= ФИЗИКА =

УДК 537.621+539.166.3

«СТАТИЧЕСКИЕ" МЁССБАУЭРОВСКИЕ СПЕКТРЫ МАГНИТНОЙ СВЕРХТОНКОЙ СТРУКТУРЫ СУПЕРПАРАМАГНИТНЫХ ЧАСТИЦ

© 2003 г. Член-корреспондент РАН А. М. Афанасьев, М. А. Чуев

Поступило 14.02.2003 г.

Мёссбауэровские спектры поглощения магнитных материалов обычно анализируются на основе групп линий (субспектров), формирующихся за счет сверхтонкого взаимодействия в статическом сверхтонком магнитном поле на ядре, и линий, обусловленных квадрупольным взаимодействием при наличии градиента электрического поля на ядре. Так, для наиболее широко используемого в мёссбауэровской спектроскопии изотопа ⁵⁷Fe сверхтонкое магнитное поле расщепляет

уровни основного состояния ядра со спином $I_g = \frac{1}{2}$

на два подуровня с разными проекциями спина m_g на направление сверхтонкого поля, а возбужденное состояние с энергией $E_0 = 14.4$ кэВ и спином

 $I_e = \frac{3}{2}$ – на четыре подуровня с разными проекци-

ями спина m_e в полном соответствии с энергиями зеемановского взаимодействия магнитных моментов ядра со сверхтонким магнитным полем **H**_{hf}:

$$\hat{H}^{(g,e)} = -g_{g,e} \mu_N \mathbf{H}_{hf} \hat{\mathbf{I}}^{(g,e)}, \qquad (1)$$

где μ_N – ядерный магнетон, $g_{g,e}$ – ядерные *g*-факторы и $\hat{\mathbf{I}}^{(g,e)}$ – ядерные спины для основного и возбужденного состояний ядра соответственно. Схема расщепления энергетических уровней ядра показана на рис. 1.

Между расщепленными подуровнями ядра в возбужденном и основном состояниях могут происходить переходы, которые и наблюдаются в экспериментальных спектрах поглощения как некая совокупность линий, положения и интенсивности которых полностью определяются гамильтонианами (1) и мультипольностью соответствующего перехода из основного состояния ядра в возбужденное. В случае ядер ⁵⁷Fe реализуется магнитное дипольное излучение типа M1, для ко-

Физико-технологический институт Российской Академии наук, Москва торого запрещены переходы с изменением проекции спина ядра более чем на 1 $\left(m_g = \pm \frac{1}{2} \rightarrow m_e = \right)$

 $=\pm\frac{3}{2}$, и поэтому спектр поглощения состоит не

из 8 линий, которые соответствуют схеме расщепления на рис. 1, а из 6 линий – так называемый магнитный секстет [1]. Кроме того, в случае поликристаллических образцов или магнитных сплавов, когда направление сверхтонкого поля на ядре не выделено специальным образом и имеет произвольную ориентацию, интенсивности соответствующих линий спектра связаны отношением 3 : 2 : 1 : 1 : 2 : 3 (рис. 1).

Подавляющее большинство мёссбауэровских спектров магнитных материалов анализируется именно на основе этого магнитного секстета. Экспериментальные спектры представляются в

Рис. 1. Схема расщепления энергетических уровней ядра 57 Fe в возбужденном (*e*) и основном (*g*) состояниях в статическом сверхтонком поле и соответствующий мёссбауэровский спектр поглощения – магнитный секстет.

виде комбинации секстетов, соответствующих различным значениям сверхтонкого поля, появление которых обусловливается наличием разных магнитных фаз, магнитных подрешеток в ферри- и антиферромагнитных веществах, а также наличием дефектов в кристаллической структуре. Если экспериментальные спектры не укладываются в данную схему анализа, то привлекаются более сложные модели для описания так называемых релаксационных эффектов (например, в случаях парамагнетиков [2], феррожидкостей [3], суперпарамагнитных частиц [4] и т.д.), когда величина и направление сверхтонкого поля на ядре меняются во времени случайным образом за счет спин-решеточных, спин-спиновых или других релаксационных процессов.

Отметим, что для изотопа ⁵⁷Fe отличаются не только спины основного и возбужденного состояний, но и ядерные *g*-факторы, при этом *g*-факторы для основного и возбужденного состояний различаются не только по величине, но и по знаку $(g_g = 0.18, g_e = -0.10)$. Это обстоятельство будет играть существенную роль в рассматриваемых ниже явлениях.

В суперпарамагнитных частицах происходит вращение магнитного момента частицы, а следовательно, и сверхтонкого поля на ядре вокруг оси легчайшего намагничивания частицы. Это явление известно в мёссбауэровской спектроскопии, однако при учете этого явления предполагалось, что характерная частота прецессии магнитного момента частицы Ω много больше частоты прецессии ядерного спина в сверхтонком поле, и в этом случае снова формируется типичный для статических спектров магнитный секстет [5]. Для реальных образцов могут реализоваться самые разные соотношения между частотой Ω и частотами прецессии ядерных спинов в сверхтонком поле. В этих случаях могут формироваться спектры, качественно отличающиеся от известных статических спектров сверхтонкой структуры. В частности, для изотопа ⁵⁷Fe, кроме статических магнитных секстетов, как будет показано ниже, возникают спектры, состоящие из 3, 4 и 5 линий. Иными словами, в спектрах сверхтонкой структуры ядер ⁵⁷Fe, кроме магнитного секстета, могут формироваться магнитные триплеты, квартеты и квинтеты. Неучет этого обстоятельства может привести к непреодолимым трудностям при анализе спектров сверхтонкой структуры даже в тех случаях, когда эти аномалии не проявляются в четкой форме, а размазаны за счет наложения парциальных спектров и релаксационных эффектов.

Рассмотрим магнитную частицу достаточно малых размеров, так что можно считать ее однородно намагниченной. Обычно такие частицы обладают магнитной анизотропией, и в случае ак-

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 6 2003

сиальной магнитной анизотропии ее энергия определяется известным выражением

$$E = -KV\cos^2\theta, \qquad (2)$$

где K – константа магнитной анизотропии, V – объем частицы и θ – угол между направлением магнитного момента частицы и осью симметрии. Для K > 0, т.е. при наличии оси легчайшего намагничивания, минимум энергии анизотропии реализуется при $\theta = 0$ и π , когда магнитный момент частицы направлен строго по оси симметрии. Современная технология позволяет выращивать системы с магнитными частицами и очень малого размера, порядка нескольких нанометров (см.,

например, [6–10]). При этом величина
$$\frac{KV}{k_{\rm B}}$$
 ($k_{\rm B}$ –

константа Больцмана) за счет малости объема составляет величину порядка нескольких сотен градусов, так что даже при комнатной температуре оказываются заселенными все состояния с произвольными направлениями магнитного момента по отношению к оси анизотропии.

Хорошо известно, что магнитный момент, отклоненный на некоторый угол θ относительно оси легчайшего намагничивания, совершает прецессию относительно этой оси с частотой [11]

$$\Omega = -\gamma H_{an},\tag{3}$$

где γ – гиромагнитное отношение, H_{an} – поле магнитной анизотропии, которое определяется из уравнения

$$H_{an} = -\frac{\partial E}{\partial M_z} = \frac{2KV\cos\theta}{M_0},\tag{4}$$

 M_z – проекция магнитного момента частицы на ось легчайшего намагничивания, M_0 – магнитный момент насыщения частицы. Тогда для частоты прецессии имеем

$$\Omega = \Omega_0 \cos\theta, \tag{5}$$

где

$$\Omega_0 = -\frac{2\gamma KV}{M_0}.$$
 (6)

Как видно из этих формул, частота прецессии Ω не зависит от объема частицы, поскольку магнитный момент частицы пропорционален ее объему, и определяется углом отклонения θ . Существенно, что при углах θ , близких к нулю, частота пре-

цессии Ω максимальна, а при $\theta = \frac{\pi}{2}$ она обращается в нуль. Следовательно, всегда существует область углов θ , в которой частота Ω сравнима с

Рис. 2. Вращающееся сверхтонкое поле в лабораторной системе координат, оси квантования операторов (10) для основного и возбужденного состояний ядра 57 Fe и K > 0 (частота Ω отрицательна) во вращающейся системе координат.

частотами прецессии ядерных спинов в сверхтонком поле.

Направление сверхтонкого поля на ядре отслеживает направление магнитного момента, т.е. также вращается относительно оси магнитной анизотропии:

$$\mathbf{H}_{hf}(t) = H_{hf}[\mathbf{n}_z \cos\theta + (\mathbf{n}_x \cos(\Omega t) + \mathbf{n}_y \sin(\Omega t))\sin\theta], \qquad (7)$$

где \mathbf{n}_x , \mathbf{n}_y и \mathbf{n}_z – единичные орты вдоль осей x, y и z соответственно. Это явление хорошо известно в мёссбауэровской спектроскопии суперпарамагнитных частиц, однако при учете этого обстоятельства предполагалось, что характерная частота Ω много больше частоты прецессии ядерных спинов. В этих условиях зависящая от времени часть сверхтонкого поля полностью усредняется к нулю и усредненное по вращению сверхтонкое поле определяется выражением

$$\mathbf{H}_{hf} = H_{hf} \cos \theta \mathbf{n}_{z}.$$
 (8)

Как показывают конкретные оценки, для частиц большого размера заселяются только нижние энергетические состояния с $\theta \ll 1$, тогда как для суперпарамагнитных частиц размером порядка нескольких нанометров частота Ω_0 не сильно (всего в несколько раз) превосходит частоты прецессии ядерного спина в сверхтонком магнитном поле. По мере увеличения θ частота Ω может сравняться или стать меньше частот ядерной прецессии. Как будет показано ниже, учет конечности Ω приводит к кардинальной перестройке магнитной сверхтонкой структуры мёссбауэровских спектров.

Гамильтонианы сверхтонкого взаимодействия магнитных моментов ядра в основном и возбуж-

денном состояниях со сверхтонким магнитным полем \mathbf{H}_{hf} , вращающимся вокруг оси *z* с частотой Ω , уже зависят от времени:

$$\hat{H}^{(g,e)}(t) = -g_{g,e} \mu_N \mathbf{H}_{hf}(t) \hat{\mathbf{I}}^{(g,e)}.$$
(9)

(Отметим, что в принципе существует еще квадрупольное взаимодействие ядерного спина с градиентом электрического поля на ядре, но оно, как правило, существенно меньше сверхтонкого взаимодействия, и ниже мы будем этим членом пренебрегать.) В системе координат, вращающейся вокруг оси *z* с частотой Ω , гамильтонианы (9) приобретают вид не зависящих от времени операторов:

$$\hat{\tilde{H}}^{(g,e)} = (-\Omega + \omega_{g,e} \cos\theta) \hat{I}_z^{(g,e)} + \omega_{g,e} \sin\theta \hat{I}_x^{(g,e)}, \quad (10)$$

где $\omega_{g,e} = -g_{g,e} \mu_N H_{hf}$ – константы сверхтонкого расщепления для основного и возбужденного состояний ядра. Собственные значения операторов (10) очевидно определяются выражением

$$\tilde{E}_{g,e} = \lambda_{g,e} \tilde{m}_{g,e}, \qquad (11)$$

где

$$\tilde{\lambda}_{g,e} = \sqrt{\left(-\Omega + \omega_{g,e}\cos\theta\right)^2 + \omega_{g,e}^2\sin^2\theta}, \quad (12)$$

 $\tilde{m}_{g,e}$ – проекции спина ядра на оси квантования, для которых операторы $\hat{H}^{(g,e)}$ являются диагональными. Отметим, что направления осей квантования для основного и возбужденного состояний ядра разные, как это видно на рис. 2.

В работе [12] получено аналитическое выражение для сечения поглощения гамма-кванта ядром для случая, когда сверхтонкое поле на ядре вращается в плоскости, перпендикулярной оси вращения. Этот результат нетрудно обобщить на случай сверхтонкого поля (7), вращающегося под произвольным углом θ, и для сечения поглощения с учетом усреднения по поляризации η падающего излучения получаем следующее выражение:

$$\sigma(\omega) = -\frac{\Gamma_0}{2} \operatorname{Im} \sum_{\eta} \sum_{\substack{m_g m_e \\ \tilde{m}_g \tilde{m}_e}} V_{\tilde{m}_g \tilde{m}_e}^{(\eta)+} \times \frac{\langle \tilde{m}_g | m_g \rangle \langle m_e | \tilde{m}_e \rangle}{\omega - (\tilde{\lambda}_e \tilde{m}_e - \tilde{\lambda}_g \tilde{m}_g) - \Omega(m_g - m_e) + i\Gamma_0/2} V_{m_e m_g}^{(\eta)}, (13)$$

где ω – спектральная частота, Γ_0 – ширина уровня возбужденного состояния ядра, $V_{m_em_g}^{(\eta)}$ – матричные элементы оператора взаимодействия гаммакванта с ядром, $m_{g,e}$ – проекции спина ядра на ось z.

Как видно из выражения (13), в случае вращающегося сверхтонкого поля в спектре поглоще-

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 6 2003

ния должны наблюдаться четкие линии с естественной шириной, число которых в общем случае равно $N = (2I_g + 1)^2(2I_e + 1)^2$. Для изотопа ⁵⁷Fe N = 64, но с учетом правил отбора для магнитных дипольных переходов М1 число разрешенных линий сокращается до 24, каждая из которых оказывается двукратно вырожденной, поскольку линии с индексами (m_g, m_e) и $(m_g \pm 1, m_e \pm 1)$ имеют одинаковые энергии переходов.

На рис. 3 представлены мёссбауэровские спектры поглощения ядер ⁵⁷Fe в случае сверхтонкого поля, вращающегося вокруг оси легчайшего намагничивания под углом $\theta = 80^{\circ}$, для различных значений константы Ω_0 , которые соответствуют различным значениям константы магнитной анизотропии *K*. Отчетливо видно, что вместо классической шестерки линий статической (в том смысле, что не учитывается влияние релаксационных процессов) сверхтонкой структуры могут формироваться спектры из 3, 4 и 5 линий. Иными словами, вращение магнитного момента может кардинальным образом перестроить спектры сверхтонкой структуры.

Проследить физическую природу такой кардинальной трансформации спектров можно на анализе случая высоких частот вращения, когда

$$|\Omega| \ge |\omega_{g,e}|. \tag{14}$$

В этом случае спектр разбивается на центральную группу из 6 двукратно вырожденных линий и боковые группы линий (сателлиты). Мы не будем здесь анализировать форму сателлитов, так как при выполнении условия (14) они уходят далеко за рамки скоростей стандартных мёссбауэровских спектрометров.

Основной вклад в интенсивность поглощения дают центральные линии с $\tilde{m}_g = m_g$ и $\tilde{m}_e = m_e$, и для сечения поглощения нетрудно получить следующее приближенное выражение:

$$\sigma(\omega) = -\frac{\Gamma_0}{2} \operatorname{Im} \sum_{\eta} \sum_{m_g m_e} |V_{m_e m_g}^{(\eta)}|^2 \times \frac{1}{\omega - (\tilde{\omega}_e m_e - \tilde{\omega}_g m_g) + i\Gamma_0/2},$$
(15)

где $\tilde{\omega}_g$ и $\tilde{\omega}_e$ – эффективные константы сверхтонкого расщепления для основного и возбужденного состояний ядра, которые находятся из выражения (12) с учетом условия (14),

$$\tilde{\omega}_{g,e} = -\tilde{g}_{g,e} \mu_N H_{hf} \cos \theta, \qquad (16)$$

и определяются перенормированными ядерными *g*-факторами

$$\tilde{g}_{g,e} = g_{g,e} \left(1 - \frac{\omega_{g,e}}{2\Omega} \sin \theta \operatorname{tg} \theta \right).$$
(17)

3 ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 6 2003

Рис. 3. Мессбауэровские спектры поглощения ядер ⁵⁷Fe во вращающемся сверхтонком поле (H_{hf} = 330 кЭ, θ = 80°) для разных значений параметра $\frac{\Omega_0}{2\pi}$ [ГГц].

Как видно из формул (16) и (17), помимо эффективного уменьшения величины сверхтонкого поля, пропорционального $\cos\theta$, влияние вращения качественным образом трансформирует спектры сверхтонкой структуры через перенормировку ядерных g-факторов (17). При этом изменения эффективных \tilde{g} -факторов для основного и возбужденного состояний ядра оказываются разными в силу того, что исходные *g*-факторы для ядра разные. В результате при вращении в направлении левого винта, которое соответствует константе K > 0, \tilde{g} -фактор для основного состояния по абсолютной величине будет уменьшаться, а для возбужденного состояния, наоборот, увеличиваться. При углах θ , близких к $\frac{\pi}{2}$, \tilde{g} -фактор для основного состояния ядра может даже поменять знак. Именно это обстоятельство и является причиной той кардинальной перестройки спектров,

Рис. 4. Схема расщепления энергетических уровней ядра ⁵⁷Fe в возбужденном и основном состояниях и мессбауэровский спектр поглощения – магнитный квартет во вращающемся сверхтонком поле (H_{hf} = = 330 кЭ, $\Omega_0/2\pi = 1$ ГГц, $\theta = 81^\circ$, $\tilde{\omega}_e = 0$).

которые представлены на рис. 3. Так, при угле θ , который определяется условием

$$\cos\theta = \frac{\omega_g}{2\Omega},\tag{18}$$

эффективный \tilde{g} -фактор для основного состояния ядра обращается в нуль, и в спектре сверхтонкой магнитной структуры наблюдается квартет линий. Схема расщепления энергетических уровней ядра и спектр поглощения для этого случая показаны на рис. 4.

С уменьшением угла θ влияние быстрого вращения на форму спектра сверхтонкой структуры ослабевает. Однако следует иметь в виду, что заметное влияние вращения фиксируется не только в случаях, когда спектры приобретают нестандартную форму, показанную на рис. 3, но и когда соответствующие сдвиги линий составляют величину, сравнимую с шириной линии Γ_0 . Для величины $\frac{\Omega_0}{2\pi} = 0.5 \ \Gamma \Gamma$ ц, соответствующей частицам γ -Fe₂O₃ со средним диаметром 7 нм и характерной энергией магнитной анизотропии $\frac{kV}{k_{\rm B}}$ порядка 1000 К [9], можно оценить, что влияние вращения существенно для углов $\theta > 30^\circ$.

Отметим, что даже если выявленные выше особенности формирования спектров сверхтонкой структуры не проявляются в чистом виде изза наложения различных субспектров в реальной ситуации, то неучет этой специфики формирования спектров с вращающимися сверхтонкими полями не дает возможности качественно описать спектры в рамках стандартных статических компонент с введением распределения сверхтонких полей и релаксационных процессов.

СПИСОК ЛИТЕРАТУРЫ

- Гольданский В.И., Макаров Е.Ф. В сб.: Химические применения мессбауэровской спектроскопии. М.: Мир, 1970. С. 9–94.
- 2. Афанасьев А.М., Якимов С.С., Черепанов В.М. и др. // ЖЭТФ. 1985. Т. 89. В. 1. С. 182–189.
- Afanas' ev A.M., Hendriksen P.V., Mørup S. // Hyperfine Interact. 1994. V. 88. P. 35–48.
- 4. Афанасьев А.М., Чуев М.А. // Письма в ЖЭТФ. 2001. Т. 74. В. 2. С. 112–115.
- Mørup S. // J. Magn. and Magn. Mater. 1983. V. 37. P. 39–50.
- 6. *Mørup S.* // Hyperfine Interact. 1994. V. 90. P. 171–185.
- Suzdalev I.P., Plachinda A.S., Buravtsev V.N. et al. // Chem. Phys. Repts. 1998. V. 17. № 7. P. 1355–1369.
- Hernando A.J. // J. Phys.: Condens. Matter. 1999. V. 11. P. 9455–9482.
- Tronc E., Ezzir A., Cherkaoui R. et al. // J. Magn. and Magn. Mater. 2000. V. 221. P. 63–79.
- Bødker F., Hansen M.F., Koch Ch.B. et al. // Phys. Rev. B. 2000. V. 61. P. 6828–6838.
- 11. Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов. М.: Мир, 1972. Т. 1. 651 с.
- 12. Афанасьев А.М., Чуев М.А., Хессе Ю. // ЖЭТФ. 1998. Т. 113. В. 5. С. 1799–1815.