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1 INTRODUCTION

SUMMARY
An accurate and efficient 3-D finite-element (FE) forward algorithm for DC resistivity mod-
elling is developed. First, the total potential is decomposed into the primary potential caused
by the source current and the secondary potential caused by changes in the electrical conduc-
tivity. Then, the boundary value problem for the secondary field and its equivalent variational
problem are presented, where the finite-element method is used. This removes the singularity
caused by the primary potential, resulting in an accurate 3-D resistivity model. Secondly, I
introduce the row-indexed sparse storage mode to store the coefficient matrix and the shifted
incomplete Cholesky conjugate gradient (SICCG) iterative method to solve the large linear
system derived from the 3-D FE calculation. The SICCG method converges very quickly and
requires much less computer storage, while the traditional ICCG or modified ICCG (MICCG)
method usually fails for an irregular grid. The SICCG method is more efficient than the direct
method, i.e. the elimination solver with the banded Cholesky factorization. Also, it has an
advantage over the symmetric successive overrelaxation preconditioning conjugate gradient
method. Numerical examples of a three-layered model with high conductivity contrast and a
vertical contact show that the results from the secondary potential FE method agree well with
analytic solutions. With the same grid nodes, much higher accuracy from the solution of the
secondary potential than those solving the total potential can be achieved. Also a 3-D cubic
body is simulated, and the dipole—dipole apparent resistivities agree well with the results from
other methods.

By defining the analytical solution of a vertical contact as the primary potential, a more
complicated model with several 3-D inhomogeneities near the vertical contact is simulated.
The presented method also obtains good results for this model.

Key words: 3-D DC resistivity modelling, conjugate gradient method, finite element.

ods are suitable for arbitrary 3-D structures, but an excessive storage
capability and large amounts of numerical work are required for the

Three principal numerical methods, namely the integral equation
method (Dieter et al. 1969; Pratt 1972; Hohmann 1975; Lee 1975;
Daniels 1977; Okabe 1981; Oppliger 1984; Xu et al. 1988), finite-
element method (Coggon 1971; Fox et al. 1980; Pridmore ef al.
1981; Holcomble & Jiracek 1984), finite-difference method (Dey
& Morrison 1979; Scribe 1981; Spitzer 1995; Zhao & Yedlin 1996)
are available for DC 3-D resistivity modelling. The integral equa-
tion method only considers the charge at the interface of different
conductivities, so that the 3-D forward calculation requires less com-
puter memory and is very fast. However, this method is restricted to
certain model geometries and is cost effective only for small inhomo-
geneities. The finite-difference (FD) and finite-element (FE) meth-
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direct method to solve the derived linear equations. The most effi-
cient equation solver is a preconditioned conjugate gradient method
combined with compact storage of the coefficient matrix. The 3-D
forward problems using the FD method have been well studied by
introducing, for example, the symmetric successive overrelaxation
(SSOR) preconditioned conjugate gradient method (Spitzer 1995)
and the incomplete Cholesky conjugate gradient (ICCG) method
(Zhang et al. 1995; Smith 1996; Wu et al. 2003) as equation solvers.
The amount of numerical work required in the 3-D FE resistivity
modelling is larger because, the coefficient matrices are not as sparse
as those from the FD method. Moreover, the finite-element matrix
does not possess the property of the M-matrix (Meijerink & Van
Der Vorst 1977), nor is it diagonally dominant, so that its incom-
plete Cholesky splitting is unstable. Thus the ICCG method used in
3-D FD modelling is not suitable for 3-D FE calculations. On the
other hand, the FE method is more flexible than the FD method for
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complicated geometries of electrical inhomogeneities, therefore it
is necessary to develop an efficient algorithm for 3-D FE resistivity
modelling.

The total potential is singular at the source point, resulting in a
large error. Solving the secondary potential is an effective approach
to removing the singularity effect (Xu 1994; Zhao & Yedlin 1996),
the shifted incomplete Cholesky conjugate gradient (SICCG) itera-
tive method (Manteuffel 1980) and the row-indexed sparse storage
mode (Bentley 1986) are introduced to solve the large sparse lin-
ear system of equations derived from the 3-D FE computation. This
greatly accelerates the convergence and reduces the storage require-
ments. Numerical examples show that the SICCG method is very
efficient. For example, for a 2-D vertical contact model, it takes 227
iterations or about 22 s running time on a 1000 MHz Pentium com-
puter with 39 x 39 x 20 = 30 420 nodes, while the direct method
requires about 530 s. In addition, the method can also achieve much
higher accuracy than solving the total potential with the same grid.
For a three-layered model with a high resistivity contrast value of
1000, the average percentage error using this method is 0.28 per
cent, while the average percentage error is 4.84 per cent when the
total potential is solved. For a 3-D model, the dipole—dipole apparent
resistivities calculated with the 3-D FE method of this paper agree
well with the results presented by Pridmore et al. (1981).

A more complicated model with several 3-D inhomogeneities
near a vertical contact is presented. Good results are obtained when
the analytical solution of the vertical contact is defined as the primary
potential. Comparison with the SSOR preconditioning conjugate
gradient (SSORCG) method shows that SICCG is more efficient
than the SSORCG method.

2 BOUNDARY VALUE PROBLEM AND
EQUIVALENT VARIATIONAL PROBLEM

The fundamental differential equation of the electrical potential for
the 3-D resistivity forward problem is

V.-(oVv)=—18(x,y,z), €K, (1)

where o is the 3-D conductivity distribution, / is the current source,
(x, y, z) is the Cartesian coordinate of a point in the computational
domain €2 and § is the Dirac delta function. v is the electrical poten-
tial subject to the following boundary conditions (Dey & Morrison
1979):

dv/on =0, €Ty

d 0

—+ 2200, el @
on r

where I’ is the air—earth interface, I, is the external surface of
model boundaries, 6 is the angle spanned by the radial vector r
from the source point and the outward normal direction n on the
boundary.

However, the total potential v is singular at the source point. If
v is solved for 3-D resistivity modelling, the singularity will result
in a large error, especially in the neighbourhood of the source point
where the singularity effects are the greatest. Xu (1994) and Zhao
& Yedlin (1996) split the total potential v into the primary poten-
tial u resulting from the source current in a uniform half-space of
the conductive o and the secondary potential « resulting from the
conductive inhomogeneities, i.e.

v=1uy+u. 3)
The primary potential u satisfies

V - (ooVuy) = —18(x,y,2z), €, 4)

and its solution is
_ 1
2700 /X2 + Y2 + 22

From eqgs (1)—(4), Xu (1994) obtained the boundary value problem
for u:

®)

Up

V.-(oVu)= -V -(AoVuy), €,

du/on =0, €Ty,

du cos6

— u=0, €Tl, (6)
an r

where Ao =0 — 0 is the variation in the conductivity. The equiv-
alent variational problem is given as (Xu 1994)

Fu) = / |:%0(Vu)2 + Ao Vuy - Vu] d2
Q

+f [l & cos(r, n)u2 N Ao cos(r, n)uou} dr.,
I'o 2 r "

8F(u) = 0. (7

No source term exists in eq. (7), so that the singularity has been re-
moved by solving the secondary potential « using the finite-element
method.

In fact, the primary potential u, in eq. (3) can be defined as the
potential of any models with an analytical solution, such as a layered
earth or a vertical contact. It can be easily proved from Xu (1994) that
the boundary value problem for the secondary potential remains the
same as eq. (6) in this situation. By defining the analytical solution
of a vertical contact as the primary potential, numerical results of
a complicated model with several 3-D inhomogeneities near the
vertical contact will be presented to test the algorithm.

3 FINITE-ELEMENT METHOD

We only present the main steps of the 3-D resistivity finite-element
method; details are reported by Pridmore ez al. (1981), Xu (1994)
and Ruan et al. (2001). The computational domain €2 is divided
into a series of the hexahedral elements, Fig. 1 shows an arbitrary
hexahedral element e. The secondary potential # within each element
is interpolated by a trilinear function of the form

8
u= ZN'”“ ©)
i=1

a

2 a 3
Figure 1. Illustration of the hexahedral element e for 3-D grids.
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whereu; (i = 1,2, ..., 8)are unknown nodal values of the electrical

potential v and N; (i = 1,2, ..., 8) are shape functions defined as
1

N; = §(1+§i5)(1+77i77)(1+§i§)- ©

Ineq.(9), &, m, ¢; (i =1, ..., 8)are the nodal values of &,  and
¢. The relation between &, 1, ¢ and x, y, z is

x=xo+(@/2)§, y=w+0/2n z=2z2+(/2)¢, (10

where (x¢, yo, zo) is the centre of the element and a, b, ¢ are the
length of three sides of the element e.

The integral in eq. (7) can be calculated in each element e and the
boundary I',.. By substituting eqs (8)—(10) into eq. (7), the evaluation
of each integral in eq. (7) is written as

1 1 A\ au\? ou\?
—o(Vu)dQ = | = — — — | |dxdyd
Jzow /ez‘{(ax) #(5) + (52) [dwares
1
= EaugKlgug, (11)
/AUVu0~VudQ

du
:/AG —uﬂ—i-———{——— dxdyd:z
e dx ox dy ady 0z 0z

= Aaquleu()e. (12)

du duy  ou duyg

If one side 1234 of element e coincides with the external surface of
boundaries I' o, then

o cos(r, n 1
—/ #uzdl“ = —ou'Ksu,, (13)
1234 r 2

A )
/ Muou dl’ = AO’UZKZeUOE’ (14)
1

234 r

where ul = (u1,ua, ..., ug). ul, = (uor, upa, ..., uos). Ki. and
K, are symmetric matrices given by (Xu 1994; Ruan et al. 2001)

[t 4 4 4 k3o (-4 2 2
ko 2 2 -4 kar -2 1 =2
k31 -2 1 =2 k52 1 -2 =2
k41 —4 2 2 o k62 2 —4 2 o
ksi|=| 2 -4 2||B kp|=1-2 -2 1]|8
k61 1 =2 =2 V4 kgz -1 -1 —1 V4
k7 -1 -1 -1 k33 4 4 4
ks -2 -2 1 ka3 2 2 -4
Lkn| | 4 4 4] Lkss | |—1 =1 —1]
[(hes ] [-2 =2 17 [hes ] [ 2 2 —47]
k3 2 -4 2 ks -2 1 =2
kg3 1 =2 =2 ks -4 2 2
kg 4 4 4| |« koo 44 4|«
ks |=|-2 =2 1|8 ks |=|—42 20|B],
k64 -1 -1 —1 V4 k86 -2 1 =2 V4
I 1 =2 =2 k7 44 4
kga 2 -4 2 kg7 22 -4
Lkss| | 4 4 4] Lkss | | 4 4 4]
where k;; represents the entry of the matrix Ky, = £ [;—C, B =

o ca __ o ab
3656V T 36c-

© 2003 RAS, GJI, 154, 947-956

A 3-D finite-element algorithm 949

4
2 4
12 4

Ko_@ 212 4

* 7 36 0000 0 :
000000
0000000
000000 O0 0]

where D = cos(r, n)/r.
Summing up the integrals from eqs (11) to(14) within element e
yields

1
Fe(“) = EUUZ(KIL’ + K2€)ue + AO’U:-(KIL, + K2e)u03
1
= EUZKe“e + ul K uq,, (15)
where the element matrix K, = o (K, + Ka,), while K, = Ao (K. +

Ky.). Furthermore, K., K], u, and ug, are expanded to include all
nodal points, and eq. (15) is written as

] — —
F.(u) = EuTKeu + uTKeuo, (16)

where K_e K;, u and u, are expanding matrices and potential
vectors.

The total integral can be obtained by summing up the integrals in
all elements, i.e.

1 —_ —
Fu)=Y Fu) = 5uT > Ku+u") Ko
- %UTKu +uTK'up, (17)

where K = 3K, and K’ = Y K/ are global matrices of the finite
element.

The functional is minimized by setting the derivative of F'(u) with
respect to each element of u' to zero, yielding a linear system of
finite-element equations

Ku = —K'ug, (18)

where K is a sparse positive-definite and symmetric matrix
(Pridmore et al. 1981; Xu 1994). After solving eq. (18) for the
secondary potential u, the total potential v is obtained from eq. (3).

4 THE PRECONDITIONED CONJUGATE
GRADIENT METHODS

4.1 Incomplete Cholesky conjugate gradient method

Let —K'ug = b, the linear system (18) is simplified as

Kx =b. (19)

The conjugate gradient (CG) procedure for solving eq. (19) is sum-
marized as follows (Hestense & Stiefel 1952). Let rp =b — Kxy,
Py = I, then

o; = (r;, 1:)/(p;» Kpy),

Xi+1 =X; +¢p;,

rig =1 —o;Kp, i=0,1,2,...,
Bi = (Xip1, rig)/(ri, xy),
Pir1 =Tip1 + Bip; (20)
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where o and S are constants, (r;, r;) denotes a dot product. Eq. (20)
shows that the procedure requires only the products of the matrix
K and a vector, where the zero elements in the matrix K have no
contribution. The row-indexed sparse storage mode is used to store
non-zero elements in the lower triangular part of K. This requires,
for example, about 400 000 real storing elements for a grid of 39 x
39 x 20 nodes. In contrast, the 2-D banded compact storage for
the direct solution requires at least 24 000 000 real storing elements.
Thus, the mathematical operations, performed only on non-zero
elements for the product of K and a vector, reduce the time and
memory requirements considerably.

However, the coefficient matrix K in 3-D FE resistivity modelling
usually has a very large range of eigenvalues because of the irregu-
larity of grid and the complexity of the domain of model. This means
that K is usually very poorly conditioned. For these ill-conditioned
problems, the CG algorithm converges very slowly. The efficient
solver is a preconditioned conjugate gradient (PCG) method. For
this purpose, the matrix K is split into

K=M-R, (21

where the preconditioning matrix M is easily invertible and the
behaviour of M in some sense approximates the behaviour of K,
R is called the error matrix and is the matrix elements omitted
from the preconditioning matrix. Incomplete Cholesky decomposi-
tion is given by Varga (1960), Meijerink & Van Der Vorst (1977) and
Kershaw (1978) as

M = CC', (22)

where C is a lower triangular matrix, which can be obtained from a
diagonal matrix D defined by

dyy =kj; =Yk /dy, (23)
I<j
where kj; is the elements of matrix K. Obviously, the terms with
kj = 0 are not included in the sum.
Then, the matrix C is given by

C=UD"'2, (24)

where U is a lower triangular matrix with u; = dj; for all j, u; =
kyforl < j.

The incomplete Cholesky factorization C is as sparse as the lower
triangular of K. It can be computed rapidly without any additional
storage requirement because, non-diagonal elements of the matrix
U are the same as those of K.

The incomplete Cholesky factorization was first presented by
Varga (1960) as a method of constructing a regular splitting of cer-
tain finite-difference operators. A quick calculation shows that M
and K match each other at each non-zero element of K. The pattern
of M looks like that of K but with a few more edges, i.e. non-zero
elements. The magnitude and the location of these edges determine
how M can be taken as the approximation of K.

If CCT is an approximation for K, eq. (19) can be rewritten as the
preconditioned system

[C'K(CH)'(C"x) = C b, (25)

and the coefficient matrix C™'K(CT)~! will be an approximate iden-
tity matrix, which has better condition than the original system,
eq. (19). Therefore, the conjugate gradient method should converge
very rapidly when applied to the matrix C™'K(C")~!. Substitut-
ing the coefficient matrix C™'K(C")~! of the preconditioned sys-
tem (25) into eqs (20), after a little rearrangement, the incomplete

Cholesky conjugate gradient algorithm is given below:

let ro = b — Kxp, py = (CC")"'ro, then

o = (r;, (CCT)ilri)/(pi» Kp,).

Xit+1 = X; + &;p;,

ri. =1 —o;Kp, i=0,1,2,...

Bi = (riz1, (CCY)'riy)/(r;, (CCH 'y,

Pipi = (CCH'ripi + Bip;. (26)

In the practical numerical procedure, the ICCG recurs until conver-
gence criterion |b — Kx;|/|rg| < ¢ is satisfied, where |rg| is the
L2-norm of the residual in the first iteration. ¢ is a prespecified tol-
erance, which is chosen to be 10~® for calculations in this paper.
The success of the method depends on how well CCT approximates
K. Kershaw (1978) showed that M is very close to K in the prac-
tical case of finite-difference calculations in laser fusion problems,
because the eigenvalues of the matrix C™'K(C")~! are all close to
1, approximating the eigenvalues of the identity matrix. Thus, com-
bined with the sparse storage mode of the coefficient matrix, the
ICCG method has a noticeable advantage in terms of storage and
time requirements over the direct solution method in solving the 3-D
FD forward modelling problem (Zhang et al. 1995; Smith 1996; Wu
et al. 2003).

4.2 Modified incomplete Cholesky conjugate
gradient method

As ICCG proceeds through algorithms (22)—(26), it is crucial that
all the dj; must be larger than zero. If d;; = 0, then the algorithm
breaks off. If d;; < 0, the algorithm may proceed, when eq. (22) is
rewritten as

M =UD'U". (27)

However, UD™'UT is no longer positive definite and the conjugate
gradient method cannot be used to obtain the exact solution as in
egs (25) and (26) (Kershaw 1978). The ICCG for the 3-D FD resis-
tivity modelling always gives d;; > 0 because its coefficient matrix
is positive definite, symmetric and diagonally dominant (Dey &
Morrison 1979). Incomplete Cholesky decomposition of the coef-
ficient matrix derived from 3-D FE resistivity modelling will not
always give d; > 0 because its coefficient matrix may not be diago-
nally dominant. Pridmore ef al. (1981) suggested that the diagonal
dominance of an element matrix is strongly related to the degree
to which the element is non-equidimensional. The more elongated
an element, the smaller the degree of diagonal dominance. He also
showed that the presence of a significant number of long thin ele-
ments would greatly decrease the rate of convergence of the iterative
method and lead to inaccurate results. However, the presence of long
thin elements is hard to avoid in 3-D resistivity modelling. If a uni-
form grid is employed, this means using more elements and more
unknowns in the system of equations, i.e more storage and time re-
quirements. In my experience, the ICCG iteration always breaks off
while used to solve the system of 3-D FE resistivity models with an
irregular grid. Therefore, the incomplete Cholesky splitting of the
finite-element matrix is unstable, the ICCG method used in the 3-D
FD calculation should be modified to suit the 3-D FE modelling.

Kershaw (1978) suggested a modified version of the ICCG
method, that is, if d;; < 0 turns up, dj; is simply set to some positive
value as

m

j-1
dy =Y lkul+ Y lhyl, (28)
=1

I=j+1

© 2003 RAS, GJI, 154, 947-956
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and then carry on with the algorithm, eqs (22)—(26), where m is
the dimension of matrix K. He showed that if d;; < 0 rarely occurs
this method could work quite well for a wide variety of problems
in laser fusion work. However, for the problem in 3-D resistivity
FE modelling with an irregular grid, this modified ICCG iteration
usually fails to achieve convergence because a large number of dj; <
0 occur. The effect of the irregularity of the grid on convergence will
be discussed later.

4.3 Shifted incomplete Cholesky conjugate
gradient method

Manteuftel (1980) described an incomplete factorization technique
for a positive-definite linear system from the implementation of
the finite-element method, called the shifted incomplete Cholesky
factorization. In this case, K is written as

K=X-B, 29

where ¥ is a diagonal matrix, composed of the diagonal elements
of K, while B is an off-diagonal matrix. Clearly, there is some value
of u such that the matrix (1 + )X — B is diagonally dominant.
Incomplete Cholesky factorization of this shifted matrix will be
positive. This motivates the following splitting of K.

Consider the matrices

1
K=Y ———B, (30)

1+n

where K(t) represents the p-dependent matrices and K(i = 0) =
K. Suppose that K(u) is split into

K(u) = M(u) — R(w), (31

which is similar to eq. (21). For each p, the incomplete factorization
is positive, incomplete Cholesky decomposition can be written as

M(u) = €€, (32)
then eq. (29) is rearranged as
1 1z “
K= -B= ——B-—B=Ku)—-—B
2 271 a1+ W=
= M(n) - [R(lt) + ILB] = M(u) — N(u), (33)
+nu

which proves to be a stable splitting of K. The success of the splitting
depends on how well M(yt) approximates K.

Let us consider the difference between K and M(u). For u =
0, M(t) matches K on the diagonal and off-diagonal non-zero of
K. In fact, it is incomplete Cholesky decomposition M. For u >
0, M() also matches K on the diagonal, because K and K(u) have
the same diagonal elements, but some of the errors, which are the
differences between M(1) and M, are shifted on to the off-diagonal
terms of M. In the limit, we have

Jlim M) =, lim N(z) =B, lim R(x) = 0. (34)

Thus, M(c0) is equivalent to a Jacobi splitting (Manteuffel 1980).
The conjugate gradient algorithm on the Jacobi splitting is equiva-
lent to the conjugate gradient algorithm on the diagonally scaled sys-
tem (Manteuffel 1980). Therefore, the shifted incomplete Cholesky
factorization is possible for any positive-definite matrix, and is
at least as good as the Jacobi splitting. The splitting is used in
this paper, combined with the conjugate gradient method, result-
ing in the shifted incomplete Cholesky conjugate gradient (SICCG)
algorithm.

© 2003 RAS, GJI, 154, 947-956
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4.4 SSOR preconditioned conjugate gradient method

Another efficient equation solver is the SSOR preconditioned con-
jugate gradient method. It was successfully applied to solve the
3-D FD forward problem (Spitzer 1995), which is accomplished in
the following way. The positive-definite and symmetric matrix K is
written as

K=E+I+E", (35)

where E is a lower triangular matrix and | is the identity matrix.
Similar to eqs (21) and (22), the preconditioning matrix M is defined
as

M = CC', (36)

where C = (1 + wE) and o is a constant that denotes a relaxation
factor. Then, combined with the conjugate gradient method, the
algorithm similarly processes through eqs (25) and (26), resulting
in the SSOR conjugate gradient method.

S NUMERICAL EXAMPLES
AND DISCUSSIONS

The test models are a three-layered earth, a 2-D vertical contact and a
3-D buried conductive cubic body. Analytical solutions are available
for the first two models (Fu 1983; O’Neill & Merrick 1984). The
potential is computed using the total potential finite-element (TP-
FE) method and by the secondary potential finite-element (SP-FE)
method, respectively, and then compared with the analytical solution
to evaluate the accuracy of the SP-FE method in this study. The third
model was presented by Pridmore et al. (1981), I recalculate the
dipole—dipole apparent resistivity pseudosection and compare my
results with theirs. The comparison with FD results is also presented.

The first example is a three-layered model with sharp resistivity
contrast shown in Fig. 2. The top layer has a resistivity of p; = 1 Q
m and a thickness of #; = 2 m. The middle layer has a resistivity
of p» = 1000 2 m and a thickness of 7, = 2 m. The third layer
is a uniform half-space with a resistivity of p3 = 20 2 m. A unit
point source is located at the origin of the coordinate system. The
analytic solution for this model is available using a digital linear
filter (O’Neill & Merrick 1984). The potential for this model is cal-
culated using the TP-FE and SP-FE method to compare with the
analytic solution. In order to examine the efficiency of the SICCG
solver for the FE equation system, three grids with the same size
of 39 x 39 x 20 but dimensions in different ratios are used in this
example. The effects of irregularity on the different versions of the
ICCG algorithms are shown in Table 1. For the uniform grid with
Ax = Ay = Az = 0.5 m, the coefficient matrix seems to be diago-
nally dominant because all dj; are greater than zero for u = 0, thus
the SICCG and modified ICCG methods are equivalent to the tra-
ditional ICCG method, which achieves convergence rapidly—after
60 iterations and about 10 s time. For the uniform grid with di-
mensions in the ratio of 4 to 1 (Ax = Ay =2 m, Az = 0.5 m),
the incomplete Cholesky factorization is not positive, the traditional
ICCG method breaks off because of arithmetic overflow. The modi-
fied ICCG method is able to achieve convergence only when d;; <0
seldom occurs, otherwise it fails as the traditional ICCG does. The
SICCG method shows no appreciable convergence in the first 1000
iterations even with one dj; < 0, however, it converges rapidly when
the shifted incomplete Cholesky factorization becomes positive for
© > 0.298. The convergence of SICCG is fastest at © = 0.4. It
only requires 113 iterations and about 14 s. Even for 1 = 30.0 con-
vergence still occurs within a reasonable number of iterations. As
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Figure 2. Comparison of the analytical and numerical solutions over a three-layered model with high resistivity contrast. The source point is located at the

origin of the coordinate system.

mentioned above, it is very difficult to obtain accurate result using
uniform grids for the resistivity modelling because the boundaries
should be located a long distance away from the point source. Table 2
shows an irregular grid of coordinates along the x-, y- and z-axes.

Table 1. Comparison of the different versions of ICCG algorithms for grids
with the same size of 39 x 39 x 20 but different dimensions.

Grids n The number ICCG  MICCG  SICCG
Ax = Ay ofd; <0 iterations iterations iterations
=Az=0.5 0 0 60 60 60
Ax=Ay=20, 0 9594 Fail Fail Fail
Az =05 0.25 48 673 Fail
0.27 6 409 >1000
0.295 1 199 >1000
0.30 0 179
0.40 0 113
0.80 0 135
1.20 0 147
2.00 0 212
5.00 0 277
10.00 0 302
30.00 0 327
Irregular grid 0 1306 Fail Fail Fail
(see Table 2) 1.90 0 630

The SICCG method takes about 51 s to achieve convergence after
630 iterations for the irregular grid. Fig. 2 shows the comparison
of analytical and numerical solutions with the 3-D FE method on
this irregular grid. In spite of a high resistivity contrast value of
1000:1 in the model, the numerical results from the SP-FE method
agree well with the analytic solutions. The SP-FE method is more
accurate than the TP-FE method, especially in the neighbourhood
of the source point where the singularity effects are the biggest. The
average percentage error is 0.28 per cent for the SP-FE method and
4.84 per cent for the TP-FE method.

The second example is a 2-D vertical contact with resistivities
p1 =1 Q m at the left-hand side and p, = 10 2 m at the right-hand

Table 2. Absolute coordinates along the x-, y- and z-axes of irregular grid.

Grid coordinates along x- and y-axis in metres

—389.0 —189.0 —89.0 -390 —-19.0 —140 -—13.0 —12.0

—-11.0  —10.0 —9.0 —-80 —-70 —60 =50 —-4.0

-3.0 —-2.0 -1.0 0.00 1.0 2.0 3.0 4.0

5.0 6.0 7.0 8.0 9.0 10.0 1.0 12.0
13.0 14.0 19.0 39.0 89.0 189.0 389.0

Grid coordinates along z-axis in metres
0.00 0.50 1.0 1.5 2.0 3.0 4.0 5.0
6.0 7.0 8.0 9.0 13.0 17.0 23.0 33.0
53.0 103.0 203.0 403.0
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Figure 3. Comparison of the analytical and numerical solutions over a vertical contrast, the point source is located at 5 m offset from the contact plane, i.e.

x=—5m,y=0mandz=0m.

side. A unit point source is located 5 m left from the contact plane,
i.e.x = —=5m, y = 0m and z = 0 m. The grid also consists of 39 x
39 x 20 nodes and has a similar structure to that shown in Table 2.
Fig. 3 shows the model and the comparison of analytical and nu-
merical solutions with the 3-D FE method. The SP-FE method also
gives more accurate results than the TP-FE method. The numerical
solution by the SP-FE method has an average error of 0.54 per cent,
while the average error of solutions by the TP-FE method is 6.37 per
cent. Besides, the SICCG iterative method with = 1.0 takes only
about 22 s for 227 iterations, however, it requires about 530 s when
the direct method is used to solve the finite-element equations. This
is about 24 times faster than the direct method. Fig. 4 shows the
number of iterations required to reach the convergence for various
values of u. It is found that the factorization is not positive for u <
0.591 and convergence is fastest in the vicinity of u = 1.0.

The third model is a buried cubic body of side 2 m, with a depth of
0.5 m below the surface of the earth. The surrounding host rock has a
resistivity of 100 2 m and the inhomogeneity has a resistivity of 20 €2
m. Pridmore et al. (1981) illustrated a comparison of its apparent
resistivities calculated by the finite-element and integral-equation
(IE) methods, the results from the two methods agree to within
about 6 per cent. However, the result from the integral-equation
method seems to be more accurate because the apparent resistivi-
ties calculated from the integral-equation method satisfy reciprocity
well, but the results obtained from the finite-element method satisfy
reciprocity to within 6 per cent. For a 3-D grid of 49 x 29 x 18

© 2003 RAS, GJI, 154, 947-956

in this study, the SICCG method takes approximately 20 s for 200
iterations for each of the seven source positions with ;1 = 2.0. The
dipole—dipole apparent resistivity pseudo-sections for a profile over
the centre of inhomogeneity are illustrated in Fig. 5. The above val-
ues of each line in Fig. 5 illustrate apparent resistivities calculated
from the present SP-FE method, while the middle and below values
illustrate the results from TP-FE and IE methods by Pridmore ef al.
(1981), respectively. The results from the SP-FE method agree well
with those from the IE method, the maximum error between them

1000
800 |-
£ 600
2
=
s
2
~ 400 [ //’/
200 | B
1 1 1 1 1 1
0,0 2,0 40 6,0 8,0 10,0
n

Figure 4. Iterations to convergence for various values of p.
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SP-FE 101 104 85 57 57 84 104 101
TP-FE 104 108 82 57 57 82 107 103
IE 101 104 87 59 59 87 104 101
102 106 77 51 61 52 77 106 102
104 108 77 52 60 50 77 109 104
102 106 80 52 60 52 80 106 102
103 108 74 54 82 83 54 74 108 103
104 109 73 54 82 80 51 73 109 105
103 107 77 53 82 83 54 76 107 103
104 108 72 56 93 106 93 56 72 108 104
106 109 69 54 91 104 89 53 70 109 108
104 108 74 55 90 108 92 55 74 108 104
109 71 58 98 112 112 98 58 71 109
110 68 55 96 110 109 93 54 70 110
108 72 57 95 113 114 96 57 72 108
109 70 59 101 114 115 115 101 59 70 109
108 69 57 98 111 112 111 96 56 70 109
109 71 58 99 114 116 115 99 58 71 109
5 4 3 2 1 (l) 1 2 3 4 5
| | | | | | | |
- _
P =1009Qm
2 — J—
3 L _

Figure 5. Comparison of dipole—dipole apparent resistivities calculated by the secondary potential finite-element, total potential finite-element and integral
equation methods over a 3-D body. The values shown are apparent resistivities in  m. The model, as well as the results of TP-FE and IE methods, is taken

from Pridmore et al. (1981), used with permission.

is only 3.9 per cent, while the maximum error between TP-FE and
IE results is 6.8 per cent. Finally, this numerical experiment again
confirms that the SP-FE method gives more accurate results than
the TP-FE method.

As above, the presented method works well in terms of effi-
ciency and accuracy. On the other hand, it can be seen that high
conductivity contrast in the model has an effect on the convergence
rate of SICCG iteration. In the first example with higher conduc-
tivity contrast, SICCG takes more time and iterations to achieve
convergence. As we know, the pattern of the finite-element ma-
trix depends on the irregularity of the grid and the complexity
of the domain of the model which denotes the conductivity dis-
tribution as well as the conductivity contrast. The more irregular
the grid and the higher the conductivity contrast, the more ill-
conditioned the coefficient matrix, and the slower the iterative
method converges.

Fig. 6 shows the comparison of the SP-FE method of this pa-
per with the secondary potential finite-difference (SP-FD) method
(Wu et al. 2003) for a model presented by Pridmore et al. (1981).
The model is a hypothetical massive sulphide model with a resis-
tivity of 10 € m, where the mineralization is adjacent to a contact
between two different rock units and is covered by irregular, con-

ductive overburden (see Fig. 6). The rock resistivities at two sides of
the contact are 100 and 300 2 m, while the strike length of the other
features in the model is shown in brackets. For this model, I cal-
culate the dipole—dipole apparent resistivities using the SP-FE and
SP-FD methods by defining the analytical solution of the vertical
contact as the primary potential. Fig. 6(a) illustrates the comparison
between the results calculated by two methods for the fault (con-
tact) plus the massive sulphide body, while Fig. 6(b) illustrates the
comparison of the results for the model with all components. The
results from both methods agree well, the average error is less than
1.0 per cent for the dipole—dipole apparent resistivity in Fig. 6(a)
and less than 2 per cent for apparent resistivities in Fig. 6(b). Also
the results from both SP-FE and SP-FD methods are close to those
from the TP-FE method by Pridmore ef al. (1981). It shows that the
algorithm is effective while considering a more complicated model
for the primary potential.

A comparison of the computing efficiency of SICCG and
SSORCG algorithms is made for this model. The grid consists of
57 x 39 x 18 = 40 014 nodes. Numerical tests show that w = 2.0
is the optimal value of the relaxation parameter for the SSORCG
method and i = 1.4 is the optimal value for the SICCG method.
With the optimal values, the SICCG method takes an average of 20 s
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SP-FE

100 102 74 115 345 309 303
SP-FD 100 108 72 113 346 310 303
99 101 62 93 90 103 371 321 308
99 102 60 93 89 100 372 321 308
98 98 55 110 124 106 99 387 332 314
98 98 53 109 123 105 96 388 332 314
(a) 95 51 120 139 140 117 97 398 342
96 50 119 138 139 115 95 398 343
92 48 128 146 149 147 124 97 406 351
93 47 127 145 149 146 123 96 406 352
46 133 149 152 153 151 129 97 412
45 131 149 152 153 151 128 95 412
| | 1
SP-FE 121 65 68 80 286 269 218
SP-FD 122 66 67 76 277 262 216
120 115 41 108 69 88 528 283 231
119 115 40 106 68 81 518 274 227
116 106 64 85 108 88 129 496 289 243
118 105 62 85 110 87 125 498 282 232
(b) 96 55 158 80 128 145 110 489 295
101 54 156 79 129 144 111 488 287
95 50 152 141 200 134 104 486 295
96 49 151 138 199 135 106 490 292
48 153 131 150 134 179 133 101 487
46 153 130 145 135 180 135 103 492
5 -4 3 2 -1 0 1 2 3 4 5
I| I | ‘ | | ‘| | | ]
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Figure 6. Comparison of dipole—dipole apparent resistivities calculated by SP-FE and SP-FD methods over a complicated model by defining the analytical
solution of the vertical contact as the primary potential. (a) Vertical contact and massive sulphide, (b) all components of the model. The model is taken from

Pridmore et al. (1981), used with permission. All values are in €2 m.

and 135 iterations for each of the seven source positions, while the
SSORCG method requires an average of 30 s and 230 iterations.

6 CONCLUSION

In this paper, an accurate and efficient 3-D FE forward algorithm
for DC resistivity modelling is presented. The novelty of the method
lies in the application of the SICCG iterative accelerator combined
with the row-indexed sparse storage mode to the solution of the
secondary potential. The presented algorithm is more efficient than
the direct method in terms of storage and time requirements, and
also has an advantage over the SSORCG method. Numerical results
show that the secondary potential finite-element method can achieve
higher accuracy than the total potential finite-element method. Using
a complicated model for the primary potential can further reduce
the singularity of the potential and make the solution more stable.
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