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Abstract

Compressional waves velocity VP was measured during long-term experiments in a high-pressure vessel (in the range [10–

75] MPa for confining and pore pressures). Experiments were carried out on a granite specimen prepared by a controlled

heating treatment at 510 jC, which generated thermal cracks.

Data analysis is proposed by using an effective medium approach based on Kachanov’s [Appl. Mech. Rev. 45 (1992)304]

model. The elastic behaviour of the cracked rock is controlled by the crack density parameter which varies with confining and

pore pressures due to crack closure. In order to model the progressive closure of cracks, we assume elliptical cracks with major

axis 2c and aspect ratio a. By using a conformal mapping technique, we derive the variation of the crack aspect ratio as a

function of effective pressure, the effective pressure coefficient g depending on a and Poisson’s ratio m0. As a result, we compute

the crack density parameter and the elastic moduli of the cracked rock as a function of confining and pore pressures. To take into

account the heterogeneity of the rock sample, a peak-like distribution of crack aspect ratios is introduced, which allows us to

calculate the acoustic velocity VP for various effective pressures.

Comparison is made between theoretical and experimental values and shows that this simple model captures the essential

features of the acoustic velocity variation: an increase of VP when pore pressure is decreased followed by a plateau for a

threshold pore pressure. Best consistency between theoretical and experimental velocity values is obtained by introducing a

second crack population with a higher mean aspect ratio and an irreversible closure mechanism as effective pressure is cycled.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The effect of thermal cracking on the physical

properties of rocks is of great interest for various

industrial applications like the optimisation of geo-
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thermal recovery, or the safe design of nuclear and

toxic waste repositories, but it also applies to various

natural processes like volcanism or metamorphism. It

is important to see how modifications of the environ-

mental stress state by man-induced activities or natu-

ral processes like tectonics may alter the rock structure

thus leading to changes in physical properties of the

host rock.

Rocks can be considered as a dual space com-

posed of a ‘‘solid’’ space (i.e. the mineral matrix)
d.
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and a ‘‘void’’ space (the set of cracks and pores).

Their physical properties are strongly dependent on

the characteristics of the void space: pore/crack

geometry, pore/crack density,. . . The description of

microstructure is difficult and time-consuming but

the data obtained are especially valuable for testing

models. Actually, various theoretical models were

developed to derive elastic properties from micro-

structural parameters (Bruner, 1976; Kachanov,

1992; Kemeny and Cook, 1986; O’Connell and

Budiansky, 1974; Walsh, 1965). On the other hand,

numerous experimental studies have been reported

which demonstrate the influence of cracks on acous-

tic properties (Birch, 1960; Kern et al., 1997; Meglis

et al., 1996; Todd and Simmons, 1972). For exam-

ple, Todd and Simmons (1972) showed from acous-

tic waves velocity measurements as a function of

pore pressure in low-porosity rocks that the velocity

VP is controlled by the effective pressure Peff defined

as Peff =PC� gPP, where PC is the confining pres-

sure, PP is the pore pressure and g is a coefficient

smaller than unity. By using a simplified version of

the acoustic wave propagation theory developed by

Biot (1956a,b), Todd and Simmons (1972) wrote g
as

g ¼ 1� ðBVP=BPPÞDP
½BVP=BðDPÞ�PP

ð1Þ

where (BVP/BPP)DP may be interpreted as a measure

of the change in the compressional velocity of the

individual grains of the rock with hydrostatic pore

pressure at constant DP=PC�PP, and [BVP/B(DP)]PP

is the change in the compressional velocity of the

whole rock with a change in PC�PP at constant

pore pressure.

The scope of this paper is to check the influence

of pore/crack microstructure on the elastic properties

of the rock. Our starting point is an intact rock

sample that we subject to a thermal pretreatment to

induce isotropic microcracking. Thermal cracking is

due to internal stress concentrations following ther-

mal expansion mismatch or thermal expansion ani-

sotropy of grains. Fredrich and Wong (1986)

examined the effects of temperature changes on the

pore structure. They distinguished intergranular and

intragranular cracks. Wang et al. (1989) investigated

thermal cracking in four heated granites: they quan-
tified thermally induced cracking. As thermal crack-

ing affects pore microstructure, it can greatly

influence transport properties: permeability (Darot

and Reuschlé, 2000a) and electrical conductivity

(Ruffet, 1993). In this paper, we will focus on

acoustic velocity measurements as a function of both

confining and pore pressures on a granite sample that

was preheated at 510 jC.
Next, the experimental data will be analysed by

an effective medium approach based on Kachanov’s

(1992) model. In this model, the elastic behaviour

of the cracked rock is controlled by the crack

density parameter that varies with confining and

pore pressures by crack closure. To take into ac-

count the heterogeneity of the rock sample, a peak-

like distribution of initial crack aspect ratio and a

crack closing rule will be introduced, which will

allow us to calculate the crack density parameter for

various pressures. As a result, the theoretical acous-

tic velocities will be compared to the experimental

data.
2. Experimental procedure and results

A granite core (20 mm in diameter and 40 mm in

length) was drilled out of a single block of La

Peyratte granite. This fine-grained granite (1.5 mm

grain size) is extracted from a quarry near Poitiers (W

France) (Turpault, 1989); it is composed of 40%

plagioclase, 26% K-feldspar, 24% quartz and 10%

biotite. Two parallel flat faces were machined half-

way up for the location of the piezoceramics. A crack

population was generated inside the specimen by a

controlled heating treatment at 510 jC which ensured

a porosity increase from 0.6% to 1.2% (Darot and

Reuschlé, 2000b). When back to room temperature,

the piezoceramic transducers were glued directly on

the rock for a good mechanical coupling. The whole

specimen equipped with its transducers was saturated

under vacuum with deionized water and inserted in a

jacket clamped on the end-pieces. Electric and

hydraulic insulation was insured to avoid any leak-

age. Experiments were performed on the set-up

described in Fig. 1. All the experimental parameters

including the acoustic signal visualized on the oscil-

loscope, were digitized, recorded vs. time and saved

on a computer.



Fig. 2. Acoustic waves velocity VP vs. pore pressure PP for different

constant confining pressures PC (labelled in MPa near the end of

each curve).

Fig. 1. The experimental setup. The specimen Sp equipped with

piezoceramic transducers is insulated from the confining pressure

PC by a jacket clamped on end-pieces. The 100-MPa pressure cell

and the confining pressure circuit are in heavy lines. The 100-MPa

pore pressure circuit is in light lines. The VP setup is composed of

two piezoceramic transducers (700 kHz resonance frequency)

connected to a generator, an amplifier and a two-channel digital

oscilloscope.
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P-wave velocity VP was calculated using the trans-

mission travel time of an acoustic pulse across the

specimen between a transceiver and a receiver (both

made of PZT piezoceramic with a resonant frequency

of 700 kHz). The acoustic wave velocity measurement

chain was composed of a generator giving the excita-

tion to the transmitter, the receiver being connected to

a 60-dB amplifier which allows the signal to be

visualized on a two-channel oscilloscope. The travel

time was measured directly on the oscilloscope screen

with an accuracy of 10 ns which corresponds to a VP

accuracy better than F 20 m/s.

The role of both pore and confining pressures on

VP was explored with pressure cycles experiments. A

set of decreasing pore pressures was examined sys-

tematically for various increasing confining pressures.

For each [PC; PP] couple, the P-wave travel time was

determined as described above.

For the first step, PC was risen to 2 MPa to insure

jacket tightness onto the specimen. Then PC and PP

were risen simultaneously up to, respectively, 10 and
8 MPa, keeping the differential pressure PC�PP

equal to 2 MPa. During the transient towards equili-

brium, the acoustic signal from the receiver was

recorded continuously and visualized on the oscillo-

scope screen until equilibrium was reached. At equi-

librium, the P-wave travel time was determined and

the signal recorded on a computer. This recording

procedure was applied to successive decreasing PP

values. The pore pressure was then risen back step by

step to the initial value. When equilibrium was

reached, the confining pressure was increased to the

next value with the differential pressure being kept

constant and equal to 2 MPa. And a new cycle on PP

was started.

Water-filled cracks have been known for a long

time to have a significant effect on VP in a fractured

rock (Johnston and Toksöz, 1980); our data in the

100-MPa confining pressure range confirm this

important role of cracks on acoustic velocities. Raw

data are shown in Fig. 2. For a constant confining

pressure, VP increases while pore pressure decreases;

for a given pore pressure, VP increases with increasing

confining pressure. The general VP vs. PP trend can be

described as a two-step process: first, a progressive

quasi-linear increase as PP decreases, and second, a

quasi-constant velocity regime. A kink on almost all

curves indicates the transition between these two

types of responses.
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3. Theoretical analysis and discussion

At a given confining pressure, decreasing pore

pressure induces forces which tend to bring facing

crack surfaces closer. This induces changes in the

microstructural geometry thus affecting the acoustic

waves velocity. Numerous models have been devel-

oped to relate changes in microstructural parameters

to acoustic waves propagation properties (Berge et al.,

1992; Henyey and Pomphrey, 1982; Le Ravalec and

Guéguen, 1996). These models are mainly based on

the concept of equivalent effective medium, that is a

homogeneous medium which has the same elastic

properties as the real heterogeneous cracked rock.

One hypothesis of this approach is that the crack

centres have to be randomly distributed, that is the

medium has to be statistically homogeneous. Another

hypothesis is that the cracks are isolated objects not

interacting with the others. This point has been dis-

cussed in detail by Kachanov (1992). Consider that

locations of crack centres are random. One may

expect that the competing effects of shielding and

amplification are balanced and cancel each other, i.e.,

that the randomness of crack centres ensures the

absence of ‘‘bias’’ toward either amplifying or shield-

ing configurations. If this is indeed so, then the

approximation of noninteracting cracks remains accu-

rate at high crack densities, in spite of strong inter-

actions. Kachanov (1994) has shown that, for at least

two orientational statistics—parallel and randomly

oriented cracks—these expectations are confirmed

by computer experiments and calculations of the

method of effective field. We have also made a third

hypothesis, which is the isotropy of the rock. This has

been checked by measuring VP in three perpendicular

directions: the velocity variations are within 2%. Once

these assumptions are made, the only microstructural

parameter that has to be introduced in the models is

the crack density parameter. The basic concept of the

effective medium approach is that the presence of a

crack disturbs the deformation field in the intact rock

subjected to an external stress field. One can thus

compute the variations of the elastic moduli of the

rock as a function of the crack density parameter v and

the elastic moduli of the intact rock, that is Young’s

modulus E0 and Poisson’s coefficient m0.
We consider flat spheroidal ‘‘penny-shape’’ cracks

of initial radius c0 and width b0 (b0bc0), which leads
to a shape factor a0 = b0/c0. Since we measured

acoustic waves velocity in a saturated sample, we

have to take into account the compressibility b of the

fluid phase. This is done by introducing a parameter d
defined by:

d ¼ 3pbE0a0
16ð1� m20Þ

ð2Þ

where b = 2.3 GPa� 1 for water.

The elastic moduli E and m of the cracked rock are

then given by (Kachanov, 1992):

E

E0

� ��1

¼ 1þ v
16ð1� m20Þ
9ð1� m0=2Þ

� 1� 3

5
1� 1� m0

2

� � d
1þ d

� �� �

m
m0

¼ E

E0

1þ 8ð1� m20Þ
45ð1� m0=2Þ

v

� �
ð3Þ

Once the elastic moduli are computed, it is easy to

derive the P-wave velocity VP using the following

equation:

VP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� mÞE

ð1þ mÞð1� 2mÞq

s
ð4Þ

where q is the density of the rock.

The crack density parameter v was introduced by

Walsh (1965) and is defined as:

v ¼ 1

V

X
i

c3i ð5Þ

where the sum runs over all cracks of the rock sample.

Since the rock has a fairly uniform grain size, we may

assume that all cracks have the same radius c, Eq. (5)

can be simplified to v =Nc3, where N is the number of

cracks per unit volume of rock.

For a given confining pressure, when the pore

pressure is decreased, cracks start to close. Depend-

ing on their initial aspect ratio a0, there exists a

critical pore pressure for which some cracks are

completely closed, thus decreasing N and v. There-
fore, we have to develop an evolution rule for the



Fig. 3. Effective pressure coefficient g vs. crack aspect ratio a.
Poisson’s coefficient m has been taken equal to 0.22.
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aspect ratio a as a function of pressures PC and PP.

Mavko and Nur (1978) have developed a calculation

scheme of crack deformation under hydrostatic pres-

sure that Doyen (1987) applied to saturated cracked

rocks. In this approach, the crack aspect ratio a is

shown to decrease linearly as differential pressure

PC�PP is increased. However, previous experimen-

tal studies on various rocks have shown that confin-

ing and pore pressures do not have a symmetrical

effect on physical properties. Indeed, the pressure

controlling these properties is the effective pressure

PC� gPP, where the effective pressure coefficient g
is usually lower than unity. For example, Bernabé

(1987) has found g values ranging between 0.5 and 1

for permeability measurements run on low-perme-

ability sandstone and granite. For La Peyratte gran-

ite, Darot and Reuschlé (2000a) obtained g values

ranging between 0.7 and 1 for permeability and

acoustic waves velocity measurements. As pointed

out by Bernabé (1988), the effective pressure coef-

ficient may be stress-path dependent. During confin-

ing and pore pressures cycles, the coefficient g was

shown to vary depending on which pressure was first

modified. However, this dependency on stress path

decreased rapidly with the number of cycles. Effec-

tive pressure coefficient g may also vary with con-

fining pressure. As shown by Bernabé (1986) on

Chelmsford granite and Barre granite, g slightly

decreases with increasing confining pressure. This

has been interpreted in terms of changes in the

geometry of the cracks during closure.

In order to constrain our evolution rule for cracks

we use the following approximation: the penny-shape

crack is replaced by a cylindrical tube with elliptical

cross section, where c0 is the semi-major axis and b0 is

the semi-minor axis of the ellipse. This crack is treated

as a two-dimensional void inclusion in plane strain

embedded in a solid, homogeneous and isotropic

elastic matrix. The stresses acting on the cavity are

the confining and pore pressures PC and PP. Using a

conformal mapping technique (Muskhelishvili, 1977),

we can calculate the normal displacement at the crack

surface. In the minor axis direction, this displacement

U is written as:

U ¼ 2cð1� m20Þ
E0

ðPC � gPPÞ ð6Þ
where the effective pressure coefficient g is given

by:

g ¼ 1þ ð1� aÞð1� 2m0Þ
2ð1� m0Þ

ð7Þ

In Fig. 3, we have reported the variations of g as a

function of a, the shape factor ranging from 0 (flat

crack) to 1 (circular tube). We see in this figure that for

crack aspect ratio usually found in granite (a < 0.01)
the effective pressure coefficient is very close to 1. An

interpretation of the decrease of a with increasing

confining pressure PC has been given by Bernabé

(1986): the cracks in the rocks are supposed to have

rough walls; during closure, when asperities come into

contact, a low aspect ratio crack is progressively trans-

formed into an array of smaller cracks with higher

aspect ratio (Walsh and Grosenbaugh, 1979) and there-

fore lower a (Fig. 3). In the following, we do not

consider this crack evolution scheme and we assume

that there are no asperities on the crack surfaces.

Introducing the effective pressure Peff =PC� gPP,

we can compute the stressed crack half-width

b= b0�U, and we derive the evolution rule for crack

aspect ratio a as a function of Peff from Eq. (6):

a ¼ a0 �
2ð1� m20Þ

E0

Peff ð8Þ

The critical effective pressure for crack closure is

then easily computed from Eq. (8) by taking a = 0. Eq.
0



Fig. 4. Probability distribution function f(a) of aspect ratio a. The
definition of the controlling parameters amin, ac, amax, d1 and d2 is

given in the figure.
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(8) shows that the critical aspect ratio is increasing

with pressure. Combining this result and the exper-

imental velocity data presented in Fig. 2 gives some

information about the shape factor range of the cracks

present in the rock sample. At high velocity or effec-

tive pressure, the observed plateau regime corresponds

to the closure of cracks with maximum aspect ratio. By

taking g = 1, the beginning of the plateau corresponds

to a critical effective pressure of about 32 MPa.

Young’s modulus E0 and Poisson’s coefficient m0 for

the intact granite were determined from strain meas-

urements during a uniaxial compression test on a

nontreated sample. We found E0 = 75 GPa and

m0 = 0.22. These static elastic constants compare well

with the Voight–Reuss–Hill average given by David

et al. (1999) and deduced from the mineralogical

composition of La Peyratte granite. Introducing these

values in Eq. (8) leads to ac 8.10� 4. Using a similar

calculation, the lowest measured VP at PC = 10 MPa

and PP= 8 MPa corresponds to an aspect ratio of about

5.10� 5. It implies that there exist cracks with aspect

ratios down to a minimum threshold smaller than this

value. Since VP is increasing with Peff, it means that

cracks have aspect ratios ranging between these two

values and that they successively close as Peff is

increased. To take into account this heterogeneity of

crack microstructure, we have to introduce a distribu-

tion of crack aspect ratios. Following the approach

proposed by David et al. (1990), we use a peak-like

distribution controlled by five parameters: the mini-

mum aspect ratio amin, the maximum aspect ratio amax,

the central aspect ratio ac and the two decreasing

factors d1 and d2 (Fig. 4). The probability distribution

function f (a) of crack aspect ratio is then given by:

f ðaÞ ¼ a1expðb1aÞW ðamin; acÞ

þ a2expð�b2aÞW ðac; amaxÞ ð9Þ

W(ai, aj) is the rectangular unity window on the

interval [ai, aj] and is defined byW(ai, aj) =H(a� ai)�
H(a� aj), where H() is the Heaviside distribution.

The parameters a1, a2, b1 and b2 are inferred from

the five controlling parameters of the distribution

defined above. Microstructural data compiled by

Brace (1977) show that Eq. (9) may apply for

various granites. We then assume this equation is

also a good description of the crack shape factor

distribution in the La Peyratte granite. Estimate for
amax has been deduced from the high velocity

plateau regime on Fig. 2, that is amax = 8.10
� 4.

An estimate for ac may be deduced from the first

VP measurement in our (PC, PP) cycles, ’leading to

ac = 5.10
� 5. For simplicity, we assume that the de-

creasing factors d1 and d2 are equal. The two last

parameters, amin and d = d1 = d2, are then determined

by fitting the experimental velocity data with the

theoretical values obtained at PC = 10 MPa.

In order to compute VP for a given PP, we need to

know the initial value of the crack density parameter

v0. This is achieved by introducing the porosity of the

rock sample. Porosity / has been found equal to 1.2%

for the La Peyratte sample heated at 510 jC. The
volume of a single penny-shape crack is Vcrack = pc3a.
Introducing this crack volume and porosity / into Eq.

(5), and assuming that all cracks have the same radius,

we obtain the following relation between the initial

crack density parameter v0 and porosity /:

v0 ¼
3/
4pā

ð10Þ

where ā is the mean aspect ratio of the crack pop-

ulation given by:

ā ¼
Z amax

amin

af ðaÞda ð11Þ
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Starting at PP= 8 MPa, we are now able to describe

the evolution of velocity VP as PP is decreased. For a

given PP value, we calculate the effective pressure

coefficient g as a function of aspect ratio a by using

Eq. (7). Eq. (8) allows the computation of the critical

aspect ratio aclo, the minimum a value of the remain-

ing open cracks at given PP. The number of cracks per

unit volume of rock still open at PP is then given by:

N ¼ N0

Z amax

aclo

f ðaÞda ð12Þ

where N0, the initial number of cracks per unit volume

of rock, is given by N0 = v0/c
3.

Introducing N in Eq. (5) leads to the crack density

parameter v at PP, which no longer depends on c. It is

thus straightforward to compute VP by using Eqs. (3)

and (4), where d is derived from Eq. (2) by averaging

over all remaining open cracks:

d ¼ 3pbE0

16ð1� m20Þ

Z amax

aclo

af ðaÞda ð13Þ

The same calculation is done for the different

experimental PC values and we can compare the

various theoretical VP evolutions to the experimental

ones. The first point we have to check is the consis-

tency between both theoretical and experimental ini-

tial VP values at lowest PC and Peff. Because VP is

decreasing as v increases, an overestimation of the

initial velocity can be obtained by replacing ā by amax

in Eq. (10). This operation leads to an initial

VPc 2800 m/s much lower than the experimental

value (4930 m/s). Since porosity / has been measured

independently, it means that the mean aspect ratio ā
we have to introduce in Eq. (10) must be higher than

amax. This may be explained by the existence of two

crack populations: a first one consisting of cracks with

shape factors in the range [amin, amax] which are

progressively closed during our experiments up to

35 MPa effective pressure, and a second population of

cracks with aspect ratios higher than amax which

cannot be closed in the effective pressure range we

explored during our experiments. This second crack

family would thus not affect the velocity VP evolution

up to 35 MPa effective pressure. However, by intro-

ducing the same closure mechanism as above, their

higher shape factors would explain the effective

pressure dependence of VP usually observed in crys-
talline or metamorphic rocks up to about 400 MPa

(Birch, 1960; Kern et al., 1997; Kern and Tubia, 1993;

Nur and Simmons, 1969). In fact, this kind of double

crack porosity is similar to the one introduced by Le

Ravalec et al. (1996) to analyse the effect of fluid

saturation on acoustic velocities in rocks.

We have no direct control on the properties of the

second crack population. Nevertheless, fitting the

initial experimental velocity to the theoretical one

gives some constraint on the relative volume occupied

by these cracks. Furthermore, the high velocity pla-

teau regime gives a lower limit to the shape factors of

the cracks belonging to the second family, that is

az 8.10� 4. To simplify our analysis, we suppose that

this second family is composed of cracks having a

mean crack shape a¯2. Let /1 and /2 be the porosity

occupied by the crack populations 1 and 2, respec-

tively. Assuming that all cracks have the same radius,

the initial number of cracks N10 and N20 belonging to

families 1 and 2 are given by:

N10 ¼
3/1

4pā1c3
N20 ¼

3/2

4pā2c3
ð14Þ

where ā1 is the mean aspect ratio of crack family 1

derived from Eq. (11). The number N of cracks per

unit volume of rock still open at a given PP is derived

from the following equation similar to Eq. (12):

N ¼ N10

Z amax

aclo

f ðaÞda þ N20 ð15Þ

The calculation of parameter d has to be changed to

take into account the second crack population. This is

simply done by introducing the mean crack shape ā2
of crack family 2 into Eq. (13), which leads to:

d ¼ 3pbE0

16ð1� m20Þ
N1

N

Z amax

aclo

af ðaÞda þ N20

N
ā2

� �
ð16Þ

where N1 is the number of cracks of family 1 still open

at pressure PP. The crack density parameter v at a

given PP is deduced from Eq. (5): v=Nc3. Acoustic
waves velocity VP is then given by Eqs. (3) and (4)

where crack density parameter v is changing with PC

and PP.

In Fig. 5, we show the comparison between the

experimental velocity data and the theoretical values

deduced from our model. The microstructural param-



Fig. 5. Comparison between the experimental velocity data and the

theoretical values deduced from the model. The aspect ratio

distribution parameters of the first crack family, the mean aspect

ratio of the second crack family and the porosity occupied by each

crack family are given in Table 1. The confining pressure value is

labelled in MPa near the end of each curve.
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eters were determined by best fitting the velocity

curve obtained at PC = 10 MPa, which corresponds

to the first pressure cycle in our experiments. They are

summarized in Table 1. We see in Fig. 5 that the

general trend observed experimentally is rather well

described by our model: an increase of velocity VP

with effective pressure followed by a plateau regime.

However, two features cannot be reproduced by the

model: the change in slope of the VP vs. PP evolution

as confining pressure is increased, and the increase

with confining pressure of the velocity measured at

lowest effective pressure. One can also notice an

increasing difference between the theoretical and

experimental VP evolutions as confining pressure is

increased. A possible explanation for the increase of

the low effective pressure velocity may be the irre-

versible closure of a subset of the first crack popula-

tion when effective pressure is cycled.
Table 1

Aspect ratio distribution parameters of the first crack family, mean

aspect ratio of the second crack family and porosity occupied by

each crack family

amin ac amax d1 d2 ā2 /1 /2

1.10� 6 5.10� 5 8.10� 4 10 10 4.8	10� 2 0.03% 1.17%
We propose to model this irreversible closure by

introducing /1res, the residual porosity occupied by

the cracks belonging to the first family and still open

at the start of a pore pressure cycle at constant PC.

Since there is no simple way to model the control of

the aspect ratio on the irreversible crack closure, we

assume that this mechanism affects the cracks of the

first population independently of their aspect ratio.

Hence, it follows that the initial number N10 of cracks

belonging to family 1 has to be changed to:

N10 ¼
3/1res

4pā1c3
ð17Þ

where ā1 is still derived from Eq. (11). Introducing

Eq. (17) into Eqs. (15) and (5) leads to the crack

density parameter v and hence to velocity VP. The

parameter /1res is determined by using the velocities

measured at lowest effective pressure for each PC

value.

Fig. 6 summarizes the variation with confining

pressure of the residual porosity /1res which ensures

the best fit to the initial velocity data. Fig. 7 illustrates

the comparison between the experimental velocity

data and the theoretical values deduced from our

model when an irreversible closure of cracks is

introduced. We notice that the modified model is

now able to capture all essential features of the

experimental curves: the slope of the VP vs. PP curve
Fig. 6. Evolution of the residual porosity /1res occupied by the first

crack population when an irreversible closure mechanism is

introduced as effective pressure is cycled.



Fig. 7. Comparison between the experimental velocity data and the

theoretical values deduced from the model when an irreversible

closure mechanism is introduced. The microstructural parameters

are the same as for Fig. 5. The residual porosity is given in Fig. 6.

The confining pressure value is labelled in MPa near the end of each

curve.
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is now decreasing as PC is increased, the increasing

difference between theory and experiment observed in

Fig. 5 has been reduced and the theoretical data are

now quite consistent with the experimental values.

This improved consistency is a strong support for our

hypothesis of partial irreversible closure of cracks

during pressure cycling.
4. Conclusion

The comparison between theoretical acoustic ve-

locity values and experimental data illustrates the

influence of crack microstructure evolution on the

elastic properties of a rock. The crack content evolu-

tion was controlled during experiments by varying

both confining and pore pressures. A data analysis

based on the effective medium approach proposed by

Kachanov (1994) has shown that this control operates

through the crack density parameter v which varies

with confining and pore pressures by crack closure.

When assuming reversible crack closure during pres-

sure cycling, our analysis is able to capture the general

trend of velocity evolution with pore pressure: an

increase followed by a plateau at high effective

pressure. This implies the existence of two crack

families: a first one with aspect ratios following a
peak-like distribution which is progressively closed

during our experiments; a second one with a higher

mean aspect ratio which is not affected by the pressure

cycles. The remaining inconsistency between theory

and experiments can be removed by introducing an

irreversible closure mechanism as effective pressure is

cycled.

This paper shows that our experimental data com-

bined with a detailed analysis give some information

on the microstructural parameters of the tested rock

and their evolution with pressure. The next step of our

approach will be to apply the same analysis to velocity

data obtained in the same pressure conditions on La

Peyratte granite samples prepared by a controlled

heating at various temperatures. We will then be able

to check the effect of thermal treatment on the evolu-

tion with pressure of the microstructural parameters. A

further step will be to develop an analogous analysis

for permeability data that were acquired in parallel

with velocity measurements, to check whether the

microstructural control is similar for both properties.
Acknowledgements

This is EOST contribution No. 2002.09-UMR7516.

We are grateful to two anonymous reviewers for their

helpful comments on the manuscript. The authors also

thank Jean-Daniel Bernard for technical support during

the course of this work.
References

Berge, P.A., Fryer, G.J., Wilkens, R.H., 1992. Velocity–porosity

relationships in the upper oceanic crust: theoretical considera-

tions. J. Geophys. Res. 97, 15239–15254.
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Darot, M., Reuschlé, T., 2000a. Acoustic wave velocity and perme-

ability evolution during pressure cycles on a thermally cracked

granite. Int. J. Rock Mech. Min. Sci. 37, 1019–1026.
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