= ГЕОХИМИЯ =

УДК 550.4:552.578.3

ИЗМЕНЕНИЯ СОСТАВА БИТУМОИДА И ХИМИЧЕСКОЙ СТРУКТУРЫ КЕРОГЕНА СЕРНИСТОГО ГОРЮЧЕГО СЛАНЦА ПРИ ВОДНОМ ПИРОЛИЗЕ

© 2003 г. Д. А. Бушнев, Н. С. Бурдельная, А. В. Терентьев

Представлено академиком Н.П. Юшкиным 24.09.2002 г.

Поступило 17.10.2002 г.

Пиролиз (термолиз), проводимый в различных методических вариантах, позволяет изучать генерацию углеводородных и гетероатомных фрагментов керогена и моделировать при этом процесс природного катагенеза [1, 2]. Сухой (при отсутствии растворителей) пиролиз проводят при температурах порядка 400–600°С. Присутствие растворителя, обычно воды (водный пиролиз), позволяет существенно снизить температуру опыта. Наиболее часто используются температуры, не превышающие 350–370°С. При проведении водного пиролиза обогащенного С_{орг} образца при температурах, превышающих 250°С, часто наблюдается выделение на поверхности воды пленки "вытесненной нефти (expelled oil)" [3].

Горючие сланцы Сысольского района [4] представляют собой удобный объект для гидротермального эксперимента. Данные горючие сланцы содержат высокие концентрации C_{opr} , органическое вещество имеет крайне низкую степень термической зрелости (ПК₁₋₂), фиксируемую по высоким концентрациям биологических (17β(H), 21β(H) – ββ) гопанов, а также по наличию 5β(H)-, 14α(H)-, 17α(H)-стеранов [5]. Сухой пиролиз керогена, выделенного из горючих сланцев Сысольского района, показал присутствие высоких концентраций низкомолекулярных тиофенов в пиролизате, причем их относительная концентрация возрастает с ростом C_{opr} в породе [6].

В настоящей работе рассмотрены процесс генерации углеводородных и гетероатомных компонентов керогеном горючего сланца в процессе водного пиролиза, а также изменения, происходящие в составе самого керогена.

Институт геологии Коми научного центра Уральского отделения Российской Академии наук, Сыктывкар

Для настоящего исследования был отобран образец горючего сланца из обнажения близ села Иб (Республика Коми, Сысольский р-н), содержание Соорг в исходном сланце составляет 14.5%. Для проведения водного пиролиза в автоклав объемом 78 мл загружали примерно 25 г горючего сланца (кусочки $2 \times 2 \times 1$ см), 20 мл дистиллированной воды и выдерживали при заданной температуре 24 ч (табл. 1). При температурах 275°С и выше наблюдалось выделение на поверхности воды пленки сланцевой смолы. Полученный водный раствор, поверхность сланца и стенки автоклава экстрагировали хлороформом. Сланец растирали, битумоид экстрагировали хлороформом и разделяли на фракции, которые анализировали методами газо-жидкостной хроматографии (ГЖХ) и хроматомасс-спектрометрии (ХМС) [7]. Кероген, выделенный из остатка после экстракции, исследовали методом сухого пиролиза в токе азота при 410°С, а также определяли его элементный состав [6, 8].

Одной из задач проведенного исследования является установление достигаемой в ходе опыта термической зрелости. Известно, что в процессе катагенеза углеводородные биомаркеры претерпевают определенные изменения конфигурации хиральных центров, при этом происходит возрастание относительных концентраций более термодинамически устойчивых диастереомеров [9]. Соотношение биологических (ββ), нефтяных (αβ) гопанов и моретанов ($\beta \alpha$) меняется при катагенезе в сторону накопления нефтяных гопанов [10]. Измерение абсолютных концентраций диастериомеров гопана С₃₀ в битумоиде, полученном при различных температурах опыта, показало нарастание αβ- и βα-гопанов при некотором снижении концентрации биологического ββ-диастереомера (рис. 1). Другим, часто используемым показателем катагенеза является отношение 22S/22S + R изомеров αβ С₃₁-гомогопана, равновесное значение данного показателя (0.6) достигается в начале главной фазы нефтеобразования ($R_0 = 0.6\%$). Ве-

ИЗМЕНЕНИЯ СОСТАВА БИТУМОИДА

Параметр	Температура, °С				
	225	250	275	300	325
Характеристика битумоида					
β ^{XE} , %	1.8	1.9	18.8	35.7	61.0
Pr/Ph	0.51	0.35	1.23	1.16	1.48
22S/22S + R (С ₃₁ -гопаны)	0.11	0.14	0.15	0.21	0.26
$\Sigma^*_{_{H} ext{-алканы}}$	0.09	0.07	0.41	1.46	3.05
$\Sigma^*_{изопреноиды}$	0.01	0.005	0.10	0.46	1.06
Σ [*] 2-метил-5- <i>н</i> -алкилтиофены	0.006	0.003	0.057	0.35	0.59
Состав продуктов сухого пиролиза остаточного керогена					
Тиофены/бензолы**	1.12	1.03	0.80	0.73	0.53
Σ^*_{H -алканы/ H -алкены-1	2.06	1.69	2.12	2.25	1.97
Σ* 2- <i>н</i> -алкилтиофены	0.074	0.048	0.046	0.038	0.021
Σ^*_{H -алкилбензолы	0.16	0.11	0.14	0.13	0.10

Таблица 1. Результаты водного пиролиза Ибского сланца при различных температурах

* мг/г С_{орг}. ** Расчет, как в [6].

личины последнего отношения, достигаемые в ходе опыта при максимальной температуре, отвечают R₀ порядка 0.5%, т.е. позднему протокатагенезу или началу раннего катагенеза (стадия ПК₃-МК₁). В ходе опыта наблюдается возрастание абсолютной концентрации обоих 22S и 22R эпимеров (рис. 1). Стерановые углеводороды также претерпевают определенные изменения в ходе катагенеза, однако нами не зафиксировано значимых различий в распределении стерановых углеводородов битумоида, полученного при различных температурах.

С ростом температуры опыта наблюдается возрастание концентраций н-алканов и изопреноидов (рис. 2). При этом многие широко используемые геохимические показатели претерпевают определенные изменения, например отношение пристан/фитан (Pr/Ph) возрастает от 0.5 до 1.5. Аналогичные изменения данного показателя фиксировали и ранее, например в эксперименте по водному пиролизу незрелого мелового сланца из Иордании [11]. С увеличением температуры опыта наблюдается генерация н-алканов широкого молекулярно-массового диапазона, при этом концентрации среднемолекулярных н-алканов

0.50 0.45 Выход углеводорода, 0.40 0.35 opr 0.30 0.25 MIT/T 0.20 0.15 0.10 н-C₂₇ 0.05 Q Ž25 250 275 300 325 Температура опыта, °С

Рис. 1. Генерационные профили гопановых углеводородов состава С₃₀ и С₃₁.

ДОКЛАДЫ АКАДЕМИИ НАУК том 389 **№** 3 2003

Рис. 2. Генерационные профили ациклических углеводородов.

Рис. 3. Масс-хроматограммы ароматической фракции битумоида, полученного при температуре 275°С. m/z = 97 - 2-налкилтиофены (а); m/z = 111 - 2-налкил-5-метилтиофены (б); m/z = 147 + 148 – бензтиофены (в); II, III – изопреноидные С₂₀ тиофены (см. текст), цифры – число атомов углерода в молекуле, С₁ – метилбензтиофены, С₂ – диметил(этил)бензтиофены.

 $(H-C_{17})$ возрастают без выхода на плато, а для нечетных высокомолекулярных $(H-C_{27})$ фиксируется определенное снижение скорости нарастания их концентраций при переходе к максимальным температурам опыта.

Сероорганические соединения, присутствующие в составе ароматической фракции битумоида, в основном представлены тиофеновыми и бензтиофеновыми структурами (рис. 3). Исследование ароматической фракции битумоида непреобразованного сланца показало, что она содержит только изопреноидные тиофены состава C_{20} (2,3-диметил-5-(2,6,10-триметилундецил)тиофен (I), 3-метил-2-(3,7,11-триметилдодецил)тиофен (II) и 3-(4,8,12-триметилтридецил)тиофен (III)). Других низкомолекулярных сернистых компонентов идентифицировать в её составе не удалось. Про-

ДОКЛАДЫ АКАДЕМИИ НАУК том 389 № 3 2003

цесс термообработки сланца в автоклаве приводит к генерации сернистых компонентов, ранее отсутствовавших в ароматической фракции. Начиная с самой низкой из использованных в эксперименте температур, в составе ароматической фракции битумоида появляются гомологические серии 2-н-алкил- и 2-метил-5-н-алкилтиофенов, а их абсолютные выходы растут с температурой опыта (табл. 1). При температурах 275°С и выше в составе ароматической фракции битумоида присутствуют алкилированные бензтиофены. Масс-фрагментограммы ароматических фракций, построенные по суммам 147 + 148-ионов, содержат группы пиков короткоцепочечных С1-С2-бензтиофенов и гомологические ряды 2-н-алкил- и 4-н-алкилбензтиофенов [12]. Короткоцепочечные С₁–С₄-бензтиофены представлены широким набором изомеров замещения, содержащих метильные, этильные и пропильные заместители.

Важнейшим показателем термического преобразования органического вещества в осадках является изменение элементного состава керогена. В общем случае отношение Н/С снижается с ростом катагенеза, что является проявлением процесса диспропорционирования водорода и нарастающей ароматизации остаточного керогена [13]. Наблюдаемое в нашем опыте снижение величины отношения Н/С в остаточном керогене (рис. 4) хорошо согласуется как с ранее опубликованными данными по пиролизу керогена, так и с представлениями об изменении керогена в условиях естественного катагенеза [2, 14]. Снижение величины отношения H/C с 1.24 до 0.87 может указывать на достижение зрелости 0.8-0.9 R₀, или стадии МК₂–МК₃.

Отношение тиофены/бензолы [6], а также ранее предложенное [15] отношение 2,3-диметилтиофен/[1,2-диметилбензол + *н*-нонен-1] (тиофеновый индекс – TR), рассчитанные по составу продуктов сухого пиролиза остаточного керогена, линейно убывают с ростом температуры опыта (рис. 4, табл. 1). Данные [15] свидетельствуют, что TR, определяемый по составу продуктов пиролиза керогена, линейно зависит от отношения S_{орг}/С и убывает с ростом катагенеза органического вещества (глубины). Значения TR, зафиксированные в нашем опыте, указывают, согласно графику [15], на снижение отношения S_{opp}/C с 0.035 до менее чем 0.01, т.е. более чем в три раза. Отношение Н/С падает при этом в 1.5 раза, что подтверждает относительную легкость отделения от структуры керогена его серосвязанных компонентов при раннем катагенезе.

Сумма концентраций алифатических углеводородов (*н*-алканы/*н*-алкены-1) в продуктах сухого пиролиза остаточного керогена не имеет значимого тренда ни к понижению, ни к повышению,

Рис. 4. Зависимость отношения H/C и тиофенового индекса (TR) остаточного керогена от температуры опыта.

она остается стабильной, что свидетельствует о том, что структурные предшественники этого класса соединений, присутствующие в составе керогена, не затрагиваются термодеструкцией в условиях сравнительно мягкого водного пиролиза (табл. 1). Наиболее резкие изменения наблюдаются в составе ароматической фракции продуктов пиролиза остаточного керогена. Наблюдается снижение выхода данной фракции с ростом температуры опыта, сумма концентраций таких компонентов, как н-алкилбензолы, 2-н-алкилтиофены и 2-метил-5-н-алкилтиофены, также снижается. Таким образом, формирование н-алкильных и, возможно, других компонентов битумоида, образующегося при водном пиролизе, связано с преобразованием фрагментов керогена, дающих в условиях жесткого пиролиза тиофеновые и бензольные производные, замещенные н-алкильными цепями. Кероген исследованного горючего сланца выделил при водном пиролизе существенное количество битумоида, при этом нами не была достигнута высокая степень катагенеза. Остаточный кероген, в существенной степени обедненный водородом, сохранил способность к генерации алифатичного низкомолекулярного продукта, не содержащего высоких концентраций ароматических и сернистых соединенй, что подтверждает возможность сохранения значимого генерационного потенциала нефтематеринскими толщами, генерировавшими нефть на ранних этапах катагенеза. Таким образом, наши экспериментальные данные подтверждают, что нефти, генерированные в жестких условиях позднего катагенеза, будут отличаться от нефтей ранних этапов генерации повышенными содержаниями парафинов при существенном снижении содержания сернистых и ароматических компонентов.

выводы

1. Проведенный эксперимент по водному пиролизу незрелого (ПК₁–ПК₂, $R_0 < 0.2$) горючего сланца Сысольского месторождения при температурах от 225 до 325°С с шагом 25°С позволил смоделировать процесс природного катагенеза. Судя по биомаркерным коэффициентам, рассчитанным по составу битумоида, достигнутая в ходе опыта термическая зрелость не превышает стадии ПК₃–МК₁ ($R_0 = 0.5\%$). Изменения в элементном составе керогена указывают на несколько более высокую термическую преобразованность органического вещества (МК₂–МК₃, $R_0 = 0.8$ –0.9%).

2. Детальный анализ продуктов сухого пиролиза остаточного керогена свидетельствует, что наибольшим изменениям при водном пиролизе подвергаются фрагменты керогена, дающие при сухом пиролизе ароматические и сернистые компоненты, а концентрации структур предшественников *н*-алкенов-1/*н*-алканов практически не меняются. То есть кероген, генерировавший нефтяные углеводороды на ранних стадиях катагенеза, сохраняет способность к генерации, но уже существенно более алифатичного битумоида.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 02–05–65046).

СПИСОК ЛИТЕРАТУРЫ

1. Koopmans M.P., Carson F.C., Sinninghe Damste J.S., Lewan M.D. // Org. Geochem. 1998. V. 29. № 5/7. P. 1395–1402.

- Гордадзе Г.Н. Термолиз органического вещества в нефтегазопоисковой геологии. М.: ИГиРГИ, 2002. 336 с.
- 3. Putschew A., Schaeffer-Reiss C., Schaeffer P. et al. // Org. Geochem. 1998. V. 29. № 8. P. 1875–1890.
- 4. Лыюров С.В. Юрские отложения севера Русской плиты. Екатеринбург, 1996. 176 с.
- 5. Бушнев Д.А., Лыюров С.В. // Геохимия. 2002. № 2. С. 220–227.
- Бушнев Д.А. // Литология и полез. ископаемые. 2001. № 1. С. 96–101.
- 7. Бушнев Д.А., Бурдельная Н.С. // Нефтехимия. 2001. Т. 41. № 4. С. 266–272.
- 8. *Бушнев Д.А.* // Нефтехимия. 2002. Т. 42. № 5. С. 3– 18.
- 9. *Peters K.E., Moldowan J.M.* The Biomarker Guide. Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall (N. J.), 1993. 346 p.
- 10. Петров Ал.А. Углеводороды нефти. М.: Наука, 1984. 264 с.
- 11. Koopmans M.P., Rijpstra W., Irene C. et al. // Org. Geochem. 1998. V. 28. № 7/8. P. 503–521.
- Sinninghe Damste J.S., Kock-Van Dalen A.C., de Leeuw J.W., Shenck P.A. // J. Chromatogr. 1988. V. 435. P. 435–452.
- 13. *Тиссо Б., Вельте Д.* Образование и распространение нефти. М. Мир, 1981. 504 с.
- Behar F., Vandenbrouche M. // Org. Geochem. 1987.
 V. 11. № 1. P. 15–24.
- 15. Eglinton T.I., Sinninghe Damste J.S., Kohnen M.E.L., de Leeuw J.W. // Fuel. 1990. № 69. P. 1394–1404.