to yield

significant results than when the autocorrelation is

included. Such an allowance is made in Appendices B

and C. The distributions presented in these latter

appendices refer, respectively, to the two cases in

which the two ends are either the same or opposite with

respect to being above or below the mean.

River flow data for three rivers in Africa are

considered. These three rivers were loosely selected

for illustrative purposes only. The three rivers

considered are studied for illustrative purposes only.

They are not intended as a substantial study.

It is noted that by the use of statistics based on the

median (in contrast with the use of the mean)

abnormal statistics associated with times of low flow

do not bias the finding of abnormal statistics

associated with high flows, and visa versa. The

present analysis can be used to analyse either high

or low flows. (In the case of high flows by multiplying

the sequence of flows by negative one.) Only

anomalous lengths of high or low flows influence

the analysis. The techniques described here are not

affected by anomalous extreme events in the size of
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the flow. This behaviour limits the use of this tool to

the analysis of the length of anomalous events.

However, it implies that the technique is not

influenced by extreme events that may result from

incorrectly recorded data and more importantly it

implies that the results of the technique are indepen-

dent of the form of the underlying distribution.

A method dependent on the distributions derived

and discussed here provides a useful alternative to the

current methods of time series analysis for anom-

alously long or short phenomena, with the appealing

property that the analysis is direct. Unusual behaviour

need not be inferred indirectly as is often the case in

other methods of analysis.

5. Programme availability

As Sprent and Smeeton (2001, p31) state “appro-

priate software is virtually essential for the implemen-

tation of all but the simplest (non-parametric)

methods”. The computer programmes used to

implement Appendices B and C are freely available

on the World Wide Web at http://www.civenv.

unimelb.edu.au/~rogerh/.

In running these programmes, the programme will

ask for D; M and
P

SjSjþ1; respectively, and deliver

probabilities for all N: The probability when N ¼ 0 is

inferred from the sum of the probabilities for all other

N; and may be in error if the probability of this

outcome is extremely small.
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Appendix A. Probability distribution for runs

uniformly below the median in a finite sequence

without serial correlation

The present appendix ignores any measured

autocorrelation in the record considered. This simpli-

fication has a dramatic effect on the complexity of the

expression for the probability distribution. We

consider an ordered record of D discrete events

where each event is measured by a real number. Each

event in this record, say event j; with a value less than

the median of the record is labelled Sj ¼ 21 and

similarly each event greater than the median is

labelled Sj ¼ þ1: For brevity, attention is restricted

to records of even length. (Generally it is sufficiently

accurate to truncate a record by one element or by

ignoring a predetermined median if its sequence has

an odd number of values.) Thus, there are D=2 events

with Sj ¼ 21 and D=2 events with Sj ¼ þ1: The

present appendix is concerned with determining the

probability that exactly N runs of exactly M events

have Sj ¼ 21: Clearly,

PrðD;M;NÞ

¼
number of combinations with D;M;N

total number of combinations with D
ðA1Þ

for ergodic behaviour. The determination of both the

denominator and the numerator of the right hand side

of this equation need to be considered in turn.

To obtain the numerator of Eq. (A1), we consider

the number of combinations in which D events can be

arranged with at least N runs of length exactly M: We

denote this number by TðNÞ: Thus, the numerator of

Eq. (A1) is equal to tðNÞ ¼ JðTÞ where J is a

functional that converts the number of combinations

in which there are at least N runs into the number of

combinations in which there are exactly N runs.

The total number of combinations possible, without

regard to the number or length of runs of Sj ¼ 21 in

denoted by S:
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The form of TðNÞ is

TðNÞ ¼ H1H2H3H4 ðA2Þ

where H1; H2; H3; H4 are factors as defined below.

The factor H1 represents the number of ways in

which the MN events involved in runs can be drawn

from the D=2 events with Sj ¼ 21 to form N

unlabeled ordered groups. Thus

H1 ¼
ðD=2Þ!

ðD=2 2 NMÞ!N!
ðA3Þ

The factor H2 represents the number of ways in which

the Sj ¼ þ1 events can be ordered. There are D=2 such

events. Thus

H2 ¼ ðD=2Þ! ðA4Þ

Into the array of Sj ¼ þ1 events must be imbedded the

N groups that could be constructed in H1 ways and the

D=2 2 NM remaining single Sj ¼ 21 events.

The factors H3 and H4 represent the number of

locations for imbedding the N runs of Sj ¼ 21 events

and the remaining Sj ¼ 21 events not in runs in the

D=2 events with Sj ¼ þ1; respectively.

There are D=2 þ 1 locations where the first of the N

runs may be imbedded including the ends. This

number decreases by one after each run is imbedded.

The factor H3 is given by

H3 ¼
ðD=2 þ 1Þ!

ðD=2 þ 1 2 NÞ!
ðA5Þ

However, possible locations for imbedding each of

the D=2 2 NM remaining Sj ¼ 21 events increases

after each imbedding. Thus

H4 ¼
ðD 2 N 2 NMÞ!

ðD=2 2 NÞ!
ðA6Þ

Thus by Eq. (A2), TðNÞ may be determined.

As stated earlier the numerator of Eq. (A1) is

given by JðTÞ: It is tempting to suppose that JðTÞ

is given by TðNÞ2 TðN þ 1Þ: However out of

a single realisation of ðN þ 1Þ runs it is possible

to choose N runs in ðN þ 1Þ ways and similarly

if ðN þ 2Þ runs occur, it is possible to choose N

runs in ðN þ 1ÞðN þ 2Þ=2 ways. Hence

TðNÞ ¼ tðNÞ þ tðN þ 1Þ
ðN þ 1Þ

1!

þ tðN þ 2Þ
ðN þ 2ÞðN þ 1Þ

2!

þ tðN þ 3Þ
ðN þ 3ÞðN þ 2ÞðN þ 1Þ

3!
· · · (A7)

where the sum extends to the maximum number of

runs of length M that is possible. Setting

T̂ðNÞ ¼ N!TðNÞ ðA8Þ

t̂ðNÞ ¼ N!tðNÞ ðA9Þ

Eq. (A7) takes the form

T̂ðNÞ ¼ t̂ðNÞ þ
1

1!
t̂ðN þ 1Þ þ

1

2!
t̂ðN þ 2Þ

þ
1

3!
t̂ðN þ 3Þ þ · · · ðA10Þ

Hence writing

t̂ðNÞ ¼ a1T̂ðNÞ þ a2T̂ðN þ 1Þ þ a3T̂ðN þ 2Þ þ · · ·

ðA11Þ

we have

Adding Eq. (A11) to the components of Eq. (A12)

and comparing the result with Eq. (A10) yields

a1 ¼ 1

a2 ¼ 2
1

1!
a1 ¼ 21

a3 ¼ 2
1

1!
a2 2

1

2!
a1 ¼

1

2

a4 ¼ 2
1

1!
a3 2

1

2!
a2 2

1

3!
a1 ¼ 2

1

6
ðA13Þ

1

1!
t̂ðN þ 1Þ ¼

1

1!
a1T̂ðN þ 1Þ þ

1

1!
a2T̂ðN þ 2Þ þ

1

1!
a3T̂ðN þ 3Þ þ · · ·

1

2!
t̂ðN þ 2Þ ¼

1

2!
a1T̂ðN þ 2Þ þ

1

2!
a2T̂ðN þ 3Þ þ · · ·

1

3!
t̂ðN þ 3Þ ¼

1

3!
a1T̂ðN þ 3Þ þ · · ·

ðA12Þ
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Thus using Eqs. (A8) with (A9), (A11) and (A13)

the numerator of Eq. (A2), that is tðNÞ; is obtained.

By induction (a delightful proof involving much

cancellation), it may be shown that in general

an ¼ ð21Þn21 1

ðn 2 1Þ!
ðA14Þ

It follows that the functional J is given by

JðTÞ ¼ ðN!Þ21
X

anðN þn21Þ!TðN þn21Þ ðA15Þ

The factor SðNÞ represents the number of ways in

which the all events can be ordered. There are D

such events. Thus

S¼D! ðA16Þ

Thus by Eq. (A1)

PrðD;M;NÞ¼
JðTÞ

S
¼
JðH1H2H3H4Þ

S
¼J

H1H2H3H4

S

� �
ðA17Þ

because J is a linear functional and S is

independent of N:

Appendix B. Probability distribution for runs
uniformly below the median in a serially correlated

finite sequence (same behaviour at both ends)

Consider all ordered records of D discrete events

where each event is measured by a real number. Each

event, say event j; is either greater than the median of D

in which case we set Sj ¼ þ1; or less than the median in

which case we set Sj ¼ 21: (In the case of a record of

odd length, one event is the median and this event is

randomly given a Sj value of Sj ¼ 21 or Sj ¼ þ1:) We

define a median autocorrelation coefficient, r; for a

particular record by Eq. (1.1) in the text

r ¼
1

D 2 1

XD21

j¼1

SjSjþ1: ðB1Þ

This appendix is concerned with determining the

probability that a record drawn at random from D

discrete events has exactly N runs of M events with

Sj ¼ 21; given r; the autocorrelation coefficient of the

record. Note that by Eq. (B1) r can only take certain

discrete values.

The present appendix is concerned only with the

cases where D is even which by Eq. (B1) requires

ðD 2 1Þr to be odd. The alternate cases, where D is

odd can be treated similarly. However, simple

interpolation is probably adequate in most hydro-

logical cases of interest. These alternate cases become

indistinguishable, in practice, for large D:

If the record is drawn without bias, then by

definition of bias, the probability is

PrðD;M;N; rÞ

¼
number of combinations with D;M;N; r

total number of combinations with D; r
ðB2Þ

The determination of both the denominator and the

numerator of the right hand side of this equation need

to be considered in turn.

To obtain the numerator of Eq. (B2), we

consider the number of combinations in which D

events can be arranged with at least N runs of

exactly length M: We denote this number by QðNÞ:

The numerator of Eq. (B2) is of the form qðNÞ ¼

JðQÞ where the functional J is defined later. The

number QðNÞ takes the form

QðNÞ ¼ E1E2ðF3G3cHc þ F3G3eHe þ F4G4He

þ F5G5HeÞ ðB3Þ

where E1; E2; F3; F4; F5; G3c; G3e; G4; G5; Hc and

He are factors as defined below.

The factor E1 represents the number of combi-

nations in which the Sj ¼ þ1 events can be ordered.

There are D=2 such events. Thus

E1 ¼ ðD=2Þ! ðB4Þ

The factor E2 represents the number of ways in which

the MN events involved in runs can be drawn from the

D=2 events with Sj ¼ 21 to form N unlabeled ordered

groups. Thus

E2 ¼
ðD=2Þ!

ðD=2 2 MNÞ!N!
ðB5Þ

The factors F3; F4 and F5 represent the number of

possible locations for imbedding the N runs of Sj ¼ 21

events in the D=2 events with Sj ¼ þ1:

The factor F3 corresponds to the case when S1 ¼

þ1 and SD ¼ þ1 after the runs have been imbedded.
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In this case, there are ðD=2 2 1Þ possible sites between

the already imbedded events for the imbedding and so

F3 ¼
ðD=2 2 1Þ!

ðD=2 2 1 2 NÞ!
ðB6Þ

The factor F4 corresponds to the case when S1 ¼ 21

or SD ¼ 21 (but not both) after the imbedding of the N

runs of Sj ¼ 21 events. In each case, there are ðD=2 2

1Þ possible sites for the imbedding plus one site that

must be used, and so

F4 ¼ 2N
ðD=2 2 1Þ!

ðD=2 2 NÞ!
ðB7Þ

The factor F5 corresponds to the case when S1 ¼ 21

and SR ¼ 21 after the imbedding of the runs. Thus,

there are ðD=2 2 1Þ possible sites for the imbedding

plus two sites that must be used. Hence

F5 ¼ NðN 2 1Þ
ðD=2 2 1Þ!

ðD=2 þ 1 2 NÞ!
ðB8Þ

The factors G3c; G3e; G4 and G5 represent the number

of possible locations for imbedding the runs of the

remaining ðD=2 2 MNÞ events of type Sj ¼ 21: There

are ðD=2 þ 1 2 NÞ sites available to be filled with

these events of type Sj ¼ 21:

In the case where S1 ¼ þ1 and SD ¼ þ1 after the

runs considered earlier were added, there are two

possibilities, either S1 ¼ þ1 and SD ¼ þ1; or S1 ¼

21 and SD ¼ 21 after placing the remaining events.

(The value of r excludes the case of these remaining

events occupying only one of the end sites as noted

earlier.) If the correlation coefficient is to be r; then

these events must occur in Nc ¼
1
4
ðD 2 1Þð1 2 rÞ2

N runs within the available sites excluding end sites

(leaving only the central sites) or in Ne ¼
1
4
ðD 2 1Þ �

ð1 2 rÞ2 N þ 1 runs if the end sites are included. It

follows that for these two cases

G3c ¼
ðD=2 2 1 2 NÞ!

ðD=2 2 1 2 N 2 NcÞ!Nc!
ðB9Þ

G3e ¼
ðD=2 2 1 2 NÞ!

ðD=2 þ 1 2 N 2 NeÞ!ðNe 2 2Þ!
; ðB10Þ

respectively.

In the case when S1 ¼ 21 or SD ¼ 21 (but not

both) after the imbedding of the N runs of Sj ¼ 21

events but before the remaining Sj ¼ 21 events have

been imbedded, one imbedding must be used to make

S1 ¼ 21 and SD ¼ 21: Thus

G4 ¼
ðD=2 2 NÞ!

ðD=2 þ 1 2 N 2 NeÞ!ðNe 2 1Þ!
ðB11Þ

In the remaining case of S1 ¼ 21 and SD ¼ 21

before the imbedding of the remaining Sj ¼ 21

events all further imbedding must occur away from

the edges. Hence

G5 ¼
ðD=2 þ 1 2 NÞ!

ðD=2 þ 1 2 N 2 NeÞ!Ne!
ðB12Þ

These sites must be filled with the remaining ðD=2 2

MNÞ events of type Sj ¼ 21: If Nc sites are available,

this can be done in Hc ways, where

Hc ¼
ðD=2 2 MNÞ!ðD=2 2 MN 2 1Þ!

ðD=2 2 MN 2 NcÞ!ðNc 2 1Þ!
ðB13Þ

Similarly, if Ne sites are available

He ¼
ðD=2 2 MNÞ!ðD=2 2 MN 2 1Þ!

ðD=2 2 MN 2 ðNeÞ!ðNe 2 1Þ!
ðB14Þ

Hence by Eq. (B3), QðNÞ can be determined.

As stated earlier the numerator of Eq. (B2) is given

by JðQÞ: Out of a single realisation of ðN þ 1Þ runs it

is possible to choose N runs in ðN þ 1Þ ways and

similarly if ðN þ 2Þ runs occur, it is possible to choose

N runs in ðN þ 1ÞðN þ 2Þ=2 ways. Hence

QðNÞ ¼ qðNÞ þ qðN þ 1Þ
ðN þ 1Þ

1!

þ qðN þ 2Þ
ðN þ 2ÞðN þ 1Þ

2!

þ qðN þ 3Þ
ðN þ 3ÞðN þ 2ÞðN þ 1Þ

3!
· · · (B15)

where the sum extends to the maximum number of

runs of length M that is possible. Setting

Q̂ðNÞ ¼ N!QðNÞ ðB16Þ

q̂ðNÞ ¼ N!qðNÞ ðB17Þ

Eq. (B15) takes the form

Q̂ðNÞ ¼ q̂ðNÞ þ
1

1!
q̂ðN þ 1Þ þ

1

2!
q̂ðN þ 2Þ

þ
1

3!
q̂ðN þ 3Þ þ · · · ðB18Þ

R.L. Hughes / Journal of Hydrology 278 (2003) 253–266262



Inverting these equations (by, for example, following

the argument leading from Eqs. (A.10)–(A.14)) we

have

q̂ðNÞ ¼ Q̂ðNÞ2 Q̂ðN þ 1Þ þ
1

2
Q̂ðN þ 2Þ

2
1

6
Q̂ðN þ 3Þ… (B19)

Hence using Eqs. (B16) with (B17), (B19) and (B21)

the numerator of Eq. (B2), that is qðNÞ; is obtained. It

follows that the functional J is given by

JðQÞ ¼ ðN!Þ21
X

anðN þ n 2 1Þ!QðN þ n 2 1Þ

ðB20Þ

where

an ¼ ð21Þn21 1

ðn 2 1Þ!
ðB21Þ

To obtain the denominator of Eq. (B2), we consider

the number of combinations in which D events can be

arranged without regard to the length of runs but with

an autocorrelation of r: We denote this number by P:

However, P takes the form

P ¼ J1ðK2L2 þ K3L3Þ ðB22Þ

where J1; K2; K3 and L2; L3 are factors as defined

below.

The factor J1 represents the number of ways in

which the events Sj ¼ þ1 can be arranged. Thus

J1 ¼ ðD=2Þ! ðB23Þ

Note that J1 cancels E1 in Eq. (B2).

The factors K2 and K3 represent the number of

ways in which the runs of Sj ¼ 21 events, as

determined by the discrete autocorrelation coeffi-

cient, can be embedded in the possible locations

between Sj ¼ þ1 events. The factor K2 corresponds

to the number of ways in which the runs can be

embedded in the possible sites when the end sites

are excluded. The factor K3 corresponds to the case

when the end sites are definitely included. Thus

putting N̂c ¼ N þ Nc

K2 ¼
ðD=2 2 1Þ!

ðD=2 2 1 2 N̂cÞ!N̂c!
ðB24Þ

for the case where the end sites are not included,

and

K3 ¼
ðD=2 2 1Þ!

ðD=2 þ 1 2 N̂eÞ!ðN̂e 2 2Þ!
ðB25Þ

for the case where the end sites are included.

Associated with these factors are the factors L2 and

L3; that represent the number of ways in which the

Sj ¼ 21 events may be positioned within the sites just

identified. In the case of the end sites being excluded,

the events can be arranged in ðD=2Þ! ways and these

arrangements must be partitioned into Nc non-empty

combinations by ðNc 2 1Þ partitions in ðD=2 2 1Þ

possible locations. Thus

L2 ¼
ðD=2Þ!ðD=2 2 1Þ!

ðD=2 2 N̂cÞ!ðN̂c 2 1Þ!
ðB26Þ

Similarly,

L3 ¼
ðD=2Þ!ðD=2 2 1Þ!

ðD=2 2 N̂eÞ!ðN̂e 2 1Þ!
ðB27Þ

Thus P is determined by Eq. (B22) and so by Eq. (B2)

is PrðD;M;N; rÞ: Note that P is independent of N

although in some problems allied to the present

problem it may be a function of N: The expression for

PrðD;M;N; rÞ: is complicated but it may be easily

evaluated by machine. It is not constructive to present

it in its canonical form. Instead, it is best to assemble it

from its parts as required. Note that some cancellation

occurs but this is slight. Most of the complication

occurs because of the correlation that may occur

between Sj and Sjþ1 as measured by r:

Thus

PrðD;M;N;rÞ¼
JðQÞ

P

¼
JðE1E2ðF3G3cHcþF3G3eHeþF4G4HeþF5G5HeÞÞ

J1ðK2L2þK3L3Þ

ðB28Þ

Appendix C. Probability distribution for runs

uniformly below the median in a serially correlated

finite sequence (opposite behaviour at the ends)

We again consider all ordered record of D

discrete events where each event is measured by a

real number. Each event, say event j; is either
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greater than the median of D in which case we set

Sj ¼ þ1; or less than the median in which case we

set Sj ¼ 21: (In the case of a record of odd length,

one event is the median and this event is randomly

given a Sj value of Sj ¼ 21 or Sj ¼ þ1:)

Consistent with the notation of Appendix B, we

define a median autocorrelation coefficient, r; for

a particular record by Eq. (1.1) in the text

r ¼
1

D 2 1

XD21

j¼1

SjSjþ1: ðC1Þ

This appendix is concerned with determining the

probability that a record drawn from random from

D discrete events has exactly N runs of M events

with Sj ¼ 21; given the autocorrelation coefficient

of the record. Note that by Eq. (C1) r can only

take certain discrete values. These discrete values

are different to those allowed in Appendix B

because of the different behaviour at the ends of

the sequences involved.

As in Appendix B, the present appendix is

concerned only with the cases where D is even

which by Eq. (C1) requires ðD 2 1Þr to be odd.

Simple interpolation is probably adequate in most

hydrological cases of interest where the record is of

odd length.

If the record is drawn without bias, then by

definition of bias, the probability is

PrðD;M;N; rÞ

¼
number of combinations with D;M;N; r

total number of combinations with D; r
ðC2Þ

As in Appendix B, the determination of both the

denominator and the numerator of the right hand side

of this equation need to be considered in turn.

To obtain the numerator of Eq. (C2), we

consider the number of combinations in which D

events can be arranged with at least N runs of

exactly length M: We denote this number by QðNÞ:

The numerator of Eq. (C2) is of the form qðNÞ ¼

JðQÞ where the functional J is defined later but it

is the same as in Appendix B. By contrast with

Appendix B, the number QðNÞ now takes the form

QðNÞ ¼ E1E2ðF3G3hHh þ F4G4hHhÞ ðC3Þ

where E1; E2; F3; F4; G3h; G4h and Hh are factors

as defined below.

The factor E1 represents the number of combi-

nations in which the Sj ¼ þ1 events can be

ordered. There are D=2 such events. Thus

E1 ¼ ðD=2Þ! ðC4Þ

The factor E2 represents the number of ways in

which the MN events involved in runs can be

drawn from the D=2 events with Sj ¼ 21 to form N

unlabeled ordered groups. Thus

E2 ¼
ðD=2Þ!

ðD=2 2 MNÞ!N!
ðC5Þ

The factors F3 and F4 represent the number of

possible locations for imbedding the N runs of Sj ¼

21 events in the D=2 events with Sj ¼ þ1:

The factor F3 corresponds to the case when S1 ¼

þ1 and SD ¼ þ1 after the runs have been imbedded.

In this case, there are ðD=2 2 1Þ possible sites between

the already imbedded events for the imbedding and so

F3 ¼
ðD=2 2 1Þ!

ðD=2 2 1 2 NÞ!
ðC6Þ

The factor F4 corresponds to the case when S1 ¼ 21

or SD ¼ 21 (but not both) after the imbedding of the

N runs of Sj ¼ 21 events. In each case, there are

ðD=2 2 1Þ possible sites for the imbedding plus one

site that must be used, and so

F4 ¼ 2N
ðD=2 2 1Þ!

ðD=2 2 NÞ!
ðC7Þ

The above factors are identical to those by the same

name in Appendix B. However, the remaining factors

vary from those given there.

The factors G3h and G4h represent the number of

possible locations for imbedding the runs of the

remaining ðD=2 2 MNÞ events of type Sj ¼ 21: There

are ðD=2 þ 1 2 NÞ sites available to be filled with

these events of type Sj ¼ 21:

In the case where S1 ¼ þ1 and SD ¼ þ1 after

the runs considered earlier were added, a 2 1 must

be produced at one but not both of the ends after

any further imbedding. (The value of r imposes the

case of these remaining events occupying only one

of the end sites as noted earlier. Such cases are the

subject of Appendix B.) If the correlation coeffi-

cient is to be r; then these events must occur in
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Nh ¼ 1
4
ðD 2 1Þð1 2 rÞ2 N þ 1

2
runs within the

available sites. It follows that for these two cases

G3h ¼ 2
ðD=2 2 1 2 NÞ!

ðD=2 2 N 2 NhÞ!ðNh 2 1Þ!
ðC8Þ

If, however, S1 ¼ þ1 and SD ¼ 21; or vice versa,

after the runs considered earlier were added, all

remaining events must be imbedded away from the

ends and so

G4h ¼
ðD=2 2 NÞ!

ðD=2 2 N 2 NhÞ!Nh!
ðC9Þ

Either way, these sites must be filled with the

remaining ðD=2 2 MNÞ events of type Sj ¼ 21: If

Nh sites are available, this can be done in Hh ways,

where

Hh ¼
ðD=2 2 MNÞ!ðD=2 2 MN 2 1Þ!

ðD=2 2 MN 2 NhÞ!ðNh 2 1Þ!
ðC10Þ

Hence by Eq. (C3), QðNÞ and QðN þ 1Þ can be

determined, and so QðNÞ2 QðN þ 1Þ can be

determined.

As stated earlier the numerator of Eq. (C2) is given

by q ¼ JðQÞ: Out of a single realisation of ðN þ 1Þ

runs it is possible to choose N runs in ðN þ 1Þ ways

and similarly if ðN þ 2Þ runs occur, it is possible to

choose N runs in ðN þ 1ÞðN þ 2Þ=2 ways. Hence, as in

Appendix A,

QðNÞ ¼ qðNÞþ qðN þ 1Þ
ðN þ 1Þ

1!

þ qðN þ 2Þ
ðN þ 2ÞðN þ 1Þ

2!

þ qðN þ 3Þ
ðN þ 3ÞðN þ 2ÞðN þ 1Þ

3!
· · · (C11)

where the sum extends to the maximum number of

runs of length M that is possible. Setting

Q̂ðNÞ ¼ N!QðNÞ ðC12Þ

q̂ðNÞ ¼ N!qðNÞ ðC13Þ

Eq. (B11) takes the form

Q̂ðNÞ ¼ q̂ðNÞ þ
1

1!
q̂ðN þ 1Þ þ

1

2!
q̂ðN þ 2Þ

þ
1

3!
q̂ðN þ 3Þ þ · · · ðC14Þ

Hence inverting gives

q̂ðNÞ ¼ Q̂ðNÞ2 Q̂ðN þ 1Þ þ
1

2
Q̂ðN þ 2Þ

2
1

6
Q̂ðN þ 3Þ… (C15)

Hence using Eqs. (C12) with (C13), (C15) the

numerator of Eq. (C2), that is qðNÞ; is obtained. It

follows that the functional J is given by

JðQÞ¼ ðN!Þ21
X

anðNþn21Þ!QðNþn21Þ ðC16Þ

where

an ¼ ð21Þn21 1

ðn 2 1Þ!
ðC17Þ

To obtain the denominator of Eq. (C2), we consider

the number of combinations in which D events can be

arranged without regard to the length of runs but with

an autocorrelation of r: We denote this number by P:

However, P takes the form

P ¼ J1K4L4 ðC18Þ

where J1; K4 and L4 are factors as defined below.

The factor J1 represents the number of ways in

which the events Sj ¼ þ1 can be arranged. Thus, as in

Appendix B,

J1 ¼ ðD=2Þ! ðC19Þ

Note that J1 cancels E1 in Eq. (C2).

The factor K4 represents the number of ways in

which the runs of Sj ¼ 21 events, as determined by

the discrete autocorrelation coefficient, can be

embedded in the possible locations between Sj ¼ þ1

events. The factor K4 corresponds to the number of

ways in which the runs can be embedded in the

possible sites when one and only one of the end sites is

included as in this appendix. Thus

K4 ¼ 2
ðD=2 2 1Þ!

ðD=2 2 N̂hÞ!ðN̂h 2 1Þ!
ðC20Þ

where N̂h for N þ Nh:

Associated with this factor is the factor L4; that

represent the number of ways in which the Sj ¼ 21

events may be positioned within the sites just

identified. Thus

L4 ¼
ðD=2Þ!ðD=2 2 1Þ!

ðD=2 2 N̂hÞ!ðN̂h 2 1Þ!
ðC21Þ
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Thus P is determined by Eq. (C18) and so by Eq. (C2)

is PrðD;M;N; rÞ: Note that, as in Appendix B, P is

independent of N but, as in the case considered in that

appendix, in some problems allied to the present

problem it may be a function of N: Again, the

expression for PrðD;M;N; rÞ is complicated but it may

be easily evaluated by machine, and it is not

constructive to present it in its canonical form.

Instead, it is best to assemble it from its parts as

required. Note that some cancellation occurs but this

is slight. As in Appendix B, most of the complication

occurs because of the correlation that may occur

between Sj and Sjþ1 as measured by r:

Thus

PrðD;M;N; rÞ ¼
JðQÞ

P

¼
JðE1E2ðF3G3hHh þ F4G4hHhÞÞ

J1K4L4

: ðC22Þ
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