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Abstract

This paper presents a new decoupled form of the formula for common-shot or common-receiver amplitude-preserving elastic

prestack depth migration (PreSDM), which can be used for estimating angle-dependent elastic reflection coefficients in laterally

inhomogeneous anisotropic media. The multi-shot or multi-receiver extension of this formula is suitable for automated prestack

amplitude-versus-angle (AVA) elastic inversion of ocean-bottom cable (OBC), walkaway VSP (WVSP) or standard towed-cable

data at any subsurface location. The essence of the theory is a systematic application of the stationary-phase principle and high-

frequency approximations to the basic elastic Green’s theorem. This leads to nonheuristic explicit wave mode decoupling and

scalarization of vector PreSDM. Used in combination, ray-trace and finite-difference (FD) eikonal solvers create a useful tool to

calculate accurate Green’s function travel time and amplitude maps. Examples of synthetic OBC data and applications to field

WVSP data show that the new imaging technique can produce a clear multi-mode elastic image.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In vector seismic processing, it is common practice

to enhance strongly polarized wave modes prior to

prestack depth migration (PreSDM) (e.g. Dillon et al.,

1988; Hou and Marfurt, 2002). However, migration

artifacts due to incomplete wavefield separation often

make it difficult to interpret the migrated amplitudes

in terms of reflecting surface excitations. To overcome

this, we may formulate the vector PreSDM procedure

as a coupled wavefield reconstruction problem (Sena

and Toksöz, 1993; Hokstad, 2000) based on the

Kirchhoff–Helmholtz (KH) elastic modeling theory
851/$ - see front matter D 2003 Elsevier B.V. All rights reserved.
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(Wapenaar and Berkhout, 1989; Druzhinin et al.,

1998; Schleicher et al., 2001). In theory, because of

the elastic imaging principle (Kuo and Dai, 1984)

separation of wave modes occurs implicitly in the

existing coupled KH migration algorithms. In prac-

tice, however, minimization of cross-talk energy be-

tween modes is not possible on account of cross-

component noise (Zhe and Greenhalgh, 1997). For

example, in 3D inhomogeneous anisotropic media

strong frequency dependent coupling can occur be-

tween the two shear modes. This makes the aniso-

tropic migration process considerably more difficult.

To achieve some degree of robustness, a number of ad

hoc weighting functions have been incorporated into

multi-component stacking procedures (Milkereit and

Spencer, 1987; Takahashi, 1995; Kennett, 2000).

These arrival-angle directivity functions accomplish

a partial wave mode selection by increasing the vector

signal-to-noise ratio.
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The purpose of this paper is to show that it is

possible to achieve a complete rigorous wavefield

separation during migration whilst avoiding the lim-

itations of the migration schemes mentioned above.

As with acoustic PreSDM (Docherty, 1991), a non-

heuristic, systematic approach based on the stationary-

phase principle (Bleistein, 1984) is applied to the

basic KH integral. To create instantaneous scalar

projections, we use complex-trace transformations of

input data (Vidale, 1986) as well as arrival-angle and

polarization stacking weights in addition to the am-

plitude weights implicit in true-amplitude PreSDM.

The paper is focused on a rigorous derivation of a

true-amplitude migration formula for mode-converted

data. It does not address the estimation of parameters

for the anisotropic migration model.
2. Basic notations

All lower-case Roman indices take values 1, 2 and

3, and the summation rule over repeated indices is

employed throughout this paper. Cartesian compo-

nents of the vector p will be denoted by pk; 3� 3
Fig. 1. Geometry of the problem: e(m) is the plane-wave unit polarization vec

path SQ, e 0
(lm) is the plane-wave unit polarization vector of the lth wave m

origin at R, h(m) (S) is the acute angle the emerging ray SQ makes with th
matrices will be denoted either by g or gij; Bk will

designate the spatial derivative B/Bxk with respect to

Cartesian coordinates xk of the current point; Cijkl =

Cjikl =Cijlk =Cklij will denote the Cartesian compo-

nents of the fourth rank elastic stiffness tensor C.

The point Q will be specified by the position vector

r(Q)={xk(Q)}; r(Q,R) =Ar(Q)� r(R)A will denote

the distance between the points Q and R. The time

derivative Bf/Bt will be denoted by ḟ. The symbol O

will indicate the asymptotic estimate. We shall deal

with the steady-state wavefield u(Q,t) = u(Q)exp

(� ixt) as a function of the time t and spatial variables

r(Q) (i ¼
ffiffiffiffiffiffiffi
�1

p
and x is the frequency). The time

factor exp(� ixt) will be suppressed henceforth from

all field quantities.
3. Formulation of the problem

Referring to Fig. 1, we formulate the migration

problem of recovering subsurface structure in the

region V under consideration. This region is occupied

by an inhomogeneous and anisotropic medium de-

scribed by the fourth rank elastic stiffness tensor C(Q)
tor of the mth wave mode associated with the two-point emerging ray

ode associated with the specular (say, reflected) ray RQS0 with the

e normal to R0 at S.
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and the mass density q(Q). It is bounded internally by

the surface R0 +R, and externally by a large surface

Rl, where R0 denotes the acquisition surface and R
the material discontinuity surface (e.g. bottom reflec-

tor). Let BV=R0 +R +Rl be the boundary of the

volume V with outward pointing unit normal q, as

shown in Fig. 1. The spherical or cylindrical interface

Rl closes the target zone as rl!l, where rl
measures radial distance. We have many multi-com-

ponent records of the displacement vector u(S,R,t) as a

function of time t. These data are recorded at obser-

vation points R in the borehole (walkaway VSP,

WVSP) or on the sea floor (ocean-bottom cable,

OBC), each from different source positions S on R0.

In addition, streamer data u(S,R,t) may be available

for the source and receiver points S and R above the

sea floor. Note that the WVSP measurements could be

transformed into reverse VSP data, acquired with a

down-hole source (DHS) at point R and a moving

receiver at S, through the principle of reciprocity valid

for elastic waves and marine observations (Mittet and

Hokstad, 1995). We shall assume that special con-

ditions, known as the radiation conditions (Wapenaar

and Berkhout, 1989), are imposed on the far field

behaviour of the displacement and traction vectors, so

that the energy flux through the surface Rl will

always be in the outward direction. The overall aim

is to retrieve all material discontinuities bounded by

the surface BV via downward continuation of the

observed displacement vector into the target region.

In doing so, we will explore special imaging con-

ditions for outgoing elastic waves propagating in the

region V.
4. Theoretical background

4.1. Basic integral theorem

Applying the elasto-dynamic Green’s theorem

(first integral formula) to the steady-state wavefield

u(Q,t) in the volume V without body forces produces

(Wapenaar and Berkhout, 1989)
umðQÞ ¼ �
Z

R0þR
fqjðSÞCijklðSÞ½uiðS;RÞBkglmðS;QÞ

� gimðS;QÞBkulðS;RÞ�drðSÞg; QaV ð1Þ
Here, ui(S,R) is the ith component of the steady-

state displacement vector u(S,R,x), qj is the jth

component of the unit normal to the surface BV,

Cijkl(S) are the elastic parameters of the medium at

the point S, and dr is an infinitesimal area element

on BV. In Eq. (1), the Green’s displacement tensor

gim(S,Q) represents the displacement component at S

in the direction of the xm-axis due to a concentrated

body force applied at the point Q in the direction of

the xi-axis. For homogeneous boundary conditions,

the reciprocity relation gim(S,Q) = gmi(Q,S) is satis-

fied. Knowing the boundary values u(S,R,t) and

jSu(S,R,t) of the wavefield and its spatial gradient,

we can calculate the total wavefield inside V from

Eq. (1).

4.2. Mode expansions

Let the observed frequency-domain wavefield u be

decomposed in the form (Druzhinin et al., 1998)

u ¼
XM

m¼1

uðmÞ ð2Þ

with terms

uðlÞ ¼ aðlÞuðlÞ; ð3Þ

where

uðlÞ ¼ AðlÞexpðiuðlÞÞ ð4Þ

and the index l = 1, 2,. . ., M corresponds to the

arrivals of various elementary propagating wave

modes. For example, M may account for various types

of reflected/transmitted waves caused by (possibly)

different interfaces (Reiter et al., 1991; Červený,

2001). Eq. (3) is the well-known vector complex-trace

representation (Vidale, 1986), in which the attributes

a(l), A(l) and u(l) are, respectively, the polarization,

amplitude and phase functions of the lth wave mode.

In the high-frequency limit (e.g. Chapman and Coates,

1994), the phase function becomes u(l) =xs(l) and is

expressed in terms of the travel time function s(l)

corresponding to primary and multiple reflections,

converted waves, etc. Eq. (2) is the implicit represen-

tation of the fundamental superposition principle

based on the linearity property of the elasto-dynamic
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equations of motion (Wapenaar and Berkhout, 1989;

Červený, 2001).

Similarly, one can introduce the following dyadic

frequency-domain Green’s eigenvector expansion

(Ben-Menahem et al., 1991; Druzhinin et al., 1998)

gim ¼
XN
m¼1

gðmÞe
ðmÞ
i eðmÞm ð5Þ

by summation over different arrivals of N elementary

wave modes

gðmÞ ¼ GðmÞexpðs iUðmÞÞ; s ¼ F1 ð6Þ

with the amplitude and phase functions G(m) and U(m),

respectively. In Eq. (5), e(m) is the unit polarization

vector and N accounts for Green’s function far-field

terms, coupled terms and multiples if any (Reiter et

al., 1991). In one-way back propagation or migra-

tion, we use the advanced or anti-causal Green’s

function by setting s=� 1 in Eq. (6). In the simple

case of a smoothly varying background medium and

a far-field limit within the domain V, the superscripts

m,l = 1, 2, 3 refer to three wave types corresponding

to one quasi-P and two quasi-shear wave modes

(Ben-Menahem et al., 1991; Chapman and Coates,

1994). In this case, the polarizations e(m), the ampli-

tudes G(m), and the phase functions U(m) =xT(m) may

be determined from the Christoffel’s equation, the

transport equation, and the eikonal equation for the

main component of the wavefield (Červený, 2001).

Concerning amplitude computations, see also Eqs.

(A1) and (B3).

4.3. Downward continuation

Substituting expansions (2) and (5) into Eq. (1) and

taking into account expressions (3), (4) and (6) along

with the high-frequency approximations (Schleicher et

al., 2001)

BkuðlÞcixuðlÞ
Bks

ðlÞ ð7Þ

and

Bkgimcix
XN
m¼1

gðmÞe
ðmÞ
i eðmÞm BkT

ðmÞ ð8Þ
gives rise to the following multi-mode downward

continuation equation

uðQÞc
X
l;m

uðlmÞðQÞ ð9Þ

with vector terms

uðlmÞðQÞ ¼ ix
Z

R0þR
feðmÞðQÞWðlmÞðS;Q;RÞAðlÞðS;RÞ

� GðmÞðS;QÞexp½iuðlmÞðS;Q;RÞ�drðSÞg;
ð10Þ

where

/ðlmÞðS;Q;RÞ ¼ x½sðlÞðS;RÞ � T ðmÞðS;QÞ� ð11Þ

and

WðlmÞðS;Q;RÞ ¼ qjðSÞCijklðSÞ
� ½eðmÞl ðSÞaðlÞi ðSÞBkT

ðmÞðS;QÞ
þ e

ðmÞ
i ðSÞaðlÞl ðSÞBks

ðlÞðS;RÞ� ð12Þ

Integral (9) over the surface R0 is the explicit one-

way KH downward continuation formula for multi-

mode reverse-time extrapolation in the common-re-

ceiver wave-mode attribute domain. It is consistent

with the concept of reflection/transmission operators in

composite regions (Kennett, 1984), which bears a

formal resemblance to the ray-theory decomposition

of a field into a set of ray contributions (Červený,

2001). Hence, the full suite of elastic wave interactions

can be followed by compounding the operators (10).

The frequency-weave number (x� k) coupled version

of formula (10) was derived byWapenaar and Berkhout

(1989). A similar time-domain formula was obtained

by Kuo and Dai (1984) for one-way propagation in

isotropic media. It was extended by Sena and Toksöz

(1993) to anisotropic media and adapted to marine

observations by Hokstad (2000). These papers ignore

the integral (9) over the surface R simply by selecting

appropriate wave modes at the pre-processing stage. In

contrast to previous studies (Kuo and Dai, 1984; Sena

and Toksöz, 1993), the use of Eq. (10) does not depend

on whether or not the surface R0 is free since the

boundary condition Cijkl(S)Bkul(S, R) = 0 is not used.

Hence, Eq. (10) is suitable for recursive downward

continuation of arbitrary data in multi-layered media.
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4.4. Stationary-phase conditions

According to the stationary-phase principle (Bleis-

tein, 1984; Schleicher et al., 2001), the Green’s

function isochrone surface T (m) =t must be tangent to

the data-space isochrone surface s(l) = t at the station-
ary point(s) S of the boundary surface BV. Conven-

tionally, we select upgoing waves by omitting

downgoing energy at BV (Docherty, 1991). Since

the major contributions to the surface integral (10)

occur at locations where the phase is stationary, we

have

Bks
ðlÞðS;RÞ ¼ AkT

ðmÞðS;QÞ; SaR0 ð13Þ

and

Bks
ðlÞðS;RÞ ¼ �BkT

ðmÞðS;QÞ; SaR: ð14Þ

Condition (13) picks out the point S on the upper

surface R0 where the direction of the specular upgoing

ray path SR is coincident with the direction of the

upgoing ray path SQ. Likewise, condition (14) is

satisfied on the lower surface R where the direction

of the specular upgoing ray path SR is opposite to the

direction of the downgoing ray path SQ. Note that

Docherty (1991) adopts less stringent stationary-phase

conditions on R by assuming that qiBis
(l)(S,R) =� qi

BiT
(m)(S,Q).

From Eqs. (13) and (14) it follows that

aðlÞðSÞ ¼
eðmÞðSÞ SaR0

�eðmÞðSÞ SaR

8<
: ð15Þ

Now it is clear that the integral (9) over the surface

R vanishes due to conditions (14) and (15). Moreover,

we note that (Schleicher et al., 2001)

qjðSÞCijklðSÞeðmÞi ðSÞaðlÞl ðSÞBkT
ðmÞðS;QÞ

¼ qðSÞqjðSÞmðmÞj ðSÞ ¼ qðSÞmðmÞðSÞcoshðmÞðSÞ; ð16Þ

where v j
(m) is the jth component of the group velocity

vector v(m) corresponding to the mth Green’s function

wave mode (Ben-Menahem et al., 1991; Červený,

2001), v(m) =Av(m)A is the group velocity, and

h(m) = cos� 1(l (m)
q) is the acute angle between the ray

A. Druzhinin / Journal of Appl
direction vector l (m) = v(m)/v(m) and the normal vector q

(Fig. 1).

Finally, combining Eqs. (13)–(16), and taking into

account Eqs. (2)–(4), a stationary-phase approxima-

tion of expansion (9) yields

uðQ; nÞc
XN
m¼1

uðmÞðQ; nÞ; n ¼ x; t; ð17Þ

with vector terms

uðmÞðQ;xÞ ¼ 2ix
Z

R0

eðmÞðQÞuðmÞðS;R;xÞ

gðmÞðS;QÞWðmÞðS;QÞdrðSÞ ð18Þ

or

uðmÞðQ; tÞ ¼ 2

Z
R0

u̇ðmÞ½S;R; t þ T ðmÞðS;QÞ�

� GðmÞðS;QÞWðmÞðS;QÞdrðSÞ; ð19Þ

where

u̇ðmÞðS;R; tÞ ¼ eðmÞðQÞu̇ðmÞðS;R; tÞ; ð20Þ

uðmÞðS;R; nÞ ¼ uðS;R; nÞ 
 eðmÞðSÞ
� �

; ð21Þ

WðmÞðS;QÞ ¼ qðSÞvðmÞðSÞcoshðmÞðSÞ; ð22Þ

and the function g(m)(S,Q) is defined by Eq. (6) with

s=� 1. Eq. (18) is a high-frequency approximation of

the back-propagated wavefield that does not require

the wave-mode expansion (2) or the integration over

the reflector R. Even though this equation and its

time-domain counterpart (19) are still applicable to

elastic wave propagation in general anisotropic media,

they have the very appealing form of a multiple-

weighted reverse-time (back propagated) diffraction

stack of the transformed data given by Eq. (20) (Tygel

et al., 1993). The factor c(r) (Eq. (22)) and amplitude

scaling terms embody the effects of geometrical

spreading, transmission loss, and KH obliquity. With

a slightly different meaning of input quantities in-

volved, this resembles the common-receiver acoustic

KH datuming formula (Docherty, 1991) due to the

stationary-phase conditions (Eqs. (13)–(15)) and the

identity (Eq. (16)).
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4.5. Decoupled migration

To derive decoupled imaging conditions, let us

define the following scalar product

uðlmÞðQ; nÞ ¼ uðQ; nÞ 
 e
ðlmÞ
0 ðQÞ

� �
; ð23Þ

where the transformed wavefield u(Q,n) is given by

Eq. (17) and e0
(lm)(Q) is the unit polarization vector

corresponding to a specular mth outgoing wave at

point Q, due to the incident lth wave for the ray path

RQ propagating from receiver R (Schleicher et al.,

2001). Substituting Eq. (17) for u(Q,x) and noting

that (e(g)(Q)
e0(lm)(Q))c 0 when g p m gives

uðlmÞðQ;xÞc2ix
Z

R0

uðmÞðS;R;xÞgðmÞðS;QÞ

WðmÞðS;QÞXðlmÞðQÞdrðSÞ ð24Þ
with

X ðlmÞðQÞ ¼ ðeðmÞðQÞ 
 e
ðlmÞ
0 ðQÞÞ ¼ cosaðlmÞðQÞ ð25Þ

The new obliquity factor X(lm)(Eq. (25)) plays a

very important role in the wave-mode decoupling

process. Similar to the arrival-angle weight empiri-

cally derived by Takahashi (1995), it enhances the

contribution of the specular point as a(lm)! 0 and

suppresses false contributions far from that point.

Since the vector e0
(lm)(Q) is the expected polarization

direction for the scattering point Q, the factor X(lm)

can be thought of as a polarization filter that
minimizes the projection of the displacement
vector at Q onto the plane with normal e0

(lm)(Q).
For instance, this filter should handle the isotropic
shear-wave coupling problem because the polar-
ization direction of the SV-wave is orthogonal to
that of the SH-wave.

Bearing in mind the analogy with acoustic KH

migration (Docherty, 1991), the decoupled imaging

condition may be written as

I ðlmÞðQ; tÞ ¼
Z þl

�l
HðxÞexpð�ixtÞ u

ðlmÞðQ;xÞ
uðlÞðR;QÞ dx;

t ! 0; ð26Þ

where I (lm)(Q,0) is the migrated image at the target

point Q, the function u(lm)(Q,x) is determined from

Eq. (24), u(l)(R,Q) is the incident wavefield defined
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by Eq. (4), and H(x) is the frequency-domain window

function which emphasizes the band limited nature of

observed records.

Following Červený (2001), we construct the spec-

ular ray RQS0 with ray termination points R and

S0aR0 (Fig. 1). This allows us to define the ampli-

tude-normalized plane-wave reflection/transmission

coefficient K(lm)(Q) for our choice of incident and

outgoing wave modes (Schleicher et al., 2001). It can

be shown that (cf. Appendix B)

KðlmÞðQÞcsechðmÞðS0Þ lim
t!0

I ðlmÞðQ; tÞ=ḟ ðtÞ; ð27Þ

where f (t) XF(x) denotes the wavelet function of the

data u(S,R,x) after zero-phase deconvolution. It is

assumed that deconvolution is performed using the

window function H(x) and the original source signa-

ture f0(t) XF0(x). The derivation in Appendix B

proves that Eq. (26) is the rigorous KH elastic

imaging condition since no heuristic assumptions

have so far been made.

Substituting Eq. (19) into Eq. (27) and invoking

the well-known property of the d-function

1

2p

Z þl

�l
ix expð�ixtÞdx ¼ ḋðtÞ ð28Þ

we have

KðlmÞðQÞ ¼ 4p
AðlÞðR;QÞ

�
Z

R0

u̇0½S;R; t¼sðlmÞðS;Q;RÞ� 
eðmÞðSÞ
��

� GðmÞðS;QÞWðmÞðS;QÞXðlmÞðQÞdrðSÞ;
ð29Þ

where s(lm)(S,Q,R) = s(l)(R,Q) + T(m) (S,Q)u s(lm) is the

travel time along the composite diffracted ray path

SQR (Fig. 1), u̇0(S,R,t) is the input data u̇0(S,R,t) after

source deconvolution using the filter ixH(x)F0(x)

according to Eq. (27), the ray-theory amplitudes

G(m)(S,Q) and A(l)(R,Q) are specified by Eqs. (A1)

and (B3), and the obliquity factors W(m)(S,Q) and

X(lm)(Q) are given by Eqs. (22) and (25), respectively.

Eq. (29) is a common-receiver true-amplitude elas-

tic KH migration formula that can be used for an

automated amplitude-versus-angle (AVA) inversion at

every subsurface location (cf. Appendix C). It provides

a true angle-dependent reflection coefficient (not a



Table 1

Elastic VTI parameters of the Moreni model with the parameter c= 0

Layer

number

Vp

(km/s)

Vs

(km/s)

q
(g/cm3)

e d

1 1.50 0.000 1.00 0.0000 0.0000

2 1.60 0.250 1.85 0.0000 0.0000

3 1.85 0.462 2.00 0.0930 0.0300

4 1.90 0.500 2.10 0.1260 0.0350

5 2.20 0.880 2.30 0.1372 0.0400

6 2.60 1.130 2.10 0.1944 0.0600

7 2.40 0.960 2.30 0.0000 0.0000

8 2.80 1.220 2.25 0.2182 0.0700

9 2.70 1.230 2.40 0.1720 0.0600

10 3.00 1.500 2.30 0.0000 0.0000

11 2.60 1.180 2.20 0.1820 0.0500

12 2.40 1.000 2.40 0.1649 0.0450

13 2.70 1.230 2.30 0.0000 0.0000

14 3.20 1.400 2.20 0.2182 0.0700

15 2.80 1.470 2.40 0.1600 0.0500

16 3.20 1.600 2.40 0.1944 0.0600

17 3.50 1.800 2.40 0.0000 0.0000

Fig. 2. Original 17� 16 (crosses) and interpolated 103� 16 (solid

lines) Moreni horizon grids: (a) standard cubic spline interpolation

from the CWP/SU library of CSM and (b) L2 B-spline fitting

(Cheney and Kincaid, 1999).
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stacked amplitude averaged over all incident and

scattered angles) expressed in explicit decoupled form

by using the travel times, amplitudes and polarization

vectors of incident and outgoing wave modes. Wave-

field separation and regular noise suppression is per-

formed through the use of the polarization projection

(Eq. (20)) and special implitude weights (Eqs. (22) and

(25)) during the migration process. This process is

based on performing the diffraction stack along the

Huygens’ isochrone s(lm) = t with respect to the sub-

surface point Q. Eq. (29) is consistent with the prin-

ciple of elastic-wave PreSDM (Kuo and Dai, 1984):

when the decoupled downward continuation is carried

out to the point Q at the location of the reflector, the

phase of the reflected/transmitted qP- or qS-wave

matches that of the direct wave coming from the point

R. Therefore, the enhanced images are formed at these

locations through the simultaneous migration of qP-

and qS-waves. Otherwise, Eq. (29) yields a negligible

value.

4.6. Complex-trace migration

In Eq. (29), the remaining cross-talk energy

could be due to possible velocity errors or the

frequency-dependent ellipticity of the trajectories of

the arrival ellipses caused by strong lateral velocity

variations. To minimize this energy, each vector trace
u̇0(S,R,t) is converted to the time-domain analytic

signal

u̇0ðS;R; tÞcRe½aðlÞðS;R; tÞu̇ðlÞðS;R; tÞ� ð30Þ

similar to its frequency-domain counterpart given by

Eq. (3). In the above expression, the instantaneous

polarization a(l)(S,R,t) and the instantaneous magni-

tude u̇(l)(S,R,t) of the lth wave mode can be expressed

in terms of the 3� 3 covariance matrix K(t), as
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described by Vidale (1986). When Eq. (30) is used in

Eq. (29), the final PreSDM formula becomes

KðlmÞðQÞ ¼ 4p
AðlÞðR;QÞ Re

Z
R0

u̇ðlÞðS;R; t ¼ sðlmÞÞ

� EðlmÞðS;R; t ¼ sðlmÞÞGðmÞðS;QÞWðmÞðS;QÞ
� XðlmÞðQÞdrðSÞ ð31Þ

with the instantaneous polarization weight

EðlmÞðS;R; tÞ ¼ eðlÞðS;R; tÞ 
 eðmÞðSÞ
� �

ð32Þ

As with semblance weights used in multi-compo-

nent stacking (Milkereit and Spencer, 1987; Kennett,

2000), the polarization filter E (lm)(Eq. (32)) can help

to increase the quality of wavefield separation during

PreSDM. Imaging via Alford rotation (Hou and Mar-

furt, 2002), extrapolation of scalar potentials (Zhe and

Greenhalgh, 1997), and the controlled direction re-

ception filtering in (s–p) space (Greenhalgh et al.,
Fig. 3. The Moreni 500� 500 vertical P-wave velo
1990) may be regarded as alternative implementations

of the projection E (lm)(Eq. (32)). Takahashi (1995)

has shown that the weights w(m), S2(lm) and E(lm) (Eqs.

(22), (25) and (32)) can largely decrease false images

resulting from limited aperture and travel-time errors.

4.7. Final image

According to the elastic migration principle (Kuo

and Dai, 1984), the final offset-independent zero-

order images K0
(lm) (l,m = 1, 2, 3) in Appendix C

should form enhanced intercept/gradient recovery at

the depth of the actual reflector RVin Fig. 1, i.e.

AK0
(ll)(Q)A~O(1) if QaRVand AK0

(ll)(Q)Ab1 oth-

erwise. Similarly, the images K0
(ml)(Q) (v p l) should

permit enhanced events at the conversion point(s)

Q c , i . e . AK ( ml) ( Q )A~O ( 1 ) i f Q = Q c a n d

AK(ml)(Q,R)Ab1 otherwise. This explains the value

of using cross-component information in converted-

wave imaging.
city grid after 2D L2 B-spline interpolation.
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4.8. Marine streamer data

Eq. (31) is also valid for the towed-cable data

u(S,R,t). In this case, we set E(lm) = 1 to obtain

KðlmÞðQÞ ¼ 4p
AðlÞðR;QÞ

Z
R0

u̇ðS;R; t ¼ sðlmÞÞGðmÞ

� ðS;QÞWðmÞðS;QÞXðlmÞðQÞdrðSÞ ð33Þ

Assuming an acoustic isotropic medium and a

spherical marine source, Hokstad (2000) provides an

alternative discussion of this particular case.

4.9. Direct-wave VSP imaging

Let a multi-offset walkaway or reverse VSP survey

be configured to give illumination of the target V

above the geophone or DHS R for different source or

receiver positions S. Although we do not consider

downgoing waves at R +R0, Eq. (31) is still applica-

ble to backward propagation of transmitted or direct

waves between the geophone or DHS datum level R
and the acquisition surface R0. Here, we explore the

A. Druzhinin / Journal of Appl
Fig. 4. Common-shot OBC synthetic seismogram (shot 136, trace numbe

normalized on their maximum values. Data noise is represented by severe
similarity between the imaging condition (26) and the

so-called excitation-time imaging condition of Chang

and McMechan (1986). In the case of direct-wave

Pre SDM, Eq. (27) yields the transmission coefficient

at the scattering point QaV. This coefficient is con-

structed by computing the amplitude of transmitted

energy after one-way downward continuation from the

surface R0 to the point Q using Eq. (31). In doing so,

the transmitted part of the observed wavefield is

isolated prior to imaging. The result of downward

continuation corresponds to an estimated direct arrival

time from the point R. See Chang and McMechan

(1986) for details of direct-wave migration.
5. Numerical implementation

5.1. Model building

As with other PreSDM techniques, the present

approach implicitly assumes that the input interval

velocity model is known. For the sake of simplicity,

the focus is on the 2D smooth vertical transverse

isotropy (VTI) model to be used in PreSDM. Some
r versus time): Ux and Uz components of the displacement vector

aliasing artifacts of the forward modeling algorithm.



Fig. 5. Example of downgoing qP-wave travel-time and amplitude

computations using the first-arrival FD eikonal solver and Eq. (D1)

(shot 136): (a) the travel time s(1) (S,Q) and (b) the ratio J (1) (S,Q)/

r(S,Q). Arrow indicates the region of strong curvature of the rays.

The density of rays decreases in this region.
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considerations on smoothing are discussed by

Gajewski et al. (2002). Here, we consider the simple

and elegant least-squares (L2) smoothing of geomet-

rical parameters and elastic parameters using B-

spline basis functions (Cheney and Kincaid, 1999).

The geometrical parameters are represented by

densely sampled depth horizon grids after accurate

B-spline interpolation of original irregular grids. The

elastic parameters are the vertical P-wave velocity

vP, the vertical S-wave velocity vS, the density q,
and the Thomsen’s (1986) parameters e, d, and c. It
is assumed that these parameters may be represented

by smoothly varying functions of x and z. Firstly, a

special procedure assigns up to 16 spline coeffi-

cients to each individual grid rectangle ij. Secondly,

the B-spline with continuous first and second deriv-

atives is evaluated at {z,x}, where ziV zV zi + 1 and

xjV xV xj + 1. In order to obtain as a smooth surface

as possible, we demand the second derivatives to be

zero at the boundaries of the model. The present

interpolation tool is useful for creating a model grid

for finite-difference (FD) modeling, interactive ve-

locity editing and producing a final velocity field

consistent with the structure seen on migrated or

stacked sections for input to PreSDM.

5.2. Travel time computations

The accurate calculation of the travel time T(m)(S,Q)

is important to the success of PreSDM. We compute

both FD and ray-trace travel times for the whole

model. The Hamiltonian system of kinematic ray

equations (Červený, 2001; Hanyga et al., 2001) is

solved numerically using the Runge–Kutta method of

order kz 2 (Cheney and Kincaid, 1999). Existing FD

eikonal solvers (Podvin and Lecompte, 1991) are used

to produce first-arrival travel time maps on the mi-

gration grid. Following Coman and Gajewski (2000),

later arrivals Tj
(m)(S,Q) ( jz 1) are detected by con-

structing the KMAH-index map (cf. Appendix D). If

KMAH indicates later arrivals we only use ray-trace

travel times since we have no FD algorithms to

account for singular regions. These travel times are

interpolated from ray end points onto the migration

grid by B-splines. The eikonal equation is invoked to

control errors of ray tracing (Gajewski and Pšencı́k,

1990; Hanyga et al., 2001). We examine reciprocity

T (m)(S,Q) = T (m)(Q,S) to check accuracy of FD travel
time computations. The similar considerations apply

to the travel time s(l)(R,Q).

5.3. Amplitude computations

To compute the geometrical spreading (Eq. (A2)), a

travel time-based strategy (Gajewski et al., 2002) is

implemented. In the present algorithm, this involves

the generation of the wavefront curvature attribute, as

described by Roberts (2001). See Appendix D for a

detail. Also, the dynamic ray tracing system (DRT) is

solved by tracing rays through the model over spec-
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ified range of ray take-off angles according to the ray

history code (Gajewski and Pšencı́k, 1990; Hanyga et

al., 2001). We examine the reciprocity relation

G(v)(Q,S) =G(v)(S,Q) to estimate numerical errors of

amplitude computations. In Eq. (C5), the amplitude

A(l)(R,Q) can be expressed in terms of the travel time

s(l)(R,Q) based on a similar strategy.
6. Synthetic example

First, we test the technique on the VTI model

‘‘Moreni’’ provided by Constantin Gerea and Laurence

Nicoletis (Institut Franc�ais du Pétrole). This realistic

anisotropic model simulates a typical marine multi-
Fig. 6. FD scheme: (a) downgoing and (b) upgoing first-arrival FD travel t

factor smax
(m) for m= 1, 3 is as follows: s(max)

(1) = 4.470 and s(max)
(3) = 2.884 (s). Th

illumination.
layered structure with curvilinear interfaces and homo-

geneous isotropic and VTI layers. The elastic parame-

ters are listed in Table 1. The geometrical parameters

are represented by densely sampled horizon grids after

spline interpolation of original irregular grids.

Accurate and efficient spatial interpolation is es-

sential for PreSDM. Fig. 2 compares the standard

cubic spline interpolation and the L2 B-spline inter-

polation of the Moreni horizons. Clearly, the L2 B-

splines (Fig. 2b) are closer to the exact values than are

the standard cubic splines (Fig. 2a). This is because

the L2 B-spline interpolation produces the best esti-

mate of any function expressed as a linear combina-

tion of spline basis functions. The final velocity model

in Fig. 3 consists of 500� 500 grid cells.
ime computations for qP- and qSV-waves (shot 136). The time scale

e qSV-wave travel-time maps exhibit corner artifacts due to irregular



K K
ð31Þ ð33Þ at the target point Q.
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The 2D pseudospectral method (Fornberg, 1988)

was applied to create a two-component (X–Z) elastic

synthetic ocean-bottom cable (OBC) data set (Fig. 4).

The corresponding modeling code was provided by

Enru Liu of the BGS (original version credited to

Huang, 1992). In this example, we study the propa-

gation of qP- and qSV-waves generated by a 30 Hz

spherical isotropic source ‘‘explosion’’ (v,l = 1,3).

SH-wave propagation (v = l = 2) is not considered.

In fact, SH-wave motion is not affected by anisotropy

since c = 0. The data set consists of 256 common-shot

gathers with 62.5 m shot spacing. Each common-shot

gather consists of 500 receivers with 32 m receiver

spacing. The traces are sampled at 3 ms with record

length of 7.5 s.
Fig. 7. Ray tracing scheme: (a) downgoing and (b) upgoing initial-value ra

km). Poor illumination of the downgoing ray tracing is seen. The a

interpolation.
This data set has undergone qP–qP and converted-

wave imaging tests based on Eq. (31). In the 2D case,

Eq. (31) produces four images as the output of the

PreSDM scheme. Common-shot reflectivity images are

computed for each pair of incident and outgoing wave

modes in order to construct the 2�2 common-receiver

scattering matrix

ð11Þ ð13Þ
	 


K K

The ray-FD travel-time and amplitude calculation
is the most important building block. Reciprocity of
travel times T (m)(S,Q) and amplitudes G(m)(S,Q) is
used to estimate the error of Green’s function com-
putations due to numerical integration (ray tracing)
or numerical differentiation (FD). In doing so, we
y tracing for qP- and qSV-waves (sources {8.5, 0.0} and {8.5, 4.0}

rrow indicates the shadow zone due to the artifact of B-spline



Fig. 8. Results of common-shot PreSDM using Eq. (31) for shots

1–256: (a) qP–qP versus (b) qP–qSV reflectivity sections for the

Moreni model in Fig. 3. Data noise has more impact when

amplitudes are low. To overcome this instability, a multi-receiver

extension of Eq. (31) is required (cf. Appendix C).

Fig. 9. Example of automated AVA analysis in Appendix C: (a)

theoretical qP–qP exploding reflector model (i.e. normal-incidence

reflection coefficient convolved with source function) and (b) the

angle-independent intercept term K 0
(11) estimated from a multi-

receiver double diffraction stack (Eq. (C5)) for l= m= 1.
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compare downgoing and upgoing travel times and
amplitudes. Downgoing ray tracing consists of find-
ing all the rays SQ that leave the sources S and
propagate through the model. Upgoing rays QS have
their termination points at the surface R0. What
we get from the differences T(m)( S,Q)� T(m)(Q,S)
and G(m)(S,Q)�G(m)(Q,S) are the error estimates
prior to spatial interpolation with error control. This
guarantees a stable and accurate final output of L2
B-spline interpolation, where the nodes for interpo-
lation are chosen to be the travel-time and amplitude
data with error bounds.

In Figs. 5a and 6, the FD travel times of direct

downgoing and upgoing qP- and qSV-waves are



Fig. 10. Comparison of peak instantaneous amplitude values along horizons 4 and 15 in Fig. 9a (dashed line) and b (solid line).
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calculated using fast numerical algorithm developed

by Linbin Zhang at UC Berkeley. This algorithm

extends the explicit FD eikonal solver by Podvin

and Lecompte (1991) to VTI media. It is based on

the approximate anisotropic dispersion relations

obtained by Schoenberg and de Hoop (2000). In

contrast to existing anisotropic eikonal solvers (Qian

et al., 2001), Zhang’s algorithm handles both qP- and

qSV-waves. Using Eqs. (D1) and (D2) we can obtain

the amplitude (Eq. (A1)). Fig. 5b shows the ratio
Fig. 11. Three-component field VSP responses corresponding
J(m)(S,Q)/r(S,Q) for qP-wave (m = 1). As expected, the
behaviour of the spreading follows the curvature of

the wavefront. Although the present eikonal solver is

very efficient, it is necessary to improve on the

accuracy of the FD solution by ray tracing, as plotted

in Fig. 7. It is seen that the ray tracing method can

account for later arrivals near caustics. Also, travel

times along ray trajectories can be computed accu-

rately. However, the results of tracing downgoing rays

(Fig. 7a) are far from satisfactory due to shadow
to a walkaway source (courtesy of Phillips Petroleum).



A. Druzhinin / Journal of Applied Geophysics 54 (2003) 369–389 383
zones. To cure this instability, much more expensive

upgoing ray tracing is performed (Fig. 7b). This step

is accomplished without absorbing excessive resour-

ces by reducing the number of ray segments when

rays propagate at small angles to the vertical.

At the final step of the ray-FD algorithm, the L2 B-

spline fitting ensures the continuity of interpolated

travel times s(lm) and amplitudes G(m)(S,Q) as well as

the condition of regular illumination. Once this step is

completed, travel-time and amplitude tables for each

shot point serve as input data to the PreSDM algo-

rithm represented by Eq. (31).

By clustering conventional PCs, this algorithm

was implemented in common-shot gathers (Fig. 4).

The overall execution time required by PreSDM

was quite reasonable. It took about 16 h of CPU

time on a 16-node PC cluster to compute the depth

images K(11) and K(31) in Fig. 8. Although numer-

ical errors due to forward modeling and insufficient

illumination of common-shot migration cause dis-

tortion of the migrated waveforms (especially for
Fig. 12. The initial model for PreSDM of the WVSP data in Fig. 11. This m

constrained by log data after upscaling (courtesy of Phillips Petroleum).
layers 2 and 12), it appears that both images are in

satisfactory agreement with the velocity model in

Fig. 3. Fig. 8a identifies primary qP–qP reflections

and some multiples; there are almost no multiples in

Fig. 8b. Also, the converted-wave image shows

higher vertical resolution and better overall signal-

to-noise ratio than the qP–qP image, particularly at

shallow depths.

In elastic models, improved resolution of con-

verted-wave depth imaging is due to the fact that

k(1)>k(2,3), k(m) being the wavelength of the mth wave

mode. This is consistent with previous results (Dillon

et al., 1988; Hokstad, 2000). However, it is well

known from practical experience that the higher

resolution, theoretically to be expected from shear

waves, is often not obtained due to the greater

attenuation usually associated with this mode of

propagation.

For the angle-dependent migrated sections in Fig.

8, relatively high amplitudes along the shallow

reflectors are more likely because of the larger range
odel is the result of standard velocity analysis of surface seismic data
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of reflection angles. To obtain angle-independent

depth sections of the AVA intercept or gradient terms,

a multi-receiver double diffraction stack of common-

shot image gathers should be applied, as discussed in

Appendix C. For example, the signals which are used

in the multi-receiver PreSDM for l = m = 1 are pri-

mary qP–qP reflections corresponding to the explod-

ing reflector depth model in Fig. 9a. Fig. 9b shows

that Eq. (C8) for l = m = 1 attenuates the wave modes

l,m p 1 and gives the intercept term K0
(11) which is

hardly distinguishable from the theoretical image in

Fig. 9a. Fig. 10 depicts the peak instantaneous

amplitudes along selected reflectors in Fig. 9b. It is

seen that these amplitudes are in fact estimates of the

actual normal-incidence qP–qP reflection coefficient.

Severe aliasing of input traces, errors in the numer-

ical Green’s function computations and aperture

effects cause these estimates to be scattered around

the exact value. Mean errors are less than 6% and

10% for horizons 4 and 15, respectively. This indi-
Fig. 13. Decoupled direct-wave WVSP isotropic PreSDM: fragments of

optimal illumination above the geophone level. Arrow indicates unremov
cates that the estimate of the intercept term is

sufficiently accurate. The estimate is more smooth

and accurate for shallow horizons than for deep

horizons. The estimate for small (weak-contrast)

intercept terms yields a less accurate result.
7. Application to VSP data

Conventional mixed-mode VSP migration (Dillon

et al., 1988) is inevitably distorted by inaccuracies of

wavefield separation prior to imaging. Therefore, the

most reliable test for decoupled PreSDM is processing

of raw WVSP data without any attempt to filter with

respect to wave mode at the pre-processing stage. The

WVSP data set considered here was acquired in a well

located in the North Sea. The well is known to

intersect the top of the target at approximately 2.8

km depth. Fig. 11 is a three-component common-

geophone record. The distance between source posi-
(a) PP and (b) PS migrated transmission energy within the zone of

ed free-surface PP multiples.
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tions is 25 m. The total length of the line is 8 km. The

geophone is located at 3.170 km depth below the

midpoint of the line. The initial velocity model in Fig.

12 was suggested by the contractor who had pro-

cessed the surface seismic data.

Fig. 13 shows isotropic direct-wave depth images

of the target zone z= 2.8–3.1 km above the geophone

level. According to Chang and McMechan (1986), we

obtain an image at any (stationary refraction) point

along the direct ray based on an argument that

incoming scattered and direct rays have different

directions. The reconstruction of the transmission

coefficient is accomplished by back propagating and

decoupling downgoing waves using Eq. (31). Both

PP-wave and converted-wave (PS) images tie well

with major geologic horizons H1–H4 in the domain
Fig. 14. Decoupled WVSP isotropic PreSDM with upgoing waves: no

PreSDM) and porosity map (log data) versus depth below the target zone in

are 1 and � 1.
of interest (Fig. 13). As in the previous example, we

observe that the shear-wave image exhibits a some-

what shorter wavelength than the PP-wave image for

the same bandwidth of input data in Fig. 11.

The final test is carried out for the target zone

z= 3.65–4.05 km below the geophone level by back

propagating and decoupling upgoing PP and shear

waves. The 0.1� 0.4 km target is placed close to

the borehole within the locus of reflection points for

the converted-wave energy. The results are shown in

Fig. 14 and agree with those of Dillon et al. (1988).

Even though there is not a perfect one-to-one corre-

spondence between the migrated events in Figs. 14a

and b, it is apparent that converted-waves form a

noticeably better image of the principal reflectors

R1–R4 than P-waves.
rmalized PP, PS reflectivity sections (decoupled WVSP isotropic

Fig. 12. Maximum and minimum values of normalized reflectivities
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8. Discussion and conclusion

The elastic imaging algorithm is simple to imple-

ment by migrating the displacement vector without

wavefield separation at the pre-processing stage. In

this paper, a rigorous vector migration formula rep-

resented in an explicit decoupled form has been

derived and successfully tested. This technique is

based on the stationary-phase principle applied to

the elastic Green’s theorem. Compared with previous

treatments, the new formula contains wave mode

decomposition filters representing certain polarization

and arrival-angle weights. The present work and

previous results (Takahashi, 1995) demonstrate that

these weights can decrease migration artifacts signif-

icantly, yielding good estimates of reflection coeffi-

cients. We have shown how robust angle independent

AVA attributes may be constructed from these esti-

mates using the double diffraction stack technique

outlined in Appendix C. The final formula (Eq. (31))

is suitable for migration of both multi-component

(e.g. OBC, VSP) and conventional marine seismic

data with the commonly used scalar algorithms

developed for PP PreSDM. Hence, the approach is

easy to implement and eliminates the assumption that

the reflected PP wave is best represented on the

vertical component, whereas the reflected PS wave

is the strongest on the horizontal component. We

have developed a ray-FD approach that incorporates

fast first-arrival FD eikonal solvers and ray tracing

algorithms into a single framework. We have chosen

this approach to generate accurate Green’s function

travel time and amplitude maps. Amplitudes are

computed in terms of travel times (cf. Appendix

D). It is possible to consider irregular regions, i.e.

later arrivals. All input quantities are computed from

coarsely gridded tables using an accurate L2 B-spline

interpolation tool. A new imaging condition implic-

itly assumes that (a) the input velocity model is

known and (b) there is no confusion of wave modes

(e.g. kiss singularity). Despite the fact that the pro-

posed method relies on the modeled and observed

polarizations of wavefields, numerical results are

encouraging and show that the quality of decoupled

imaging does not depend strongly on the cross-

component noise. The method is particularly useful

in situations where different wave modes have or-

thogonal polarizations. The numerical algorithm
allows elastic PreSDM to be done inexpensively on

PC-based distributed memory clusters. A more com-

prehensive AVA analysis and migration of noisy data

with incorrect velocity models will be the subject of a

future study.
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Appendix A. Green’s function amplitude

The zeroth-order ray approximation (Chapman and

Coates, 1994) of the Green’s function amplitude

G(m)(S,Q) along the ray that connects the source S to

the target point Q is

GðmÞðS;QÞ

¼ 1

4p
exp½�ip signðxÞvðmÞðS;QÞ=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðSÞvðmÞðSÞqðQÞvðmÞðQÞJ ðmÞðS;QÞ

p
þ O

1

x

	 

; ðA1Þ

where v(m)(S,Q) is the KMAH index (which takes into

account possible caustics) and J (m)(S,Q) = J (m)(Q)/

J (m)(S) is the relative geometrical spreading factor

for the mth wave mode calculated by dynamic ray
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tracing (Gajewski and Pšencı́k, 1990; Hanyga et al.,

2001). In this notation, the absolute geometrical

spreading factor is given by

J ðmÞðSÞ ¼ ð½B1x
ðmÞðSÞ � B2x

ðmÞðSÞ� 
 lðmÞðSÞÞ
��� ���; ðA2Þ

where l(m) is the unit ray direction vector and

Bax
(m)(S) =Bx(m)(S)/B1a is the partial derivative of the

ray position vector x(m) with respect to the ray param-

eter 1a (a = 1,2) representing the ray take-off angle.

Instead, other authors (Ben-Menahem et al., 1991;

Červený, 2001; Schleicher et al., 2001) use the fol-

lowing geometrical spreading factor

LðmÞðSÞ ¼ J ðmÞðSÞsec wðmÞðSÞ ðA3Þ

where w(m) = cos� 1(c(m)/v(m)) is the angle between the

phase normal and the ray direction vector (0V
w(m) < p/2) and c(m) denotes the phase velocity.
Appendix B. Relation to Zoeppritz coefficient

To establish the analytic relationship between the

migrated image (Eq. (26)) and the Zoeppritz coeffi-

cient K(lm)(Q) =K(lv) (Q;S0) at the specular (reflec-

tion/transmission) point S0, the zeroth-order ray

approximation (Červený, 2001) is applied to the

incident wave

uðlÞðR;QÞ ¼ K AðlÞðR;QÞexp½ixsðlÞðR;QÞ

þ iv þ ipsignðxÞvðlÞðR;QÞ=2� ðB1Þ

and to the recorded wavefield

uðmÞðS;R;xÞ

¼ KF0ðxÞAðlÞðR;QÞKðlmÞðQ; SÞAðmÞðQ; SÞ

� expfix½sðlÞðR;QÞ þ sðmÞðQ; SÞ�

þ ipsignðxÞ½vðlÞðR;QÞ þ vðmÞðQ; SÞ�=2g ðB2Þ

Here, K is the source directivity (Gajewski, 1993),

exp(iv) = F0(x)/F(x) is the source phase shift,

v(l)(R,Q) and v(m)(Q,S) are, respectively, the numbers

of caustics (KMAH index) along the ray paths RQ and

QS, and A(l)(R,Q) and A(m)(Q,S) are the corresponding

ray-theory amplitudes. Moreover, the ray-theory am-
plitude A(m)(Q,S) may be written as (Hanyga et al.,

2001)

AðmÞðQ; SÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðQÞvðmÞðQÞJ ðmÞðQÞ
qðSÞvðmÞðSÞJ ðmÞðSÞ

s
ðB3Þ

with the absolute geometrical spreading factor speci-

fied by Eq. (A2). As a result, substituting Eqs. (A1

and B (1–3) into Eq. (26) and taking into account

Eqs. (22), (25), and (28) we obtain

I ðlmÞðQ; 0Þ ¼ Bt f ð0ÞDðlmÞðQÞ; ðB4Þ

where

DðlmÞðQÞ¼
Z

R0

KðlmÞðQ; SÞcosaðlmÞðQÞcoshðmÞðSÞdrðSÞ

ðB5Þ

Since the magnitude of the window function cosa(lm)

(Q) decreases as the distance r(S,S0) increases and

a(lm) = 0 at the specular point S0, the integral (B5) can

be approximately evaluated as

DðlmÞðQÞcKðlmÞðQ; S0ÞcoshðmÞðS0Þ ðB6Þ
Here, the weighting factor cosh(m)(S0) has useful

implications at far offsets. Also, it accounts for the

curvature of the surface R0. In the case of land

observations configured on an almost flat horizontal

surface R0, we may often set cosh(m)(S0)c 1.
Appendix C. Migration AVA analysis

Let us introduce the ray parameter p corresponding

to the ray path RQ. For the sake of simplicity, we may

set p =B1s
(l)(R,Q). The AVA technique is to expand

the reflection/transmission coefficient in Eq. (29) in a

Taylor series in the parameter p

KðlmÞðpÞ ¼ K
ðlmÞ
0 þ K

ðlmÞ
1 pþ K

ðlmÞ
2 p2 þ Oðp3Þ ðC1Þ

with the angle-independent coefficients Kn
(lm) ex-

pressed in terms of the elastic parameters q(Q) and
C(Q) (for stratified isotropic media, see Ursin and

Dahl, 1992). Substituting Eq. (C1) into Eq. (29) and

integrating (stacking) over the current point R of the

receiver acquisition surface RR (the sea floor in OBC

the borehole axis in VSP or the streamer cable),
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we obtain

BðlmÞ ¼ K
ðlmÞ
0 P0 þ K

ðlmÞ
1 P1 þ K

ðlmÞ
2 P2 þ Oðp3Þ; ðC2Þ

where

Pn ¼
Z

RR

pndrðRÞ; nz0; ðC3Þ

BðlmÞ ¼
Z

RR

fdrðRÞ

� 4p
AðlÞðR;QÞ

Z
R0

Btu0½S;R; t ¼ sðlmÞ�
eðmÞðSÞ
� �

� GðmÞðS;QÞWðmÞðS;QÞXðlmÞðQÞdrðSÞg
ðC4Þ

or, using Eq. (31),

BðlmÞ¼
Z

RR

fdrðRÞ 4p
AðlÞðR;QÞ Re

Z
R0

u̇ðlÞðS;R; t ¼ sðlmÞÞ

� EðlmÞðS;R; t ¼ sðlmÞÞGðmÞðS;QÞ
� WðmÞðS;QÞXðlmÞðQÞdrðSÞg ðC5Þ

Solving the linear system (C2) yields the offset-

independent depth images Kn
(lm). Note that these

images are obtained after a double summation oper-

ation. In principle, they are dependent on the range

of acquisitions R0 and RR (aperture effects).

If the reflector is a symmetry plane for the class of

anisotropy considered and l,m = 1, 2, 3, Eq. (C1) takes
the following form (for isotropy, see Ursin and Dahl,

1992)

KðlmÞðpÞ¼
K

ðlmÞ
0 þK

ðlmÞ
1 p2þK

ðlmÞ
2 p4þOðp6Þ l ¼ m

p½KðlmÞ
0 þK

ðlmÞ
1 p2þK

ðlmÞ
2 p4�þOðp6Þ l p m

8<
:

ðC6Þ

Hence

BðlmÞ¼
K

ðlmÞ
0 P0þK

ðlmÞ
1 P2þK

ðlmÞ
2 P4þOðp6Þ l ¼ m

K
ðlmÞ
0 P1þK

ðlmÞ
1 P3þK

ðlmÞ
2 P5þOðp6Þ l p m

8<
:

ðC7Þ
For a limited range of incidence angles ( | p |b1), the

system (C7) yields

K
ðlmÞ
0 c

BðlmÞ=P0 l ¼ m

BðlmÞ=P1 l p m

8<
: ðC8Þ

Conventionally, this solution is referred to as either

the intercept term for nonconverted waves (l = m) or
the gradient term for converted waves (l p v).
Appendix D . Travel-time based amplitude

computations

Let the FD travel-time map s(x,y,z) be calculated in

a gridded form. This means that the simple nearest-

neighbour search can be used to generate the set of

wavefront surfaces (isochrones) s(x,y,z) = t within the

time range [smin, smax]. In order to calculate the

slowness vector p(x,y,z) and the Gaussian wavefront

curvature KG(x,y,z), a local least-squares quadratic

approximation to each wavefront is applied using

the surrounding grid values on this surface (after

Roberts, 2001). The slowness vector can be expressed

in terms of the dip-angle and azimuth attributes; the

orientation of any normal curvature may also be

estimated (Roberts, 2001). When the slowness vector

p is known, it is a straightforward matter to compute

the polarization vector e and the group velocity vector

v based on the plane-wave theory (Červený, 2001).

The geometrical spreading J can be defined as

JcK�1
G

D/1

Df1

D/2

Df2
cosw; ðD1Þ

with the angle /1,2 being the orientation of the

principal curvature and cosw = c/v (cf. Appendix A).

Here, Df1,2 are the perturbations of the slowness

vector along the principal directions of the minimum

wavefront surface s(x,y,z) = tmin surrounding the

source, whereas D/1,2 are the perturbations of the

slowness vector along the principal directions of the

current wavefront surface s(x,y,z) = tmin. Note that the

geometrical spreading defined in terms of the travel-

time map s(x,y,z) should not vanish near ray singu-

larities since the FD eikonal solvers rarely produce

shadow zones.



A. Druzhinin / Journal of Applied Geophysics 54 (2003) 369–389 389
Finally, the difference in the KMAH index v
between the two adjacent wavefronts s(x,y,z) = t and
s(x,y,z) = t +Dt can be written as

vðt þ DtÞ � vðtÞ ¼ Dv1 þ Dv2; ðD2Þ

where Dv1;2 ¼ 1 s1;2 ¼ �1

0 s1;2 ¼ 1

�
,

s1,2 = sign{n1,2(t)
n1,2(t +Dt)} and n1,2(t) is the unit

vector that specifies the principal direction of the

wavefront surface s(x,y,z) = t. An edge-type display

of the KMAH-index map is very effective at delimiting

caustic geometries. When the radius of wavefront

curvature is very small or zero, this also indicates that

the ray path belongs to a caustic.
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