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Abstract

Anisotropy of viscosity in rocks has a significant effect on the development of geological structures, as demonstrated in

several theoretical and analogue model studies. This paper develops the results of a self-consistent mechanics approach to

modelling the bulk viscous properties of two-phase composites, to reveal the strength of the viscous anisotropy. Anisotropy

factor, d, is defined as the ratio of normal to shear viscosity, lN/lS. The value of d is determined for different types of

composites of two viscous phases with varying viscosity ratio (m = 5, 10, 100), ranging from bilaminates to those with elliptical

shape fabrics given by axial ratio, R. Bilaminates with equal layer thickness are the most highly anisotropic systems, where d
simply depends on m.

These results are applied to rocks, modelled as two-phase composites of competent and incompetent lithologies, with the

aim of quantifying the viscous anisotropy that is associated with natural rock deformation and the formation of geological

structures. It is deduced that m = 5 or 10 is an appropriate maximum viscosity contrast for many metasedimentary rocks (e.g.

psammite/pelite composites), but that m = 100 might be effectively reached in limestone/marl pairs, or in rocks containing

surfaces of slip or zones of recrystallisation or grain-boundary sliding. These m values give rise to maximum d values of 3, 5.5

and 25.5, respectively. An anisotropy factor of dH25 is effectively a composite of a rigid and a viscous phase, and may only be

achieved in solid–melt mixtures.

Anisotropic rocks, whether layered or containing a strong shape fabric, will develop folds more easily than isotropic rocks.

Characteristic structures are similar folds, chevron folds, kink bands and shear bands. Geometric features of folds, especially

fold angularity, may provide methods of quantifying the viscous anisotropy of rocks and composites.
D 2003 Elsevier B.V. All rights reserved.
Keywords: Anisotropy; Viscosity; Two-phase composites; Folds

1. Introduction Rocks may behave anisotropically because they have
Anisotropy of material properties such as viscos-

ity is likely to play an important role in the devel-

opment of structures in naturally deformed rocks.
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a strong fabric (shape and/or crystallographic pre-

ferred orientation), or because of repetitive layering

that has different mechanical properties. Materials or

rocks can be considered statistically homogeneous

anisotropic media, if the scale of layering or shape

fabric is small relative to the scale of deformation

considered. A number of studies have revealed the

influence of elastic or viscous anisotropy on fold
d.



Fig. 1. Schematic representation of three types of two-phase mixture

in two-dimensional section. A nominal competent phase is shaded,

the incompetent phase is white, and the competent fraction is

f 0.25. (a) Circular clasts in a matrix (circular cylinders in 3D). (b)

Elliptical clasts in a matrix, with ellipse axial ratio (R) of five

(elliptical cylinders in 3D). (c) Bilaminate multilayer, also re-

presenting infinitely elliptical clasts in a matrix.
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initiation and development (Bayly, 1964, 1970; Biot,

1965a,b; Cobbold et al., 1971; Cobbold, 1976;

Cosgrove,1976; Latham, 1979, 1985a,b; Casey and

Huggenberger, 1985; Weijermars, 1992; Hudleston et

al., 1996; Fletcher and Pollard, 1999), but deriva-

tions of numerical values that characterise the

strength of anisotropy in natural rocks are much

rarer.

This paper will investigate the degree of viscous

anisotropy in various types of two-phase viscous com-

posites ranging from layered to particulate (Fig. 1),

with the aim of bracketing possible values of anisotro-

py in crustal rocks. Following Honda (1986), Weijer-

mars (1992) and Mandal et al. (2000), the anisotropy

will be described throughout by anisotropy factor, d,
the ratio between the viscosity under normal stress and

viscosity under shear stress, i.e. d = lN/lS. It is equiv-

alent toA of Hudleston et al. (1996), and is analogous to

elastic anisotropy factor,N/Q of Biot (1965a), Cobbold

(1976) and others. The d value is a useful index of

anisotropy in two dimensional analyses of two-phase

media, such as the cross sections shown in Fig. 1, that

are statistically homogeneous, orthotropic (Biot,

1965a) and transversely isotropic. More terms are

needed to define the anisotropy of composites with

three-dimensional shape fabrics (Mandal et al., 2000),

or nonlinearly viscous composites, which will not be

considered in this paper.

With the exception of Mandal et al. (2000), most

analyses of anisotropy have concerned layer-type

anisotropy, the bilaminate model. If an anisotropic

viscous medium is considered to comprise thin alter-

nating layers of two isotropic viscous phases with

viscosities of l1 and l2, its normal and shear viscos-

ities (lN, lS) are given by:

lN ¼ a1l1 þ a2l2 ð1aÞ

lS ¼ 1=fa1=l1 þ a2=l2g ð1bÞ

(Biot, 1965a, p. 432), where a1 and a2 are the phase

area fractions (a1 + a2 = 1). Denoting the viscosity

ratio l2/l1 =m, the anisotropy factor (d = lN/lS) of

this bilaminate is written:

d ¼ ða1 þ a2mÞða1 þ a2=mÞ ð2Þ
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This is a symmetric function, such that d for a2 equals
d for (1� a2). Maximum d is at a1 = a2 = 0.5, simply

expressed as:

dmax ¼ ðmþ 1Þ2=4m ð3Þ

For high viscosity contrasts (where m>100), dmax

approximates to m/4.

What values of viscosity ratio (m) are appropriate

to use for modelling two-phase rocks? Talbot (1999)

reviews some of the methods by which rock viscosity

and viscosity contrasts have been measured, using

structures such as folds, mullions and boudins. He

determined values for some metamorphic and igneous

rocks, and focused on changes of viscosity with

pressure and temperature, and between solid rocks

and melts. Using dominant wavelengths of folds, and

application of Fletcher and Sherwin (1978), Talbot

determined m values in the range of 5 to 20 for quartz

veins relative to pelitic gneiss. These are comparable

to values of 15 to 20 determined by Sherwin and

Chapple (1968) for folded quartz veins in phyllite or

slate, whereas Hara and Shimamoto (1984) calculated

m values of 94–136 for quartz veins in pelitic schist,

23–33 for quartz veins in psammitic schist, and 14–

26 for quartz veins in basic schist. Some of the

differences between these three studies may reflect

the methods of analysis, but they are more likely to be

indicative of real differences in the rheology of

pelites, schists and gneisses (also quartz) for the

different data sets. From these three studies of folded

quartz veins, an approximate value of m = 20 might be

taken for the viscosity ratio of vein quartz to ‘pelite’ at

low to moderate metamorphic grade. This might be an

appropriate value for modelling the viscosity ratio

between quartz-rich and mica-rich laminae in a phyl-

lite (cf. Bayly, 1970), but not necessarily for viscosity

contrasts among sedimentary rock layers or clasts,

such as sandstone/shale alternations. In their high

amplitude modelling of folds in the Appalachians,

Cruikshank and Johnson (1993, Table 1) have as-

sumed viscosity ratios of 100 (relative to shale) for

massive sandstone formations, and 20 to 30 for

intermediate formations.

Studies of cleavage refraction in metasedimentary

rocks (Treagus, 1999) estimated effective viscosity

contrasts of f 5 for psammites relative to pelites.

Recent analyses of conglomerates (Treagus and Trea-
gus, 2002, and references therein), concluded that the

viscosity contrasts among pelites, psammites, vol-

canics, quartzites and granites encompass about one

order of magnitude only. Thus, when modelling the

competent/incompetent viscosity contrasts among

sedimentary or low-grade metamorphic rocks, m = 5

or 10 would seem sufficient, contradicting the higher

values used by Cruikshank and Johnson (1993).

However, in rock multilayers that contain surfaces

of slip (e.g. Chapple and Spang, 1974), where the slip

surfaces can be modelled as vanishingly thin incom-

petent layers of low viscosity, the competent/incom-

petent viscosity ratio might reach two or more orders

of magnitude. Much larger m values (>100) would be

expected in rocks that deformed as solid–melt layers

or mixtures (Honda, 1986; Talbot, 1999).

With these values and Eq. (3) in mind, it is

appropriate to review what values of anisotropy (d)
have been adopted in previous structural modelling

and applications to rocks, and what have been con-

sidered ‘‘high’’ and ‘‘low’’ anisotropy. The results of

Bayly’s analyses of folds in phyllite (Bayly, 1970)

cannot be simply written as a multilayer d, because he
obtained relative viscosity values in a bilaminate

comprising an isotropic later (simulating quartz-rich)

alternating with anisotropic layers (simulating mica-

rich); the anisotropy of the latter was deduced to be

>12.5. His value ranges produce a d value for the rock

as a whole (phyllite) of >12. Chapple and Spang

(1974) found that a model with d = 29 best fitted their

field data for a fold in layered limestone with bed-

ding-parallel slip. Cobbold (1976) illustrated fold

shapes for values of d = 1, 2, 5 and l, thus covering

the whole value range. Casey and Huggenberger

(1985) adopted an anisotropy factor equivalent to

d= 33.3 to model similar folding in interbedded lime-

stones and marls, and Casey and Williams (2000)

again used d = 33.3, this time to simulate the anisot-

ropy of quartz mylonites. Weijermars (1992) consid-

ered values of d= 100 as a high value of anisotropy.

Hudleston et al. (1996) used d= 5 and 50 (for high

and low anisotropy) in finite-element models of

folding anisotropic single layers. Fletcher and Pollard

(1999) used values of 1, 2, 4, 8, 16 and 128, and

suggested d = 8 was a moderate anisotropy. Mühlhaus

et al. (2002) mostly used d = 10 for finite-element

models of folding in anisotropic viscous and visco-

elastic layers.
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Limited information on anisotropy of creep in

laminar rocks does not support the idea that these

rocks are very highly anisotropic. Shea and Kronen-

berg (1993) estimated the strength anisotropy of

foliated rocks (mainly schists), and found that the

ratio of strength parallel and 45j to the foliation was

generally < 2. In the classic laboratory deformation of

phyllite, Paterson and Weiss (1966) revealed anisot-

ropy in yield strength of 2 to 3. Although anisotropy

of strength may not be comparable with anisotropy of

viscosity, these values would suggest that viscous

anisotropy may be surprisingly small in schistose

rocks. Hudleston et al. (1996) reviewed the evidence

for quartz, and concluded that d = 10 might be the

highest value of viscous anisotropy in a quartz

mylonite.

The present paper will quantify the viscous anisot-

ropy in idealised two-phase media ranging from

layered to particulate (Fig. 1), to determine likely

values for this type of anisotropy in natural rocks of
Fig. 2. Bulk rheology graph, after Treagus (2002, Fig. 7), illustrating the ch

fraction (a2) and ellipse axial ratio, R (numbered curves), for a two-phase v

bulk viscosity, for the composite comprising circular clasts (R= 1). The s

parallel/perpendicular to the shape fabric. The lower unshaded region indic

‘bounds’ discussed in the text, and indicate bN and bS for layers (bilamin
different kinds. It forms a sequel to a recent study of

the bulk viscosity of two-phase media of different

types (Treagus, 2002) which revealed their anisotropy,

and its relationship to the shape fabric of the compos-

ite, but did not attempt to quantify this property. This

paper offers a complementary approach to that of

Mandal et al. (2000), who determined anisotropy

factors (d) in media with anisotropic shape fabrics

modelled as arrays of rigid inclusions in a viscous

matrix. The results will be compared and discussed in

a later section.
2. Viscosity of two-phase composites, and degree of

anisotropy, d

The simplest kind of two-phase composite is a

bilaminate multilayer, as discussed above, whose

anisotropy was revealed in Eqs. (1a), (1b), (2) and

(3). However, a wide range of two-phase composites
ange in normalised bulk viscosity b ( =l*/l1) with competent phase

iscosity contrast of m= 10. The bold central curve indicates isotropic

tippled upper graph region indicates normal viscosity (bN = lN/l1)
ates shear viscosity (bS = lS/l1). The upper and lower curves are the

ate).



Fig. 3. Normalised normal and shear viscosities (bN, bS) for R= 5

and m = 10 and varying a2. The anisotropy factor, d, is the distance
between the curves, shown here in the dmax position at a2 = 0.5. The
midway curve for isotropy is dashed.
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of Newtonian viscous fluids with coherent interfaces

were modelled by Treagus (2002), demonstrating that

systems with different types of shape fabric (Fig. 1)

have different bulk viscosities. The solutions were

obtained by application of the method of ‘‘self-con-

sistent mechanics’’ (Hill, 1965; Budiansky, 1965;

Hashin, 1983), combined with the Eshelby model of

a circular (cylindrical) inclusion in a matrix (Eshelby,

1957; Bilby et al., 1975). For two-dimensional com-

posites of aligned elliptical objects in a matrix (e.g.

Fig. 1b), Treagus (2002) demonstrated that the bulk

viscosity (l*) for deformation parallel to the fabric

varies with (i) the viscosity contrast between the two

viscous (Newtonian) phases (m = l2/l1), (ii) the phase

fractions (a1 + a2 = 1), and (iii) a ‘shape factor’ term

( p), related to the ellipticity of the fabric.

The following quadratic equation (Treagus, 2002)

describes the normalised bulk viscosity, l*, in any

homogeneous two-dimensional mixture or composite

in deformation parallel to the fabric:

pl*2 þ fðl1 þ l2Þ � ð1þ pÞða1l1 þ a2l2Þg
� l*� l1l2 ¼ 0 ð4Þ

This equation can be more simply written in terms of

the bulk viscosity normalised to the incompetent

phase, b ( = l*/l1), the two-phase viscosity ratio

(m), the stiffer fraction (a2), and p, as:

pb2 þ fðm� pÞ � a2ðm� 1Þð1þ pÞgb � m ¼ 0 ð5Þ

This is the critical equation from which the anisotropy

factor of each composite can be derived.

When 1 < p <l, positive roots of Eq. (5) are the

normalised normal viscosity of the composite

(bN = lN/l1, with lN = l*), in a direction parallel/

perpendicular to the shape fabric. Here, p has the

following relationship to the axial ratio, R of the

elliptical fabric:

p ¼ ðR2 þ 1Þ=2R ð6Þ

(Treagus, 2002). Thus, for R = 1, p = 1 (Fig. 1a); for

R = 5, p = 2.6 (Fig. 1b); for R =l, i.e. layers, p =l
(Fig. 1c). Fig. 2 illustrates solutions for composites

with m = 10; curves of bN are in the shaded upper

region, numbered for ellipses with different R values.
The uppermost curve, representing a bilaminate

(R =l, p =l), is the upper bound for the bulk

viscosity of any two-phase composite, representing

uniform strain rate. It has the linear expression:

l* ¼ a1l1 þ a2l2 ð7Þ

which is the solution to Eq. (4) when p =l, and is

identical to the expression for lN in a bilaminate given

earlier (Eq. (1a)). It normalises to:

bN ¼ 1þ a2ðm� 1Þ ð8Þ

When 0 < p < 1, positive roots of Eq. (5) are the

normalised shear viscosity of the composite (bS = lS/
l1, with lS = l*), in a direction parallel/perpendicular

to the shape fabric. Now, p takes inverse values to

those for bN (Eq. (6)):

p ¼ 2R=ðR2 þ 1Þ ð9Þ

Solutions for bS are shown in the unshaded lower

region of Fig. 2. The lowermost curve, representing a

bilaminate (R =l, p = 0), is the lower bound for the
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bulk viscosity of any two-phase composite, represent-

ing uniform stress. It has the expression:

l* ¼ 1=fa1=l1 þ a2=l2g ð10Þ

which is the solution to Eq. (4) when p = 0, and is

identical to the expression for lS in a bilaminate (Eq.

(1b)). It normalises to:

bS ¼ 1=fð1� a2Þ þ a2=mg ð11Þ

The ‘central’ curve of Fig. 2 shows bN = bS for

p = 1, R = 1, demonstrating that a composite of circles

in two dimensions (Fig. 1a) has isotropic viscosity.

Here, Eq. (5) takes the form:

b2 þ fðm� 1Þð1� 2a2Þgb � m ¼ 0 ð12Þ

The anisotropy of the composites shown in Fig. 2 is

illustrated by the difference between upper (bN) and

lower (bS) curves with the same numbered R value.
Fig. 4. More examples (on the design of Figs. 2 and 3), showing the variati

for circular clasts. Curves with crosses show bN (upper curve) and bS (lowe

for a bilaminate (R=l). (a) Two-phase viscosity contrast, m = 100; (b) m
This is illustrated in Fig. 3, representing a composite

with an elliptical fabric with R = 5 (as Fig. 1b), a two-

phase viscosity contrast ofm = 10, and varying fraction

of the stiffer phase (a2). The bN curve is the solution to

Eq. (5) for p = 2.6, and the bS curve is the solution for

p = 0.39. The anisotropy factor, d, is given by d = lN/
lS = bN/bS. Because these viscosity graphs are drawn

on a log scale, d is the ordinate distance between the

bN and bS curves in Fig. 3. This useful feature allows a

graphical appreciation of the values of viscous anisot-

ropy for a wide range of two-phase media, in terms of

the phase fractions, their viscosity contrasts and their

shape fabric. An immediate result, apparent in Fig. 3,

is that the maximum anisotropy occurs for equal phase

fractions (a1 = a2 = 0.5). This is true for all examples of

specially orthotropic media (Cobbold, 1976), whether

comprising layers or elliptical clasts.

It is demonstrated in Fig. 2 that the most aniso-

tropic two-phase composite is a bilaminate. Thus, the

maximum possible value of d in a composite with
on of b with fabric. Central dotted curves show isotropic viscosity, b,
r curve) for R = 5. The solid curves show the upper and lower bounds

= 10; (c) m = 5.
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two-phase viscosity contrast, m, is as given in Eq. (3).

The approximation of dmaxim/4 is useful, where

mz 100.

All the derivations and results in this section,

developed from Treagus (2002), apply to deformation

of composites orthogonal to the aligned fabric, where

bNz bS. and dz 1. If composites of the kind shown

in Fig. 1 are deformed 45j-diagonal to their shape

fabric, the two principal viscosities now have the

relationship, bNV bS. (Values for bN in the diagonal

composite are equivalent to bS in the aligned com-

posite, and vice versa; Treagus, 2002.) These compo-

sites have reciprocal d values to those derived above

(and next), in the range of V 1.
3. Results: values of d for different two-phase

composites

Some further examples are given in Fig. 4 of the

b values for composites that comprise circular
Fig. 5. Values of anisotropy factor, d= lN/lS, determined for the examples

with a2 (or a1).
clasts, elliptical clasts with R = 5, and bilaminate la-

yers (R =l), with two-phase viscosity contrasts of

m = 100, 10 and 5. According to the introductory

review, these m values probably cover realistic ranges

for two-phase viscosity ratios expected in different

types of rocks. It was shown in Treagus (2002) that

an m = 100 composite is a reasonable approximation

to a system with rigid clasts in a viscous matrix

(m =l), whereas m values of 5 or 10 may be

sufficient when modelling metasedimentary rocks as

two-phase composites.

Exact values of d for the examples in Fig. 4 are

shown in Fig. 5, revealing the symmetry in d values

with phase fraction (a1 or a2). In other words, a

composite that comprises 0.2 fraction (20%) of the

stiffer phase will have exactly the same value of

anisotropy as a composite with 0.2 fraction of the

less viscous phase. Fig. 5 demonstrates that maximum

d values are always at a2 = 0.5. The variation of d with

phase fractions (a2) is particularly striking for the high

viscosity contrast system (m = 100) shown in Fig. 5a,
in Fig. 4 (same symbols), plus R = 18 (triangles). Note the symmetry



Fig. 7. Value of dmax (a1 = a2) for two-phase media with elliptical

shape fabrics (R) for two-phase viscosity contrasts of m = 5, 10 and

100. Symbols denote calculations for R = 3, 5, 18 and 100

(f layers).
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especially for layers and strongly elliptical fabrics.

Although the anisotropy is highest for equal layer

thicknesses (dmax = 25.5 at a2 = 0.5), d is a similar

value for approximately equal thicknesses (0.4 < a2 <
0.6). However, for systems with a small to moderate

phase viscosity contrast of m = 5 or 10 (Fig. 5b,c), d
only gently increases with a2 or a1, to dmax at a2 = a1.

In bilaminates with very unequal layer thicknesses,

such as where a2 = 0.1 or 0.9, the anisotropy is

relatively weak. This is an interesting result, as the

opposite might be expected: that strongly unequal

thicknesses of stiffer and weaker layers might make

a more anisotropic mixture than mixtures with about

equal layer thicknesses. So, despite the flow variations

being greatest in a bilaminate multilayer with very

unequal layer thicknesses (Treagus, 1993), the viscous

anisotropy is not at its highest for such a system. To

obtain significant anisotropy for very unequal frac-

tions requires very large m values.

Values of dmax for different types of composites

with a1 = a2 = 0.5 will now be considered. For a

layered medium, dmax is given in Eq. (3) as a simple

relationship with m, which is graphed in Fig. 6. Note

its progressive approach to linearity ( =m/4) as

m! 100. At values of m = 5 to 10, dmax takes values

of only f 2 to 3. In nonlayered two-phase compo-
 

Fig. 6. Value of dmax for equal layer thickness bilaminates (a1 = a2),
with varying two-phase viscosity contrast, m.
sites, such as materials with elliptical shape fabrics,

dmax increases with ellipticity, R, as shown in Fig. 7.

Where R = 100, values of dmax approach those shown

in Fig. 6 for layers. For the high contrast system

(m = 100), R has a particularly marked effect on dmax,

with dmax>10 for R>5. However, for m = 10, dmax

values only reach 2.5 for R = 18. For m = 5, dmax is

< 2, even for an infinitely elliptical fabric (layers), as

also shown in Fig. 6.
4. Discussion and geological implications

4.1. Anisotropy values (d) for rocks

The results outlined above can be compared with

those derived by Mandal et al. (2000) where a

composite was modelled as a rigid phase (with linear

or planar elliptical fabric) of up to 0.5 fraction, in a

viscous phase. Mandal et al. found that the d values

are proportional to the axial ratios (R) of the rigid

inclusion fraction (prolate or oblate ellipsoids), and

increase nonlinearly with increasing rigid fraction (up

to their limit of f 0.5), which is also seen in Figs. 5–

7. Their media with linear fabrics had d values of 1 to
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4.5 for R = 1 to 10 and rigid fractions of 0 to 0.5; their

media with planar fabrics mostly have a narrower

range (d = 1� 3), with less sensitivity to the rigid

fraction, but reach high d values when R>10. Their

result of d = 25 for R = 100 is almost the same as the

value of 25.5 derived for a bilaminate with m = 100

(Eq. (3)), and for my composite with m = 100 R = 100

(Fig. 7). This tends to confirm the conclusion (Trea-

gus, 2002) that an m = 100 composite is a valid

approximation to a composite of a rigid phase in a

viscous phase (up to 0.5 rigid fraction).

Figs. 5–7 show that to develop a high anisotropy

(d>25) in a multilayer that is approximated to a

bilaminate system requires a viscosity contrast among

competent and incompetent layers of m>100. This is

probably higher than viscosity contrasts effective

between alternating sedimentary or metasedimentary

rock layers, according to the review in the Introduc-

tion. So it would seem that high anisotropy is only

achieved where one phase is quasi-rigid in compari-

son with the other (viscous) phase, and perhaps that

they are in roughly equal fractions. This might be the

effective behaviour of (a) some alternating rock

layers, such as limestone-marl beds (Casey and Hug-

genberger, 1985), (b) rock layers with planes or zones

of slip, such as the folded limestone of Chapple and

Spang (1974), or (c) rocks undergoing grain-boundary

sliding and sequences of crystallisation/recrystallisa-

tion such as the mylonites of Casey and Williams

(2000). These scenarios may be the exception, and it

seems probable that most lithologies at low to mod-

erate metamorphic grade, even where they contain

strong planar fabrics or are foliated or layered, are

only weakly anisotropic, with d = 3 or less. Only rocks
in partial melting, such as the model for anisotropic

asthenosphere by Honda (1986), would seem likely to

obtain very high d values of >100.

4.2. Folds and anisotropy

Most of the investigations of anisotropy and struc-

tures concentrate on folding of anisotropic media with

planar anisotropy, modelled as bilaminate multilayers.

Rigidly confined anisotropic media in compression

develop internal instability of buckling or kinking

type (Biot, 1965a; Cobbold et al., 1971; Cosgrove,

1976; Latham, 1979, 1985a,b). Softly confined aniso-

tropic media in compression can fold as a whole (Biot,
1965b), or can develop folds on small and larger

wavelengths at the same time (Mühlhaus et al.,

2002), and anisotropic layers fold more readily than

isotropic layers with the same (normal) viscosity ratio

to the embedding medium. The finite shapes of folds

in anisotropic layers are controlled by the strength of

the anisotropy (Bayly, 1964, 1970; Cobbold, 1976;

Casey and Huggenberger, 1985; Fletcher and Pollard,

1999): the higher the anisotropy, the stronger and

more angular the folding. The following discussion

concentrates on fold features that might be indicative

of the degree of anisotropy in rocks.

Internal instabilities in layered anisotropic media

that produce folds, kinks and shear bands, have been

well documented (Biot, 1965a,b; Cobbold et al.,

1971; Price and Cosgrove, 1990). Biot’s Type 1

instabilities, internal similar or chevron folds, require

values of d>0.5, and such structures have been

produced in many analogue models (e.g. Bayly,

1970, 1971; Cobbold et al., 1971; Latham, 1979).

All the two-phase anisotropic media considered in

this paper have d values of >0.5, when oriented with

the fabric parallel to shortening or extension. So they

could all develop fold instabilities that grow into

finite similar to chevron folds, when shortened paral-

lel to the fabric.

For Biot’s Type 2 internal instability (kink or shear

bands) to arise requires d < 0.5 (Cobbold et al., 1971). It
was noted earlier that composites that have d values of

>1 in deformation parallel to the their fabric, will have d
values inverted in deformation at 45j to the fabric.

(This is because the lN and lS values are exchanged.)
Thus, any material with d>2 in Figs. 5–7 will have

d< 0.5 in its diagonal orientation, and could develop

kink or shear-band instabilities oriented diagonal to the

anisotropy fabric. For high contrast systems (e.g. two-

phase viscosity contrasts ofm = 100), these instabilities

will occur in layered systems and in those with ellip-

tical fabrics of Rz 5 (unless the phase fractions are

proportionally very different). However, for a more

modest competence contrast of m = 10, d>2 is only

found for approximately equal phase fractions and

where R>7. Thus, kink and shear-band instabilities

should only arise in multilayered media and those with

a very strong shape preferred orientation. In practice, it

is likely that both types of instability go hand-in-hand,

in anisotropic rocks, developing from infinitesimal

points of initiation (of Type 1 or 2) into finite structures
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forming a spectrum from conjugate folds and kink

bands, to chevron to similar folds.

Angularity of folding can provide an index of

anisotropy, as demonstrated by Bayly (1964) and

Cobbold (1976). Cobbold considered passive devel-

opment of similar folds from an initial sinusoidal

instability within variably anisotropic media. Isotro-

pic media develop similar folds of increasingly high

amplitude sinusoidal form, whereas folds in media

with anisotropy (d) of 2 and 5 are progressively

more angular, with higher amplitudes. Folding is

completely angular for the limiting case of d=l,

even though the fold limb dips and amplitudes are

not significantly greater than for d= 2 or 5. The

reason for these differences in fold shape, related to

the degree of anisotropy, is the non-coaxial relation-

ship of stress and strain in anisotropic media: a

supposedly passive shortening of a sinusoidal insta-

bility in an anisotropic medium gives rise to hetero-

geneous deformation, with a greater strain arising

through shear strain, that reaches a maximum when

layering is at 45j to the compression. Because of the

different amounts of rotation that occur for layering

or fabric in different orientations to shortening, the

sinusoid becomes significantly straightened into al-

most constant limb dip, as the material anisotropy

increases. According to this mechanism, folds of

chevron style (Ramsay, 1967, 1974) will develop in

quite moderately anisotropic media (d>2) (Cobbold,
1976).

Fletcher and Pollard (1999) reviewed models of

chevron and similar folding and provided a mechan-

ical model for chevron folding in anisotropic media.

They demonstrate the change from sinusoid to chev-

ron form in graphs of limb dip versus shortening for

different d values. From these analyses of similar/

chevron folding (Bayly, 1964; Cobbold, 1976; Fletch-

er and Pollard, 1999), in theory, it should be possible

to assess the degree of anisotropy in a multilayered

medium from the degree of fold angularity, such as

the relative widths of limb and hinge zones. The

author is not aware that this has ever been done in

practice.

Other features of fold geometry may also be

indicative of anisotropy. Biot (1965b) considered the

initiation of two kinds of ‘similar’ folds in multilayers

that are statistically anisotropic. The ‘‘first kind’’ is

true parallel folding (i.e. class 1B geometry, Ramsay
(1967, p. 365), and must satisfy the condition (in the

present nomenclature):

lS=lMH5Md ð13Þ

where lS is the shear viscosity of the statistically

anisotropic layer or multilayer, and lM is the viscosity

of the embedding medium. The ‘‘second kind’’ is true

similar folding (class 2 geometry), and must satisfy

the condition:

lS=lMb5Md ð14Þ

Each is associated with a characteristic wavelength

(Biot, 1965b). Between these extremes, hybrid paral-

lel-similar folds would be expected.

However, finite-element modelling of fold devel-

opment in anisotropic layers in an incompetent

embedding medium (Hudleston et al., 1996; Mühl-

haus et al., 2002) does not demonstrate that these

two kinds of fold geometry are maintained in the

finite fold shapes. According to Eqs. (13) and (14),

the d= 5 model of Hudleston et al. (1996, Fig. 5)

should have parallel folds (first kind), whereas d = 50
should have similar folds. The folds, modelled with

the same initial wavelength–thickness relationship

(L/H = 12), show hardly any difference in their fold

geometry: both are approximate parallel folds (class

1B) of sinusoidal shape. The models of Mühlhaus et

al. (2002) show the development of sinusoidal fold-

ing on two scales (L/Hc 12 and 1.2) for d= 10 and

lN/lM= 10 and 100. The larger folds in both models

appear close to parallel in geometry, despite the first

(lN/lM= 10) satisfying Biot’s condition (Eq. (14))

for similar folding. Finite amplitude numerical mod-

els by Johnson and Fletcher (1994, p. 351) of a

softly embedded 17-layer multilayer, that has dc 3

and satisfies Eq. (14), are also not perfect similar

folds, but of Ramsay’s class 1C geometry. Therefore,

it is not presently clear how closely the finite fold

geometry of an anisotropic layer (or whole multilay-

er), or the fold class, might reflect the anisotropy

factor, d.
Mühlhaus et al. (2002) demonstrate that anisotropic

layers fold at smaller viscosity contrasts (relative to

embedding medium) than for isotropic layers. For

example, weak folding can even arise in an anisotropic

layer where lN/lM= 1. They also show that where

d = 10 and lN/lM= 100, folds of two wavelengths can
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develop at the same time, as ‘wrinkles’ and larger

folds. Although such a high viscosity contrast between

anisotropic layer and embedding medium might be

unlikely in rocks, these models provide a possible

explanation for folding on different scales. For exam-

ple, a schist layer that contains a pre-existing foliation

might fold as a whole layer, and at the same time be

crenulated on the scale of the schistosity, to create a

crenulation cleavage (Cosgrove, 1976).

Folding mechanism has been related to anisotropy

by Price and Cosgrove (1990, p. 250), and Weijermars

(1992), who stated that strongly anisotropic single

layers are more likely to fold by a mechanism of

flexural flow (layer-parallel simple shear), than by

tangential longitudinal strain (layer-parallel pure

shear) (cf. Ramsay, 1967, pp. 391, 398). Weijermars

concluded that a layer with a high anisotropy (d = 100)
would fold in perfect flexural flow. Hudleston et al.

(1996) examined this premise via finite element

models, to reveal that a viscous anisotropy of d>50
was required to produce effective flexural flow in a

single anisotropic layer. They concluded that compe-

tent rock layers would be unlikely to possess such a

high degree of anisotropy. Alternating competent and

incompetent layers that behave as a statistically an-

isotropic ‘single’ layer would need to have competent/

incompetent viscosity contrasts of mi200 to attain

di50, and thus to have a bulk folding mechanism

close to flexural flow. Such high m and d values seem

unlikely for many metasedimentary rocks, as dis-

cussed earlier.

4.3. Anisotropy and structures in progressive

deformation

Consider, now, a two-phase medium or rock in

progressive deformation. If it begins as an isotropic

mixture of clasts, a pure shear deformation creating a

strain shape fabric would make it progressively more

anisotropic, with the anisotropy tensor parallel to the

deformation tensor. It will be stiffer in longitudinal

stress and weaker in shear stress, as shown in Fig. 2.

Assuming the material does not change its phase

fractions, it will progressively depart from the central

curve (isotropy) along ordinate lines in Fig. 2, track-

ing values related to the developing elliptical fabric.

Thus, in pure shear, the material remains specially

orthotropic (Cobbold, 1976). Extension will always
be parallel to the developing anisotropy, and exten-

sional structures characteristic of anisotropic systems

could develop: e.g. pinch and swell or extensional

kinking, extensional shears and crenulations, or foli-

ation boudinage (Cobbold et al., 1971; Hanmer, 1979;

Platt and Vissers, 1980).

A material with an initial shape fabric or a layered

fabric, if deformed in pure shear parallel to the fabric,

also remains specially orthotropic. In some configu-

rations, the shortening may first act to decrease the

fabric and anisotropy. In fabric-parallel shortening,

deformation will almost certainly result in internal

folding, of conjugate kink to chevron or similar style,

as described earlier. Layered systems in extension will

also develop internal instabilities, manifested as the

extensional features noted above.

The progressive deformation of materials with

anisotropy in other orientations to stress or strain is

more complex (Cobbold, 1976; Weijermars, 1992). If

the principal directions of the anisotropy tensor do not

coincide with those of the deformation tensor, the

effects are more difficult to generalise. Stresses and

strains will not generally be parallel, and the greater

the anisotropy, the greater the dominance of simple

shear on the progressive deformation. A pure shear

oblique to a shape fabric will generally increase the

shape fabric and therefore the material anisotropy, and

reduce the angle of obliquity between the fabric and

the extension direction, so that extensional instabil-

ities may eventually develop.

It was suggested by Treagus (2002) that two-phase

composites in simple shear might undergo cycles of

stiffening and softening with progressive deformation

and fabric development, and these cycles would go

hand-in-hand with changes in the strength of anisot-

ropy, d. The only stable orientation of a fabric in

simple shear is where the fabric or layering is parallel

to the shear direction. Materials with initially equant

fabrics that develop into elliptical fabrics would cycle

in strength and anisotropy during simple shear. Lay-

ered materials could develop a variety of structures,

according to the degree of orientation of anisotropy

and its orientation to the simple shear. Platt (1983)

suggested a way of producing progressive refolding in

shear zones that possessed a strong planar anisotropy,

whereby small fluctuations in the shearing rate could

produce passively amplifying folds. Weijermars

(1992) suggested that variations in simple shear could
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produce similar folds, best seen in passive marker

‘layers’ at a high angle to the shearing direction.

Simple shear of anisotropic media could also give

rise to internal instabilities, if the anisotropy is favour-

ably oriented. These could appear as anastomosing S-

C fabrics or small shear bands or crenulations of

various types, as described in naturally sheared rocks

(Berthé et al., 1979; Hanmer, 1979; Platt and Vissers,

1980; Lister and Snoke, 1984).
5. Conclusions

The viscous anisotropy of mixtures of competent

and incompetent rock phases is dependent on the

viscosity contrast of the phases, the phase fractions,

and the shape fabric of the material (layered to

particulate). The most highly anisotropic systems are

bilaminate multilayers with equal layer thickness. For

the wide variety of rocks that have an effective

competent/incompetent viscosity contrast (m) of 10

or less, then the maximum possible anisotropy (d) is
f 3. Some rocks may deform as two-phase systems

with effective mc 100, and can achieve dc 25,

which is close to a model of a quasi-rigid phase and

a viscous phase. This may be an appropriate model for

rocks containing planes or zones of slip, recrystallisa-

tion or grain-boundary sliding. Only where there are

orders of magnitude of viscosity contrast, such as

expected in solid–melt composites, will much higher

values of anisotropy (d>100) be achieved (if the

system is layered).

Anisotropic rocks develop characteristic deforma-

tion structures, such as kink and chevron folds, similar

folds and shear bands. For quite small values of

anisotropy (d = 2 or more), significantly angular chev-

ron-style folds may progressively develop from sinu-

soidal instabilities. All these fold and banded

structures may not just be associated with regularly

multilayered or foliated rocks, but could also occur in

strongly deformed conglomerates or any rocks pos-

sessing a strong shape-preferred orientation.
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