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Abstract

Rheological properties of polyphase rocks play an important role in the dynamics of the lithosphere and asthenosphere.

However, flow laws for large portions of the polyphase rocks in the Earth’s crust and mantle have not been well determined. An

analysis based on the theory of mixtures has been made to calculate the general flow laws of coarse (z 5 Am), nearly equant-

grained (aspect-ratio V 3), and massive polyphase rocks and materials for which only the flow laws and volume fractions of the

constituents are taken into consideration in the modeling of the bulk rheology and effects of microstructure could be ignored.

The theoretical analysis is based on three assumptions: (1) the polyphase composite and the monophase aggregates of its

constituents obey the same kind of flow laws (linear, power or exponential), (2) there is no change in the operative deformation

mechanism of each phase when it is in the composite as compared to when it is in a monophase aggregate, and (3) neither

chemical (metamorphic) reactions take place among the constituent phases nor eutectic melting occurs due to the phase mixing.

The proposed iterative process allows to predict, to the first approximation, the flow laws for a large number of polyphase rocks

in terms of the experimentally determined flow laws of a relatively small number of monomineralic aggregates. Applications of

this approach to typical polyphase rocks such as granite, diorite, diabase, aplite and websterite as well as to synthetic two-phase

materials such as forsterite–enstatite mixtures and water ice–ammonia dehydrate aggregates yield quite accurate

approximations to the experimental values.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction dependency and are of the form (Carter and Tsenn,
Constitutive laws used to describe steady-state

flow behavior for both monophase and polyphase

materials deformed by intracrystalline plastic flow

are generally assumed to have a power law stress
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1987; Rutter and Brodie, 1992; Kohlstedt et al.,

1995):

ė ¼ Ad�mrnexp
�Q

RT

� �
ð1Þ

where ė is the steady-state strain-rate, A is the pre-

exponential factor, r is the differential flow stress, n is

the stress exponent, Q is the apparent activation
d.
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energy, R is the gas constant, T is the absolute

temperature (K), d is the grain size and m is the grain

size exponent.

At low stresses or at very high temperatures or

under hydrous conditions, it is generally believed

that plastic flow is dominated by diffusion creep

(e.g., Rutter, 1976; Poirier, 1985). The materials

behave as Newtonian fluids with strain-rate linearly

related to stress (i.e., n = 1). Deformation takes place

by the actual transfer of vacancies from the surface

of low compressive stress to the surface of high

compressive stress. Vacancies are created at the sur-

face of low compressive stress and flow either

through the crystal lattice (so-called Nabarro-Herring

creep and m = 2) or along grain boundaries (Coble

creep and m = 3) to the surface of high compressive

stress. The flux of material is opposite to that of the

vacancies. Usually, Coble creep is effective at lower

temperatures than Nabarro-Herring creep because of

its lower activation energy. In the regime of diffusion

creep, the flow strength tends to decrease rapidly

with decreasing grain size (e.g., Karato et al., 1986;

Walker et al., 1990; Bruhn et al., 1999; Rybacki and

Dresen, 2000).

At the intermediate stress and temperature regime,

flow is controlled by the mechanism of dislocation

creep and is independent on the grain size (i.e., m = 0).

One model for the mechanism of dislocation creep,

known as Weertman creep, assumes that the rate of

dislocation glide is limited by the rate at which

dislocations can climb. For Weertman creep, the value

of stress exponent n is between 2 and 5 (e.g., Poirier,

1985; Walker et al., 1990; Mackwell et al., 1998;

Rybacki and Dresen, 2000). It is also called power

law flow, which is the dominant mechanism for

most metamorphic conditions in the crust and upper

mantle.

At high stress level, the strain-rate for plastic

deformation increases approximately exponentially

with increasing differential stress and the power flow

law breaks down (Tsenn and Carter, 1987). The

deformation is controlled by glide of dislocations

through the lattice. Resistance to the motion of the

dislocations comes in part from the lattice itself

because of the necessity of breaking bonds in order

for the dislocations to move. Resistance also comes

from obstacles that occur in the path of a gliding

dislocation, such as other dislocations or impurities.
The stress dependence of the strain-rate is given by

Tsenn and Carter (1987):

ė ¼ Aexp
�Q

RT

� �
expðbrÞ ð2Þ

where b is a constant for the flow in this high stress

regime.

Flow laws, volume fractions and microstructures

(e.g., shape, continuity and interconnectivity) of the

constituent phases are generally considered as the

most important factors controlling the bulk rheolog-

ical properties of polyphase materials and rocks (e.g.,

Burg and Wilson, 1987; Ross et al., 1987; Jordan,

1988; Bloomfield and Covey-Crump, 1993; Handy,

1994; Ji and Zhao, 1994; Tullis and Wenk, 1994;

Zhao and Ji, 1997; Dresen et al., 1998; Ji et al., 2000;

McDonnell et al., 2000; Treagus, 2002). Because

microstructures are complex and very rich in details,

it is difficult to obtain an exact analytical solution to

describe their effects on the nonlinear rheology of

polyphase aggregates. The technique currently used

for such studies is finite element modeling as made by

Tullis et al. (1991), Dragone and Nix (1990) and Park

and Holmes (1992). However, as pointed out by Tullis

et al. (1991), the finite element modeling is too

tedious to employ for each new aggregate because

each polyphase material has a distinct microstructure.

The results from such a modeling sometimes is so

complicated that it might obscure the problem at hand.

This study addresses the less troublesome case of

coarse (z 5Am), nearly equant-grained (aspect-ratio

V 3), and massive rocks and materials for which we

can take only the flow laws and volume fractions of

the constituent phases into consideration and neglect

the effects of microstructure. In this paper, we intro-

duce a simple method for calculating the flow laws of

such polyphase materials from their monophase flow

laws and modal compositions.

Ji and Zhao (1993) developed an iterative model

based on the geometric average of strain-rate or stress

on ė–r coordinate system to directly determine the

bulk flow law parameters (n, A, Q) of polyphase

materials deforming in the regime of dislocation creep

(m = 0, the grain-size insensitive flow) in terms of the

volume fractions and dislocation creep power law

parameters of the constituent phases. In this paper,

we will extend the iterative model of Ji and Zhao
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(1993) to polyphase composites deformed by either

dislocation creep (grain-size insensitive) or diffusion

creep (grain-size sensitive), as long as deformation

mechanism of each phase does not change when in the

composite as compared to when it is in a single phase

aggregate. This generalized model allows one to

predict the flow laws of a large number of polyphase

rocks at both laboratory and geological conditions

based on the experimentally determined flow laws of

a relatively small number of monophase aggregates.
Fig. 1. Schematic representation of geometrical averaging methods

for isostrain-rate and isostress conditions. Dot: isostress condition.

Square: isostrain-rate condition.
2. Power law flow

2.1. Rules of mixture

There are two basic rules of mixture widely used in

the material sciences and rock mechanics for predict-

ing the bulk mechanical properties of composites

(Kelly and Macmillan, 1986) and polyphase rocks

(Watt et al., 1976; Tullis et al., 1991; Ji and Wang,

1999). These are:

(1) Uniform strain average, which suggests that the

overall stress in the composite is equal to the

arithmetic weight average of the stresses in

the constituent phases and the weight factors are

the volume fractions of the phases, but the strain

or strain-rate is uniform in the composite.

(2) Uniform stress average, which suggests that the

overall strain is equal to the arithmetic weight

average of the strains in the phases and the stress

is uniform in the composite.

Under these end-member conditions, the bulk

stress (rc) and strain rate (ėc) of the composite can

be represented by those of its constituent phases as

follows:

rv
c ¼

XN
i¼1

Viri ð3Þ

ėrc ¼
XN
i¼1

Viėi ð4Þ

where V represents the volume fraction and N is the

number of constituent phases. The subscripts c and i
stand for the composite and ith constituent phase,

respectively. The superscripts r and v stand for the

uniform stress average and uniform strain average,

respectively. In the regime of elastic deformation, the

uniform stress average and uniform strain average

correspond, respectively, to the Reuss (1929) and

Voigt (1928) bounds. The uniform strain average is

assumed to be valid only when the constituent phases

are continuous in the loading direction and if the

mechanical interaction between the phases is neg-

lected. On the other hand, the uniform stress average

is assumed to be valid only when the constituent

phases form continuous layers perpendicular to the

loading direction and if there is no mechanical inter-

action between the phases (see Ji et al., 2000 for

discussion). For the granular composites discussed in

this paper, Eqs. (3) and (4) are believed to provide the

upper and lower bounds to the flow strength of

composite but not the real value (Tullis et al., 1991).

One important consequence of the application of

these rules of mixture is that the resultant composite

creep data cannot be represented by a simple power

flow law although the relation between flow stress and

strain-rate for each phase follows a power flow law.

To solve this problem, Ji and Zhao (1993) proposed to

use a geometric average rather than an arithmetic

average of strain-rate or flow stress. On a ln ė–ln r
coordinate system (Fig. 1), Eq. (1) is represented as a

straight line with a slope equal to ni and an intercept

equal to (ln Ai�mi ln di�Qi/RT). Corresponding to

the N phases in the aggregate, there are N straight
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lines on the plot. The geometric average on the ė–r
coordinate system is then replaced by an arithmetic

average on the ė–ln r coordinate system.

On the ln ė–ln r coordinate system, the power flow

law equation for the ith phase in a polyphase aggre-

gate containing N phases can be written as

lnėi ¼ lnAi þ nilnri � milndi �
Qi

RT

ði ¼ 1; 2; . . . ; NÞ ð5Þ

or

lnri ¼
1

n1
lnėi � lnAi þ milndi þ

Qi

RT

� �

ði ¼ 1; 2; . . . ; NÞ ð6Þ

where ėi and ri are, respectively, the average strain-

rate and average flow stress in the ith phase, (ni, mi,

Ai, Qi) are the flow law parameters of the ith phase

and di is the grain size of the ith phase. If the

polyphase aggregate obeys the same kind of constit-

utive flow laws as its constituent phases do, the

composite flow law can be similarly written as

lnėc ¼ lnAc þ nclnrc � mclndc �
Qc

RT
ð7Þ

or

lnrc ¼
1

nc
lnėc � lnAc þ mclndc þ

Qc

RT

� �
ð8Þ

where dc is the average grain size for the composite,

as defined by Wang (1994), although its physical

meaning has not been clear yet.

dc ¼
XN
i¼1

Vidi ð9Þ

where Vi is the volume fraction of the ith phase. Eq.

(9) can be rewritten as:

di ¼
diXN

j¼1

Vjdj

dc ¼ aidc ði ¼ 1; 2; . . . ; NÞ

ð10Þ
where ai is a constant.
By assuming uniform stress or uniform strain-rate

in the polyphase aggregate, the overall strain-rate or

the bulk flow stress of the polyphase aggregate can be

respectively represented as

lnė ¼
XN
i¼1

Vilnėi ¼
XN
i¼1

VilnAi þ lnr
XN
i¼1

Vini

�
XN
i¼1

Vimilndi �
1

RT

XN
i¼1

ViQi ð11Þ

and

lnr ¼
XN
i¼1

Vilnri ¼ lnė
XN
i¼1

Vi

ni
þ
XN
i¼1

Vimi

ni
lndi

�
XN
i¼1

Vi

ni
lnAi þ

1

RT

XN
i¼1

Vi

ni
Qi ð12Þ

Substituting Eq. (10) into Eqs. (11) and (12), we

obtain

lnė ¼
XN
i¼1

VilnAi �
XN
i¼1

Vimilnai þ lnr
XN
i¼1

Vini

� lndc
XN
i¼1

Vimi �
1

RT

XN
i¼1

ViQi ð13Þ

and

lnr ¼ lnė
XN
i¼1

Vi

ni
þ
XN
i¼1

Vimi

ni
lnai �

XN
i¼1

Vi

ni
lnAi

þ lndc
XN
i¼1

Vimi

ni
þ 1

RT

XN
i¼1

Vi

ni
Qi ð14Þ

By comparing Eqs. (13) and (14) with Eqs. (7) and

(8), respectively, we can obtain the flow law param-

eters for the polyphase aggregate by the uniform stress

and uniform strain-rate averages on the ln ė–ln r plot:

nrc ¼
XN
i¼1

Vini ð15Þ

mr
c ¼

XN
i¼1

Vimi ð16Þ
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Ar
c ¼

YN
i¼1

Ai

ami

i

� �Vi

ð17Þ

Qr
c ¼

XN
i¼1

ViQi ð18Þ

and

nvc ¼
1

XN
i¼1

Vi

ni

ð19Þ

mv
c ¼ nvc

XN
i¼1

Vimi

ni
ð20Þ

Av
c ¼

YN
i¼1

Ai

ami

i

� �nvcVi=ni

ð21Þ

Qv
c ¼ nvc

XN
i¼1

ViQi

ni
ð22Þ

where the superscripts r and v stand for the uniform

stress and uniform strain-rate approximations, respec-

tively.

2.2. Iterative process

Neither the uniform stress nor uniform strain-rate is

physically realistic (Tullis et al., 1991); therefore, the

flow law in the real case should lie somewhere

between the uniform stress and the uniform strain-rate

averages. Following this concept, Ji and Zhao (1993)

proposed a method to determine the approximate

values of the flow law parameters of the dislocation-

creep power law for polyphase rocks by taking these

two averages as new input data and processing an

iterative process to progressively reduce the range

between the new averages until a given precision

(B) is reached. A process is presented below to

determine the flow law parameters for the general
power law described by Eq. (1) by taking Eqs. (13)

and (14) as two end-member flow laws:

nrð0Þ ¼ nrc ð23Þ

mrð0Þ ¼ mr
c ð24Þ

Arð0Þ ¼ Ar
c ð25Þ

Qrð0Þ ¼ Qr
c ð26Þ

nvð0Þ ¼ nvc ð27Þ

mvð0Þ ¼ mv
c ð28Þ

Avð0Þ ¼ Av
c ð29Þ

Qvð0Þ ¼ Qv
c ð30Þ

Then the iterative process can be realized according to

the following equations

nrðiÞ ¼ Fnvði�1Þ þ ð1� FÞnrði�1Þ ð31Þ

mrðiÞ ¼ Fmvði�1Þ þ ð1� FÞmrði�1Þ ð32Þ

ArðiÞ ¼ ðAvði�1ÞÞFðArði�1ÞÞ1�F ð33Þ

Qrð1Þ ¼ FQvði�1Þ þ ð1� FÞQrði�1Þ ð34Þ

for the uniform stress approximation of the fictitious

‘‘two-phase’’ aggregate (new ‘‘lower bound’’), and

nvðiÞ ¼
nvði�1Þnrði�1Þ

ð1� FÞnvði�1Þ þ Fnrði�1Þ
ð35Þ

mvðiÞ ¼
Fnrði�1Þmvði�1Þ þ ð1� FÞnvði�1Þmrði�1Þ

nvði�1Þnrði�1Þ
nvðiÞ

ð36Þ
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AvðiÞ ¼ ðAvði�1ÞÞFnvðiÞ=nvði�1Þ ðArði�1ÞÞð1�FÞnvðiÞ=nrði�1Þ ð37Þ

QvðiÞ ¼
Fnrði�1ÞQvði�1Þ þ ð1� FÞnvði�1ÞQrði�1Þ

nvði�1Þnrði�1Þ
nvðiÞ

ð38Þ

for the uniform strain-rate approximation of the ficti-

tious ‘‘two-phase’’ aggregate (new ‘‘upper bound’’).

Here F is a coefficient to describe the contribu-

tion of the uniform strain-rate condition. Its value

depends on the microstructure of the material.

When the loading direction is parallel to the layering

of a layered composite, in which different consti-

tuent phases form different layers, the composite is

deformed in uniform strain-rate and F = 1. On the

other hand, when the loading direction is normal

to the layers, the composite is deformed in uniform

stress and thus F = 0. For a granular rock, the value

of F is between 0 and 1. It is found that F = 0.5,

where the uniform stress and uniform strain con-

ditions have equal contributions, yields the best

agreement between the theoretically calculated and

experimentally measured flow strengths for polyphase

materials. For a given precision (B), the iterative

process will continue until the following conditions

are satisfied

AnvðsÞ � nrðsÞA
ðnvðsÞ þ nrðsÞÞ

< B;
AmvðsÞ � mrðsÞA
ðmvðsÞ þ mrðsÞÞ

< B;

AAvðsÞ � ArðsÞA
ðAvðsÞ þ ArðsÞÞ

< B; and
AQvðsÞ � QrðsÞA
ðQvðsÞ þ QrðsÞÞ

< B ð39Þ

where s is the number of iterative steps needed to

reach the precision B (e.g., B = 1%). Finally, either the

‘‘lower bound’’ parameters (nr(s), mr(s), Ar(s), Qr(s)) or

the ‘‘upper bound’’ parameters (nv(s), mv(s), Av(s), Qv(s))

can be taken as the flow law parameters for the

polyphase aggregate because the difference between

these two ‘‘bounds’’ can be ignored.

To realize the above iterative process, a QuickBa-

sic program has been written and is available upon

request from the authors.
3. Exponential law flow

At high stress level, the strain-rate of steady-state

flow becomes increasingly sensitive to differential

stress as the differential stress increases. If one attempts

to explain the experimental data with the power law

described by Eq. (1), one will find that the stress

exponent n increases with increasing differential stress.

It has been found that an exponential dependence of

strain-rate upon differential stress, named exponential

law (Eq. (2)), best describes the experimental data

(Sherby et al., 1954; Tsenn and Carter, 1987).

The exponential law (Eq. (2)), can be transferred

into a linear relationship on ln ė–ln r coordinate

system.

lnė ¼ lnA� Q

RT
þ br ð40Þ

Repeating the similar process described in Section

2.2, we can obtain the following equations to calcu-

late, respectively, the exponential law parameters of

the ‘‘lower and upper bounds’’ with the uniform stress

and uniform strain-rate approximations for a given

polyphase material consisting of N phases.

br
c ¼

XN
i¼1

Vibi ð41Þ

Ar
c ¼

YN
i¼1

AVi

i ð42Þ

Qr
c ¼

XN
i¼1

ViQi ð43Þ

and

bv
c ¼

1

XN
i¼1

Vi

bi

ð44Þ

Av
c ¼

YN
i¼1

A
Vib

v
c=bi

i ð45Þ

Qv
c ¼ bv

c

XN
i¼1

ViQi

bi

ð46Þ



Table 1

Predicted flow law parameters for typical polyphase rocks and input

data

Rock Composition

for modeling

A (MPa� n/s) n Q

(kJ/mol)

Reference

Diorite Rock 1.26� 10� 3 2.4 219 [1]

66% pl 3.27� 10� 4 3.2 238 [2]

28% cpx

(hb)

15.8 2.6 335 [2]

6% qtz 10� 3 2.0 167 [2]

Prediction 8.7� 10� 3 2.93 261.5 This study

Diabase Rock 2.0� 10� 4 3.4 260 [2]

64% cpx 1.58� 10� 5 6.4 444 [3]

36% pl 3.27� 10� 4 3.2 238 [2]

Prediction 6.12� 10� 5 4.97 351.9 This study

Prediction 6.02� 10� 5 4.99 353.0 [7]

Granite Rock 2.0� 10� 6 3.3 187 [1]

Rock 2.6� 10� 9 3.4 138 [1]

68% pl 2.34� 10� 6 3.9 234 [2]

27% qtz 10� 3 2 167 [2]

5% bi 1.3� 10� 67 31 98 [4]

Prediction 5.74� 10� 7 3.90 206.4 This study

Aplite Rock 3.26� 10� 7 3.1 163 [2]

65% pl 2.34� 10� 6 3.9 234 [2]

30% qtz 10� 3 2 167 [2]

5% bi 1.3� 10� 67 31 98 [5]

Prediction 7.18� 10� 7 3.84 204.2 This study

Websterite Rock 3.98� 10� 7 4.3 326 [5]

68% cpx 10� 5 5.3 380 [3]

32% opx 0.316 2.4 293 [6]

Prediction 7.6� 10� 4 4.09 343.6 This study

Prediction 6.94� 10� 4 4.11 344.4 [7]

[1] Hansen and Carter (1982); [2] Shelton and Tullis (1981); [3]

Kirby and Kronenberg (1984); [4] Shea and Kronenberg (1992); [5]

Avé Lallemant (1978); [6] Raleigh et al. (1971); [7] Tullis et al.

(1991).

Abbreviations: bi = biotite, cpx = clinopyroxene, hb = hornblende,

ol = olivine, opx = orthopyroxene, pl = plagioclase, qtz = quartz.
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By taking the exponential law parameters in Eqs.

(41)–(43) and (44)–(46) as two new end-member

flow laws,

brð0Þ ¼ br
c ð47Þ

Arð0Þ ¼ Ar
c ð48Þ

Qrð0Þ ¼ Qr
c ð49Þ

and

bvð0Þ ¼ bv
c ð50Þ

Avð0Þ ¼ Av
c ð51Þ

Qvð0Þ ¼ Qv
c; ð52Þ

the iterative process used for calculating the new

approximate exponential law parameters can be real-

ized by considering

brðiÞ ¼ Fbvði�1Þ þ ð1� FÞbrði�1Þ ð53Þ

ArðiÞ ¼ ðAvði�1ÞÞFðArði�1ÞÞ1�F ð54Þ

QrðiÞ ¼ FQvði�1Þ þ ð1� FÞQrði�1Þ ð55Þ

and

bvðiÞ ¼
bvði�1Þbrði�1Þ

ð1� FÞbvði�1Þ þ Fbrði�1Þ
ð56Þ

AvðiÞ ¼ ðAvði�1ÞÞFbvðiÞ=bvði�1Þ ðArði�1ÞÞð1�FÞbvðiÞ=brði�1Þ ð57Þ

QvðiÞ ¼
Fbrði�1ÞQvði�1Þ þ ð1� FÞbvði�1ÞQrði�1Þ

bvði�1Þbrði�1Þ
bvðiÞ

ð58Þ

After s steps of iteration, the difference between the

new ‘‘lower and upper bounds’’ will be less than a

given precision (B). Then, either the ‘‘lower bound’’

parameters (br(s), Ar(s), Qr(s)) or the ‘‘upper bound’’

parameters (bv(s), Av(s), Qv(s)) can be taken as the

approximate exponential law parameters for the poly-
phase material because the difference between these

two ‘‘bounds’’ can be ignored when B is small enough

( < 1%).
4. Prediction of flow law parameters for

monophase rocks

The major purpose of this study is to estimate the

flow law parameters of polyphase materials in terms

of the flow laws and volume fractions of their con-

stituent phases. Occasionally, one may be interested in

a reversed problem, that is, estimation of the flow law

parameters of a monophase aggregate which is one of
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the constituent phases of a polyphase material. If the

flow law parameters of this polyphase material and its

other constituent phases are known, the flow law

parameters of this phase can then be calculated from

the present model by the following variable transfers.

(1) Taking the unknown phase as a ‘‘polyphase

material’’ while the polyphase material as the last

phase [i.e., the Nth phase in Eqs. (5) and (6))].

(2) The volume fraction values for the first N� 1

phases are taken as the reserved values (i.e.,
Fig. 2. Flow stress– temperature profiles for diorite at three different strain-

function of temperature. Experimental data from Hansen and Carter (198
negative values) of their real volume fractions.

The volume fraction for the Nth phase (i.e., the

real polyphase material) is taken as 1.
5. Applications to polyphase rocks

In the following, we will show some examples for

the application of the methods to polyphase rocks.

The flow law parameters of monophase aggregates

used as input data to predict the flow law parameters
rates of (a) 10� 5/s, (b) 10� 6/s and (c) 10� 7/s. (d) Relative error as a

2).
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of the polyphase rocks were judicially selected from

the existing experimental data based on the following

criteria:

1. Polyphase rocks and their constituent phases are

experimentally determined under similar laboratory

conditions because rheological data of both mono-

phase aggregates and polyphase rocks are strongly

dependent on the experimental conditions, such as

temperature, strain-rate, confining pressure, water

content, and test apparatus used. Strain-rate and
Fig. 3. Flow stress– temperature profiles for diabase at three different strain

function of temperature. Experimental data from Shelton and Tullis (1981
temperature may play a more important role than

confining pressure. When more than one set of

experimental results satisfy this condition, results

obtained from liquid and gas confining medium

apparatus are regarded as most reliable and dry tests

in a rocksalt confining medium in solid pressure

medium equipment are next most reliable, but

results from other solid pressure medium apparatus

are less reliable (Carter and Tsenn, 1987).

2. The experimental results obtained from liquid or

gas confining medium apparatus are regarded as
-rates of (a) 10� 5/s, (b) 10� 6/s and (c) 10� 7/s. (d) Relative error as a

).
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the remedial choice when there are no experimen-

tal results, which can satisfy the first selective

criterion.

3. The deformed polyphase rocks are coarse and

nearly equant-grained (z 5 Am), homogeneously

mixed, dense aggregates.

If there is no experimental data for one or some of

the constituent phases satisfying either of the above

criteria, the comparison for such polyphase aggregates

cannot be done unless there are experimental results of
Fig. 4. Flow stress– temperature profiles for granite at three different strain-

function of temperature. Experimental data from Hansen and Carter (198
other monophase aggregates which satisfy either of the

first two criteria to replace the constituent phases. For

example, although flow law parameters of K-feldspar

monophase aggregate are not available, they can be

approximated by those of albite, because optical and

transmission electron microscopy observations indi-

cate that the deformation microstructures are almost

identical for plagioclase and K-feldspar coexisting in

naturally deformed granite (White and Mawer, 1986).

Moreover, hornblende appears to display similar rheo-

logical properties to clinopyroxene.
rates of (a) 10� 5/s, (b) 10� 6/s and (c) 10� 7/s. (d) Relative error as a

2).
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Comparisons are made between the predicted flow

stresses (rp) and experimentally determined values

(re) as functions of temperature at different strain-rates

for diorite (Fig. 2), diabase (Fig. 3), granite (Fig. 4),

aplite (Fig. 5) and websterite (Fig. 6). At the exper-

imental conditions, the constituent phases of these

rocks were deformed mainly in the regime of disloca-

tion creep, and the polyphase rocks obeyed the same

kind of power flow laws as their constituent phases

(Hansen and Carter, 1982; Shelton and Tullis, 1981;

Kirby and Kronenberg, 1984; Shea and Kronenberg,

1992; Raleigh et al., 1971; Avé Lallemant, 1978). The
Fig. 5. Flow stress– temperature profiles for aplite at three different strain-r

function of temperature. Experimental data from Shelton and Tullis (1981
contribution of the uniform stress condition and the

uniform strain-rate condition are assumed to be the

same, that is, F = 0.5, in the iterative process. The

precision (B) is taken to be 1%. The predicted flow

stresses are quite close to those measured experimen-

tally under the laboratory conditions, although the

predicted flow law parameters for them may be differ-

ent to some degree from those determined (Table 1).

The relative errors (rp� re)/re within the experimen-

tal temperature ranges are less than 0.7 except for

granite. In the range of deformation temperature (e.g.,

650–800 jC for diorite, 800–1100 jC for diabase,
ates of (a) 10� 5/s, (b) 10� 6/s and (c) 10� 7/s. (d) Relative error as a

).
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650–800 jC for granite, and 650–1125 jC for aplite),

the relative errors are generally less than 0.53. The

relative error varies from � 0.42 to � 0.18 for diorite

(Fig. 2d), from � 0.2 to 0.53 for diabase (Fig. 3d),

from� 0.29 to 0.1 for granite (Fig. 4d) and from � 0.3

to � 0.05 for aplite (Fig. 5d). The experimentally

measured flow stress is larger than the predicted one

for websterite (Fig. 6a–c). The relative error varies

from � 0.5 to � 0.7 (Fig. 6d). Such errors may be due

either to uncertainties in the input flow laws (Paterson,

1987) or to those in the model (e.g., effects of micro-

structures).
Fig. 6. Flow stress– temperature profiles for websterite at three different st

as a function of temperature. Experimental data from Avé Lallemant (197
Recently, Ji et al. (2001) carried out a series of

creep experiments to investigate the effect of varying

forsterite content (VFo) on the bulk flow strength

of dry forsterite–enstatite (Fo–En) aggregates. Their

experiments were performed at temperatures of

1150–1320 jC, stresses of 18–100 MPa, oxygen

fugacities of 10� 14–10� 2.5 MPa and 0.1 MPa total

pressure. The fine-grained (Fo: 10–17 Am; En: 14–

31 Am) composites of various Fo volume fractions

(VFo = 0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1) were synthe-

sized by isostatically hot-pressing in a gas medium

apparatus at 1523 and 350 MPa. These experiments
rain-rates of (a) 10� 5/s, (b) 10� 6/s and (c) 10� 7/s. (d) Relative error

8).



Fig. 8. Normalized flow stresses of water ice–ammonia alloys at a

temperature of � 97 jC and a strain-rate of 3.5� 10� 6/s as a

function of volume fraction of water ice. Experimental data from

Durham et al. (1993).
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show that flow strength contrasts between Fo and En

are in the range of 3–8 at the given experimental

conditions, with Fo as the stronger phase. The

measured stress exponent (n) and activation energy

(Q) values of the Fo–En composites fall between

those of the end-members. The n values show a

continuous increase from 1.3 to 2.0 while the Q

values display a non-linear increase from 472 to 584

kJ/mol with En volume fraction from 0 to 1.0. The

mechanical data and TEM microstructural observa-

tions suggest no change in deformation mechanism

of each phase when in the composites, compared to

when in a single phase aggregate. The En deformed

mainly by dislocation creep while the Fo deformed

mainly by diffusion creep for the grain sizes and

experimental conditions. Fig. 7 shows the normalized

flow stress as function of strong phase (forsterite)

volume fraction for forsterite–enstatite (Fo–En)

aggregates. The normalized flow stress (rN) is de-

fined as

rN ¼ rc � rw

rs � rw

ð59Þ

where rw and rs are the flow stresses of the weaker

phase and stronger phase, respectively. As shown
Fig. 7. Normalized flow stresses of hot-pressed forsterite–enstatite

(Fo–En) aggregates at a strain rate of 10� 6 s� 1, T= 1230 jC as a

function of volume fraction of forsterite. Experimental data from Ji

et al. (2001).
in Fig. 7, the uniform stress and uniform strain-rate

averages given by the present model are good ap-

proximations for the flow strengths of Fo–En compo-

sites with VFoV 0.4 and VFoz 0.6, respectively. At

VFo = 0.5, the iteration with F =0.5 predicts compo-

site flow strengths consistent with the experimental

data.

Fig. 8 shows the normalized flow stress as function

of strong phase volume fraction for water ice–ammo-

nia dehydrate composites (Durham et al., 1993). At a

temperature of 97 jC, a strain-rate 3.5� 10� 6/s and a

confining pressure 50 MPa, ice is stronger than am-

monia and both phases deform by dislocation creep as

indicated by high values of stress exponents (Table 2).

The predicted flow stress values are in good agree-

ment with those experimentally measured values

under the experimental conditions. Both the predicted

flow stresses (Fig. 8) and flow law parameters (Table

2) change with increasing the volume fraction of

water ice.

It is interesting to compare the present model with

the empirical formulas of Tullis et al. (1991). For a

two-phase aggregate deformed by dislocation creep,

Tullis et al. (1991) assumed
lognc ¼ Vslogns þ Vwlognw ð60Þ



Table 2

Predicted flow parameters of water ice–ammonia dihydrate system

Volume

fraction

of ice (%)

A (MPa� n/s) n Q (kJ/mol)

0 3.548� 1021 5.81 107.5

10 1.646� 1019

(2.31�1019)

5.789

(5.789)

100.94

(100.9)

20 7.792� 1016

(1.529� 1017)

5.767

(5.767)

94.408

(94.408)

30 3.764� 1014

(1.032� 1015)

5.746

(5.746)

87.90

(87.90)

40 1.855� 1012

(7.092� 1012)

5.725

(5.725)

81.414

(81.415)

50 9.32� 109

(4.965� 1010)

5.704

(5.704)

74.953

(74.953)

60 4.775� 107

(3.54� 108)

5.683

(5.683)

68.516

(68.515)

70 2.494� 105

(2.57� 106)

5.662

(5.662)

62.103

(62.101)

80 1.328� 103

(1.9� 104)

5.64

(5.641)

55.712

(55.711)

90 7.203

(1.43� 102)

5.62

(5.621)

49.345

(49.344)

100 3.98� 10� 2 5.6 43

The flow law parameters in the parentheses are predicted using the

empirical formulas of Tullis et al. (1991).
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Then based on this assumption, they obtained the

flow law parameters Qc and Ac of the composite

from the following equations:

Qc ¼
Qwðnc � nsÞ � Qsðnc � nwÞ

nw � ns
ð61Þ

Ac ¼ 10
logAwðnc�nsÞ�logAsðnc�nwÞ

nw�ns ð62Þ

where the subscripts s and w stand for the strong

phase and the weak phase, respectively. They found

that the results calculated from Eqs. (60)–(62)

agreed quite well with their finite element model

calculations. As shown in Table 1, the stress

exponents and the activation energies of diabase

and websterite calculated from the empirical for-

mulas of Tullis et al. (1991) are almost the same as

those predicted by our model using F = 0.5. But the

pre-exponential factors (A values) predicted from

these two models are slightly different for these

two bi-phase composite rocks. However, there is no

remarkable difference in the calculated flow stresses

between the two models for diabase (Fig. 3),
websterite (Fig. 6) and forsterite–enstatite mixtures

(Fig. 7). For ice–ammonia dehydrate system (Dur-

ham et al., 1993), the normalized flow stress

predicted by our model (Fig. 8) is even closer to

the experimental results than that predicted by the

empirical formulas of Tullis et al. (1991). Further-

more, their empirical formulas are limited to only

two-phase aggregates with ns p nw while the present

model can be easily applied for any multiphase

rocks.
6. Discussion and conclusions

The iterative process presented in this paper allows

prediction of the flow law parameters of polyphase

materials and rocks in terms of the flow law param-

eters and volume fractions of their constituent phases,

no matter whether each of the phases deforms by

dislocation creep or diffusion creep, as long as there is

no change in deformation mechanism when it is in the

composites as compared to when it is in a monophase

aggregate. Although the predicted flow law parame-

ters may be different to some degree from those

experimentally determined, the flow stresses calcu-

lated by the model are in good agreement with those

measured experimentally under the laboratory condi-

tions. Unlike most of the previous models which were

developed for modeling the bulk flow strength of two-

phase mixtures (e.g., Tharp, 1983; Duva, 1984; Tullis

et al., 1991; Ji and Zhao, 1994; Handy, 1994; Takeda,

1998; Treagus, 2002), the present model can be used

to predict the flow law parameters of multiphase

aggregates. For two-phase aggregates, the flow

strengths estimated by our model using F = 0.5 are

almost the same as calculated by the empirical for-

mulas of Tullis et al. (1991) for two-phase aggregates

such as diabase, websterite and forsterite–enstatite

mixtures.

Although the analysis presented in Section 2 of

this paper is derived for the generalized power flow

law described by Eq. (1), the comparisons with

experimental results are mainly limited to the dis-

location-creep power laws which are independent on

the grain size (m = 0), because so far, most of the

experimental data were obtained from the regime of

dislocation creep. Even in the diffusion creep regime,

grain size exponent is generally difficult to determine



S. Ji et al. / Tectonophysics 370 (2003) 129–145 143
because the mean grain sizes of the samples should

vary in such a large range that the grain size exponent

can be well constrained (Walker et al., 1990). We

believe that our model is valid for the polyphase

materials and rocks in which each of the constituent

phases deforms in the same mechanism as in its

monophase aggregate. Thus, the model cannot be

applied to the polyphase composites in which the

operative deformation mechanisms are different from

those in the end-member aggregates (Wheeler, 1992;

Bruhn et al., 1999), chemical or metamorphic reac-

tions take place among the constituent phases (Brodie

and Rutter, 1985), or eutectic melting occurs due to

phase mixing (e.g., Rutter and Neumann, 1995).

Further testing of the proposed model will require

systemic, carefully designed experiments on synthetic

homogeneous aggregates of controlled composition,

grain size, volume fraction and microstructure of each

phase.

The model is also extended to predict the expo-

nential law parameters for polyphase aggregates when

all of their constituent phases obey the exponential

laws. Unfortunately, the proposed model cannot be

used to estimate the flow properties of polyphase

aggregates when their constituent phases obey differ-

ent types of flow laws, for example, some phases

obey power laws while the others obey exponential

laws.

The model developed in this paper is appropriate

only for the coarse (z 5 Am), nearly equant-grained

(aspect-ratio V 3), and massive materials because of

neglecting the possible contribution of microstructures

to the composite flow strength. For example, ex-

tremely fine-grained ( < 2 Am) hard phases can act

as impenetrable barriers to dislocation motion in their

soft matrix, and consequently increase the bulk flow

strength of the polyphase aggregate (Kelley, 1973).

The bulk flow strength of a polyphase material with

constant volume fractions of constituents varies with

the shape of the strong phase grains and increases

with increasing the aspect-ratio of hard phases (Drag-

one and Nix, 1990; Ji and Zhao, 1994; Ji et al., 2000;

Treagus, 2002). Furthermore, the phase continuity and

interconnectivity play an important role in the rheo-

logical behavior of polyphase materials (Burg and

Wilson, 1987; Jordan, 1988; Handy, 1990). A drastic

decrease in bulk flow strength may occur in two-phase

systems with contrasting rheology when a transition
from strong-phase supported structure to weak-phase

supported structure takes place (Arzi, 1978; Rutter

and Neumann, 1995; Ji et al., 2001). Obviously, the

influences of microstructures on the bulk rheology of

polyphase materials are extremely complex, so far still

poorly understood, and thus need further systematic

investigation.

In spite of the above limitations, the model offers a

first approximation for calculating flow strengths and

flow law parameters of polyphase materials and rocks

from their end-member flow laws and modal compo-

sitions. Thus, it is a useful approach for predicting the

flow laws of a large number of rocks based on the

experimentally determined flow laws of a relatively

small number of monophase aggregates.
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