= ГЕОХИМИЯ =

УДК 551.441(571.65)

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ РУДООБРАЗУЮЩЕГО ФЛЮИДА ЭПИТЕРМАЛЬНОГО Au-Ag-МЕСТОРОЖДЕНИЯ ДЖУЛЬЕТТА (СЕВЕРО-ВОСТОК РОССИИ)

© 2015 г. В. Ю. Прокофьев, А. А. Али, А. В. Волков, Н. Е. Савва, Е. Е. Колова, член-корреспондент РАН А. А. Сидоров

Поступило 25.06.2014 г.

DOI: 10.7868/S0869565215030238

Месторождение Джульетта расположено в Примагаданском отрезке Охотско-Чукотского вулканического пояса (ОЧВП), в 320 км по автотрассе от г. Магадан (рис. 1) и относится к низкосульфидизированному (LS) типу эпитермальной золото-серебряной формации [1]. Месторождение открыто Дукатской ГРЭ в 1989 г. и эксплуатируется с 2001 г. К настоящему времени из руд месторождения добыто около 27 т Au и 307 т Ag. За 12 лет работы рудника содержание Au, Ag в добываемой руде снизилось в четыре раза с 41.6 до 9 и 640 до 99 г/т соответственно. В последние годы добыча не превышает: Au – 1.8, Ag – 15 т/год [2]. Главную промышленную ценность на месторождении представляют рудные столбы, содержащие ураганные концентрации Au, Ag [3].

Рудное поле локализовано в Иваньинской кольцевой вулкано-тектонической депрессии (рис. 1). Депрессия сложена раннемеловыми вулканогенно-осадочными толщами, представленными миндалекаменными андезитами, андезито-базальтами с прослоями туфов андезитов и средне-крупнопорфировых дацитов и лав риодацитов. Породы основания депрессии представлены нижнеюрскими интенсивно дислоцированными морскими песчано-глинистыми отложениями. Стратифицированные образования (общей мощностью 1700 м) прорваны раннемеловыми штоками кварцевых диоритов и субвулканическими телами риолитов (140-133 млн лет, [3]), выходы которых приурочены к южному флангу дугообразного контура депрессии. Детальная характеристика геологического строения, минера-

Институт геологии рудных месторождений,

петрографии, минералогии и геохимии Российской Академии наук, Москва

Северо-Восточный комплексный научно-исследовательский институт им. Н.А. Шило

Дальневосточного отделения

Российской Академии наук, Магадан

логии и геохимии руд месторождения и околоинтрузивных изменений вмещающих пород в [1–4].

На месторождении выделяется несколько морфологических типов рудных тел: жилы выполнения мощностью до 1 м; жильные зоны, представленные сближенными жилами выполнения, расположенными на расстоянии 5–25 м друг от друга; прожилковые зоны, представленные сериями тонких прожилков мощностью 0.1–5 см, густота – до 15 прожилков на 1 м². Сближенные рудные тела различной морфологии слагают мощные рудные зоны (30–180 м). Отчетливо прослеживается их пространственная приурочен-

Рис. 1. Схема положения Иваньинской (И) и Нявленгинской (Н) кольцевых вулканоструктур в Примагаданском отрезке ОЧВП.

1 – обобщенный контур вулканических полей внешней зоны ОЧВП; 2 – граница внешней и внутренней зон ОЧВП (вершины треугольников направлены в сторону внутренней зоны); 3 – кольцевые вулканоплутонические комплексы.

Рис. 2. Фотографии типичной крустификационно-полосчатой руды (а) месторождения Джульетта и двухфазовых флюидных включений в кварце рудных тел (б–г).

ность к разрывным структурам северо-западного и субширотного простираний. Результаты текстурного анализа [3, 4] позволяют говорить об от-

носительно спокойной тектонической обстановке в период формирования руд, отражающейся в слабом развитии текстур катаклаза.

Таблица 1. Результаты термо- и криометрических исследований индивидуальных флюидных включений в кварце месторождения Джульетта

№ пробы	Тип включений	п	$T_{\rm fom}, {}^{\circ}{\rm C}$	$T_{_{\rm ЭВТ}}, ^{\circ}{\rm C}$	<i>Т</i> _{пл. льда} , °С	С _{солей} , мас. % экв. NaCl	<i>d</i> , г/см ³
Дж1	Π	5	211	-23	-3.1	5.0	0.90
	Π	3	198	-34	-3.5	5.6	0.91
Дж11	П	2	222	-27	-1.3	2.1	0.86
	П	2	210	-25	-1.0	1.7	0.87
	Π	4	191	-27	-0.8	1.3	0.89
	П	3	188	-25	-1.3	2.1	0.90
	П	3	172	-29	-0.9	1.5	0.91
	П-В	3	166	-22	-0.7	1.2	0.91
	П-В	3	166	-24	-1.1	1.8	0.92
	П-В	3	164	-27	-2.3	3.8	0.93
	П-В	5	161	-25	-1.2	2.0	0.92
	П-В	4	161	-28	-2.5	4.1	0.94
	П-В	3	160	-26	-0.9	1.5	0.92
	П-В	4	158	-29	-0.8	1.3	0.92
	П-В	3	157	-27	-0.9	1.5	0.93
	П-В	2	157	-28	-1.1	1.8	0.93
	П-В	5	157	-28	-2.1	3.4	0.94
	В	3	143	-25	-1.2	2.0	0.94
	В	3	137	-29	-2.5	4.1	0.96
	В	3	126	-26	-2.4	3.9	0.97

Примечание. П – первичные, П-В – первично-вторичные, В – вторичные.

Рис. 3. Гистограммы величин температур гомогенизации флюидных включений и солености рудообразующего флюида месторождения Джульетта. Объяснение в тексте.

Рис. 4. Сравнение составов рудообразующих флюидов месторождений Джульетта (1), Купол (2), Двойной (3).

Состав гидротермальных флюидов и температуры рудообразования по данным флюидных включений в рудах месторождения Джульетта детально изучали с момента его открытия [1, 3] на аппаратуре старого образца. В последнее десятилетие после начала эксплуатации месторождения эти исследования не проводили. В 2011 г. во время геологической экскурсии мы собрали коллекцию образцов типичных руд месторождения (рудные тела № 7, 8), отрабатывавшихся в это время.

В нашей работе рассмотрены результаты изучения флюидных включений в кварце руд месторождения Джульетта (рис. 2), выполненные в 2014 г. при помощи современного измерительного комплекса, созданного на основе микротермокамеры THMSG-600 фирмы "Linkam" (Англия), микроскопа "Olimpus B51", видеокамеры и

в режиме реального времени производить измерения температур фазовых переходов в интервале от -196 до 600°С, наблюдать за ними при больших увеличениях и получать цифровые микрофотографии. Индивидуальные флюидные включения изучали в двусторонне полированных пластинах толщиной 0.3-0.5 мм. После визуального просмотра и фотографирования препараты отклеивали от стекла, промывали этиловым спиртом и от них механически отделялись кусочки кварца с выбранными для исследований включениями. Концентрацию солей для включений рассчитывали по температуре плавления льда ($T_{\text{пл. льла}}$) с использованием данных из [5]. Солевой состав растворов определяли по температурам эвтектики [6]. Оценку концентраций солей и плотностей

управляющего компьютера. Комплекс позволяет

Таблица 2. Состав растворов флюидных включений в кварце месторождения Джульетта (проба № Дж1, рудное тело № 7)

Макрокомпоненты, г/кг воды						
CO ₂	9.34					
CH_4	0.088					
Cl-	2.91					
HCO_3^-	0.32					
Na	1.57					
Κ	0.41					
Ca	0.159					
Mg	0.020					
Микрокомпоненты, 10 ⁻³ г/кг воды						
Р	7.1					
As	0.550					
Li	4.0					
В	0.569					
Rb	0.91					
Cs	0.33					
Sr	4.06					
Мо	4.60					
Ag	0.08					
Sb	0.723					
Cd	0.85					
Pb	1.51					
Bi	0.013					
Al	30.7					
Ga	0.003					
Ge	0.15					
Ti	0.11					
Mn	1.16					
Fe	2.89					
Co	0.004					
Ni	0.42					
Y	0.05					
Zr	0.42					
Tl	0.04					
REE	0.06					
K/Rb	2215.65					

водно-солевого флюида проводили с использованием программы FLINCOR [7]. Анализ состава флюидных включений комплексом методов, включающим газовую, ионную хроматографию и ICP MS, был выполнен из фракции кварца 0.5– 0.25 мм массой 1.0 г в ЦНИГРИ (аналитик Ю.В. Васюта) по методике в [8]. Определяли количество воды для расчета концентраций элементов в гидротермальном растворе, углекислоту, метан, а после приготовления вытяжки в растворе — Cl, K, Na, Ca, Mg и все элементы, обнаруженные методом ICP MS.

При визуальном изучении флюидных включений в кварце из рудных жил месторождения Джульетта были обнаружены только двухфазовые газово-жидкие включения (рис. 26-г) слабоминерализованных растворов с газовым пузырьком, составляющим 5-30 об. % от общего объема включения. Флюидные включения в соответствии с [9] подразделены на первичные, первично-вторичные, вторичные (рис. 26-г). Для термо- и криометрических исследований выбирали прежде всего флюидные включения, расположенные в зонах роста или равномерно распределенные по объему отдельных зерен кварца и отнесенные нами к первичным включениям. Изучали также включения, приуроченные к трещинам (первично-вторичные, вторичные).

Термо- и криометрические исследования 66 индивидуальных флюидных включений в кварце рудного тела № 7 месторождения Джульетта (табл. 1; рис. 3) показали, что в составе растворов двухфазовых флюидных включений преобладали хлориды Na, K. Об этом свидетельствуют температуры эвтектики растворов включений в интервале -22...-34°С. Полная гомогенизация флюидных включений происходит при 126-222°С с отчетливо выраженным максимумом 160-170°С на гистограмме (рис. 3а), а концентрация солей менялась от 1.2 до 5.6 мас. %-экв. NaCl (рис. 36). Плотность флюида изменялась от 0.86 до 0.97 г/см³. Следует отметить, что полученные нами данные по температурам гомогенизации включений в основном близки к результатам предшественников [3]. Вместе с тем величины концентраций солей в рудообразующем флюиде 4-9 мас. %-экв. NaCl [3]. Такое существенное расхождение с нашими данными (табл. 2; рис. 4) может быть объяснено упоминавшимся выше аппаратурным фактором.

Таким образом, полученные в результате термобарогеохимических исследований данные показывают, что рудообразование происходило в обычных для эпитермальных низкосульфидизированных месторождений термодинамических условиях.

Состав растворов приведен в табл. 2 и на рис. 4. Во флюиде среди катионов главную роль играют (г/кг H₂O): Na (1.57), K (0.41), а Ca (0.17), Mg (0.02) находятся в подчиненном количестве. Установлены заметные количества таких компонентов, как (г/кг H₂O): Cl⁻ (2.91), HCO₃⁻ (0.32), CO₂ (9.34), CH₄ (0.088), а также Sb (0.72), B (0.57), As (0.55). Кроме того, в составе флюида выявлены многие микрокомпоненты (мг/кг раствора): P (7.1), Mo (4.6), Sr (4.06), Li (4.0), Fe (2.89), Pb (1.51), Mn (1.16), Rb (0.91), Cd (0.85), Zr (0.42), Ni (0.42), Cs (0.33), Ge (0.15), Ti (0.11), Ag (0.08), REE (0.06), Y (0.05), Tl (0.04) и др. Если сравнивать состав флюидов с флюидами месторождений Купол, Двойной [10], то флюиды месторождения Джульетта обогащены CO₂, Cl, Ca, Mg, Sb, As, Fe,

Ga, Ge, Ta, Ag, P3Э и обеднены HCO_3^- , Na, K, Li, Rb, Au.

В [4] повышенную золотоносность руд и геохимическую Cu-As-специализацию серебряных минералов месторождения Джульетта связывают с металлогеническими особенностями территории, лежащей на сочленении юго-восточного фланга Яно-Колымского складчатого пояса (ЯКС) с южным обрамлением Омсукчанского рифтогенного прогиба (ОРП) и с Приохотской зоной ОЧВП. Геохимическая специализация ЯКС – Au, As, в ОРП преобладает полиметаллическая Ag-Sn-Pb-Znминерализация, а Приохотскую зону отличает ярко выраженная порфировая геохимическая Си-Мо-специализация. Полученный нами состав рудообразующих растворов (табл. 2; рис. 4) в целом корреспондирует с отмеченными выше минералого-геохимическими особенностями руд месторождения.

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 14–17–00170).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Рыжов О.Б., Стружков С.Ф., Аристов В.В. и др. //* Руды и металлы. 1995. № 2. С. 66–78.
- Полевая экскурсия. Золото-серебряное месторождение Джульетта. 6–8 сентября 2011 г. Магадан: СВКНИИ ДВО РАН, 2011. 25 с.
- 3. *Strujkov S.F., Ryjov O.B., Aristov V.V., et al.* // Intern. Geol. Rev. 1996. V. 38. P. 625–648.
- Савва Н.Е., Фидря И.Л. В кн.: Минералогия и генетические особенности месторождений золота и серебра. Магадан: СВКНИИ ДВО РАН, 1996. С. 119–130.
- Bodnar R.J., Vityk M.O. In: Fluid Inclusions in Minerals: Methods and Applications. Pontignano: Siena, 1994. P. 117–130.
- 6. *Борисенко А.С.* // Геология и геофизика. 1977. № 8. С. 16–27.
- 7. Brown P. // Amer. Mineral. 1989. V. 74. P. 1390–1393.
- Кряжев С.Г., Прокофьев В.Ю., Васюта Ю.В. // Вестн. МГУ. Сер. 4. Геология. 2006. № 4. С. 30–36.
- Роддер Э. Флюидные включения в минералах. М.: Мир, 1987. Т. 1. 560 с.; Т. 2. 632 с.