УДК 553.493+552.3

РУДНАЯ СПЕЦИАЛИЗАЦИЯ КАРБОНАТИТОВЫХ КОМПЛЕКСОВ УРАЛА И ТИМАНА

© 2017 г. И. Л. Недосекова*, Д. А. Замятин*, О. В. Удоратина**

*Институт геологии и геохимии УрО РАН 620016, г. Екатеринбург, ул. Вонсовского, 15 E-mail: vladi49@yandex.ru **Институт геологии Коми НЦ УрО РАН 167982, г. Сыктывкар, ул. Первомайская, 54 E-mail: taykey@yandex.ru

Поступила в редакцию 14.04.2016 г. Принята к печати 14.06.2016 г.

В результате проведенных исследований установлена рудная специализация карбонатитовых комплексов Урало-Тиманского региона: ниобиевая и редкоземельно-ниобиевая – для карбонатитовых комплексов Урала, редкоземельная – для карбонатитов Тимана. Карбонатиты ильмено-вишневогорского миаскит-карбонатитового комплекса (Урал) представляют собой промышленный ниобиевый тип месторождений (с пирохлоровым типом руд). Карбонатиты баикского ультрабазит-карбонатитового комплекса (Урал) представляют собой редкоземельно-ниобиевый тип месторождений (монацит-эшинитколумбит-пирохлоровый тип руд). Карбонатиты четласского комплекса (Средний Тиман) представляют собой цериевоземельный тип месторождений бастнезитовых карбонатитов (с монацит-бастнезитовым типом руд). Пикрит-лампрофировые серии пород четласского комплекса имеют перспективы алмазоносности. Рудная специализация карбонатитовых комплексов Урала и Тимана определяется их формационной принадлежностью.

Ключевые слова: рудно-формационные типы карбонатитов, типы месторождений ниобия и редких земель, пирохлоровые карбонатиты, бастнезитовые карбонатиты, Урал, Тиман.

ВВЕДЕНИЕ

В настоящее время основным критерием прогнозирования запасов месторождений твердых полезных ископаемых (в частности, ниобиевых, танталовых руд и редкоземельных элементов) является отнесение их к той или иной редкометальной формации, которой соответствует промышленный тип месторождений. Так, к промышленным и потенциально промышленным типам месторождений ниобия, тантала и редких земель относятся месторождения редкометалльных щелочных, карбонатитовых и гранитных формаций с соответствующей рудной специализацией, продуктивность которых определена данными мировой практики.

Среди карбонатитовых комплексов выделяются три формационных типа (на основе генетической связи с определенным типом магматизма, с учетом типа щелочности, геохимической специфики и рудоносности) (Бородин, 1966; Гинзбург, 1983): 1) карбонатитовые комплексы щелочно-ультраосновной формации с натриевым типом щелочности (УЩК); 2) карбонатитовые комплексы щелочногабброидной (щелочно-базальтоидной) формации с калиевым типом щелочности; 3) карбонатитовые комплексы нефелин-сиенитовой формации, связанные с линейными зонами щелочных метасоматитов, нефелиновыми и щелочными сиенитами (или комплексы "линейно-трещинных зон" (Богдасаров, 1979). В качестве 4-го формационного типа были выделены также ультраосновные комплексы калиевой (и натрово-калиевой) специфики, связанные с кимберлитовыми магмами (Владыкин, 2008).

Редкометалльным карбонатитовым формациям соответствуют следующие промышленные и потенциально-промышленные типы месторождений, характеризующиеся структурноморфологическим типом рудных тел, рудной специализацией – природным (минеральным) типом руд. содержанием основных компонентов в руде, попутными компонентами, промышленным типом руд, а также примерами типовых месторождений России и мира: 1) ниобиевый в массивах ультраосновных щелочных пород, карбонатитов и щелочных метасоматитов (пирохлоровый тип руд) -Белозиминское и Большетагнинское месторождения, Восточно-Саянская провинция (Россия), Сент-Оноре (Канада); 2) ниобиевый и редкоземельнониобиевый в корах выветривания карбонатитов ультраосновной шелочной формации (апатитпирохлор-колумбитовый тип руд), Белозиминское месторождение (Россия), Араша (Бразилия); 3) *ниобиевый* в корах выветривания карбонатитов и щелочных метасоматитов зон региональных разломов (пирохлоровый и колумбит-пирохлоровый тип руд), Татарское месторождение, Енисейский кряж, Россия; 4) *цериевоземельный* в бастнезитовых карбонатитах (бастнезитовый тип руд), Карасугское месторождение (Россия), Маунтин-Пасс (США) (Методические рекомендации..., 2007).

Со щелочными формациями связаны следующие промышленные типы месторождений: 1) *цериевоземельно-ниобий-танталовый* в массивах дифференцированных агпаитовых нефелиновых сиенитов (лопаритовый тип руд), Ловозерское месторождение, Кольская УЩК провинция (Россия); 2) *редкоземельно-ниобий-танталовый* в щелочных метасоматитах (циркон-тантал-пирохлоровый с фторидами редких земель тип руд), Катунгинское месторождение (Россия); 3) *ниобий-танталовый* в метасоматитах по гранитоидам щелочного ряда (циркон-пирохлор-колумбитовый тип руд), Улуг-Танзекское, Зашихинское месторождения (Россия) (Методические рекомендации..., 2007).

Необходимо отметить, что разнообразие минералогических и петрохимических типов, геохимической и рудной специализации щелочных карбонатитовых комплексов, их специфической рудоносности, обычно достигающей промышленных масштабов, значительный диапазон физикохимических условий кристаллизации, различия химизма и физического состояния карбонатитообразующих систем обусловливают сложность и неоднозначность отнесения некоторых карбонатитовых комплексов к определенному рудноформационному типу. Задача формационной идентификации карбонатитовых комплексов часто требует детальных исследований и анализа всей совокупности геологических, петрографических, минералогических и геохимических данных.

На территории России располагаются крупнейшие провинции щелочного карбонатитового магматизма, с которыми связаны редкометалльные месторождения разных рудно-формационных типов. Так, провинции щелочно-ультраосновных кольцевых карбонатитовых комплексов натровой специфики локализованы на щитах и в обрамлении протоплатформ и представлены Карело-Кольской (Балтийский щит), Маймеча-Котуйской, Восточно-Саянской, Сетте-Дабанской, Восточно-Алданской (обрамление Сибирской платформы) провинциями. Для карбонатитов этого формационного типа характерна обогащенность ниобием, цирконием, стронцием, редкими землями, барием, ванадием, титаном, фосфором, а также танталом, свинцом, цинком, торием. С этим рудно-формационным типом связаны Ловозерское Ті-РЗЭ-Nb-Та месторождение (Хибины), уникальное по запасам и ка-

ЛИТОСФЕРА том 17 № 2 2017

честву руд Nb-P3Э месторождение Томтор (Якутия), крупные Nb-P месторождения Восточной Сибири: Белая Зима, Средняя Зима, Большетагнинское (Иркутская область), Nb-P3Э Чуктуконское (Чадобецкое поднятие), Nb-REE и U-Th-P3Э Кийское (Енисейский кряж); Неске-Вара и Африканда (Мурманская область) и некоторые другие месторождения. Из всех перечисленных месторождений разрабатывается только Ловозерское, на остальных месторождениях добыча и извлечение не ведутся, отчасти из-за того, что они расположены в труднодоступных районах с отсутствующей инфраструктурой.

Карбонатитовые комплексы щелочно-основной формации с калиевым типом щелочности приурочены к рифтовым структурам платформ и на территории России представлены Западно-Алданской провинцией (В. Сибирь). В отличие от комплексов первого формационного типа (УЩК) в них концентрируется лишь стронций, барий, редкие земли, ванадий, свинец, цинк, а содержания ниобия, циркония и фосфора низкие. В особых случаях встречаются самоцветы – чароит и дианит. Крупнейшие РЗЭ месторождения этого формационного типа связаны с бастнезитовыми карбонатитами – Маунтин-Пасс (США) и Баюнь-Обо (Китай), которое обеспечивает производство более половины мировой продукции редких земель цериевой группы, в России – Карасугское месторождение (Ц. Тува).

Кроме того, в складчатых областях Урала и Сибири расположены карбонатитовые комплексы щелочных пород и карбонатитов "линейно-трещинного типа" (Ильмено-Вишневогорский, Урал; Печенгинский, Енисейский кряж, В. Сибирь), с которым связаны промышленные месторождения ниобия (Вишневогорское, Ю. Урал; Татарское, Красноярский край, Сибирь). Эти месторождения были первыми из карбонатитовых месторождений в России, на которых велась промышленная добыча ниобия.

В Тиманской складчатой области также известны рудопроявления карбонатитов, связанные с четласским дайковым комплексом, формационная принадлежность которого до сих пор остается предметом дискуссий (Ивенсен, 1964; Черный и др., 1972; Францессон, Черная, 1983; Макеев и др., 2008; Шумилова и др., 2006, 2009; Недосекова и др., 2011; Степаненко, 1979, 1981, 1982, 2015).

МЕТОДЫ ИССЛЕДОВАНИЙ

Определение концентраций микропримесных элементов в породах и минералах (всего 35 элементов) осуществлялось с помощью кислотного разложения проб и последующего масс-спектрометрического окончания на тандемном анализаторе высокого разрешения с ионизацией в индуктивносвязанной плазме HR/ICP-MS Element 2. Погрешность мультиэлементого анализа не более ± (8–10 отн.%) при содержании элемента в 10–20 раз выше предела его обнаружения.

Исследование химического состава рудной минерализации (редкометалльных карбонатов и фосфатов) из карбонатитов Косью (Средний Тиман), рудных редкометалльных ниобиевых минералов (пирохлоров, эшинитов, колумбитов) из карбонатитов ильмено-вишенвогорского комплекса (Урал) было выполнено на электронно-зондовом микроанализаторе Cameca SX100 (ЦКП "Геоаналитик", ИГГ УрО РАН, Д.А. Замятин). Минералы предварительно анализировали на сканирующем электронном микроскопе Jeol JSM-6390LV с энергодисперсионной приставкой Oxford INCA Energy 450 X-Max 80 (ЦКП "Геоаналитик", ИГГ УрО РАН, С.П. Главатских). Параметры электроннозондового микроанализа: ускоряющее напряжение 15 кВ, ток зонда 15 нм, размер пучка 5 мкм (апатиты и силикаты) и 20 мкм (карбонаты). Калибровки выполнены с использованием стандартных образцов: апатит (F), жадеит (Na, Al), ортоклаз (K), родонит (Mn), гематит (Fe), рутил (Ti), оксид хрома (Cr), SrSO₄ (S, Sr), BaSO₄ (Ba), CsLaP₄O₁₂ (La), CsCeP₄O₁₂ (La), алюмосиликатные стекла РЗЭ 1 (Pr, Y), РЗЭ 3 (Sm, Gd), РЗЭ 4 (Nd); концентрация Mg, Ca, Si в силикатных минералах определялись по диопсиду, а в углеродсодержащих – по доломиту (Mg), кальциту (Ca) и диопсиду (Si). Учтено наложение линии Nd L_{α} на Ce L_{β} . Время измерения интенсивности линии в максимуме – 10 с, фона – 5 с. Изменение химического состава кальцита во время измерения учитывалось процедурой аппроксимации интенсивности в нулевой момент времени по промежуточным значениям интенсивности.

КАРБОНАТИТОВЫЕ КОМПЛЕКСЫ УРАЛЬСКОЙ СКЛАДЧАТОЙ ОБЛАСТИ

Рудоносные карбонатиты Урала связаны с ильмено-вишневогорским комплексом (ИВК) - одним из крупных щелочных комплексов мира с редкометалльно-редкоземельной и самоцветной минерализацией и многочисленными месторождениями и рудопроявлениями редкометалльного, редкоземельного и керамического сырья. В 40-х гг. ХХ в. в ИВК работами поисково-разведочной экспедиции, возглавляемой М.Г. Исаковым, были открыты эндогенные карбонатные жилы с пирохлоровой минерализацией – первая рудная зона Вишневогорского месторождения ниобия (Зона 140), связанного с пирохлорсодержащими карбонатитами. В конце 50-х гг. был организован Вишневогорский ГОК и начата промышленная разработка Вишневогорского месторождения. В последующие 50 лет поисково-съемочными и геологоразведочными работами Вишневогорской ГРП Уральской ГСЭ и Челябинской ГРЭ Минцветразведки были

открыты новые месторождения и рудопроявления ниобия и редких земель, связанные с карбонатитами ИВК (рис. 1).

Ильмено-вишневогорский комплекс, сложенный K-Na плюмазитовыми нефелиновыми сиенитами (миаскитами), сиенитами, фенитами, Ne-пегматитами и карбонатитами с P3Э-Zr-Nbминерализацией, расположен на Южном Урале в осевой части Сысертско-Ильменогорского антиклинория в блоке докембрийских пород (микроконтиненте), залегающем среди уральских палеоокеанических комплексов.

ИВК состоит из двух интрузивных массивов миаскитов – Вишневогорского и Ильменогорского, соединенных Центральной щелочной полосой, протягивающейся субмеридионально на 150 км и сложенной фенитами, мелкими телами миаскитов, сиенитов и карбонатитами (см. рис. 1). Широко распространены щелочные (нефелин-микроклиновые) и сиенитовые пегматиты, встречающиеся как в эндо-, так и в экзоконтактах миаскитовых массивов.

Карбонатиты широко развиты в апикальной части Вишневогорского массива миаскитов, встречаются в корневой части массива, в породах Центральной щелочной полосы, а также в экзоконтактовом ореоле миаскитовых интрузий (Левин и др., 1997; Недосекова и др., 2009; Nedosekova et al., 2013). Карбонатиты образуют пластообразные и жилообразные тела и дайки протяженностью в сотни метров и мощностью до 10 м. Ранние карбонатиты (севиты I) представляют собой массивные и брекчиевидные ("кимберлитоподобные") разности кальцитового состава, содержащие перемещенные округлые включения миаскитов и миаскитпегматитов и минералы миаскитов – нефелин, полевые шпаты, биотит, а также акцессорные гатчеттолит, пирохлор, циркон, ильменит, апатит, магнетит, пирротин, пирит. Более поздние разности карбонатитов (севиты II) образуют гнезда и жилы в телах ранних карбонатитов и сиенитах, дайки в нефелиновых сиенитах, а также образуют штокверки и жильные тела выполнения в экзоконтактовых фенитовых ореолах миаскитовых интрузивов. Поздние карбонатиты – крупнозернистые, с крупными (до 10-20 см) кристаллами биотита, апатита, полевых шпатов, пирохлора, акцессорным ильменитом, пирротином, пиритом.

Кроме того, карбонатиты встречаются в массивах ультрабазитов баикского комплекса (PR?) (Булдымском, Спирихинском и др.), залегающих в породах вишневогорской свиты (PRvs) в обрамлении миаскитовых интрузивов (Свяжин, 1966; Левин и др., 1997; Недосекова, 2007), находящихся вблизи контакта с интрузиями миаскитов – в Булдымском, Спирихинском и др. (см. рис. 1). В ультрабазитах ранние карбонатиты доломиткальцитового состава содержат амфиболы ряда рихтерит-магнезиоарфведсонит, слюды ряда

Рис. 1. Схема геологического строения ильмено-вишневогорского щелочно-карбонатитового комплекса, по материалам (Левин и др., 1997; Золоев и др., 2004).

1 – граниты (Рг₃); 2, 3 – ильмено-вишневогорский комплекс (О₃): 2 – миаскиты Вишневогорского и Ильменогорского массивов, 3 – зоны метасоматитов, карбонатитов, силикатно-карбонатных пород Центральной щелочной полосы; 4 – габбро офиолитовой формации (O₁); 5 – гипербазиты офиолитовой формации (O₁); 6 – метаультрабазиты булдымского комплекса (PR?); 7 – вулканогенно-осадочные образования Тагило-Магнитогорского мегасинклинория (Pz₁); 8 – сланцы гранатослюдяные и эклогиты восточной периферии Уфалейского срединного массива (Pz₁); 9 – плагиосланцы и кварциты обрамления Сысертско-Ильменогорского срединного массива (R₁₋₂); 10 – плагиогнейсы, гранитные мигматиты, кристаллические сланцы, амфиболиты, кварциты Сысертско-Ильменогорского и Уфалейского срединных массивов (PR₁₋₂); 11 – тектонические разломы и несогласия; 12 – основные месторождения и рудопроявления Nb и P3Э, связанные с карбонатитами (цифры в кружках): 1 – Булдымское (Nb и P3Э), 2, 3 – Вишневогорское (Nb) (2 – зона 125; 3 – зона 140, 147), 4 – Спирихинское (P3Э), 5 – Светлинское (Nb), 6 – Каганское (P3Э), 7 – Потанинское (Nb), 8 – Увильдинское (Nb), 9 – Байдашевское (Nb), 10 – Ишкульское (Nb), 11 – Ильменское, копь 97 (Nb и P3Э), 12 – Халдихинское, 13 – Сунгульское.

НЕДОСЕКОВА и др.

Fig. 1. Geological scheme of the Ilmeny-Vishnevogorsk alkaline complex (IVAC) modified after (Levin et al., 1997; Zoloev et al., 2004).

1 – granite (PZ_3 – Late Paleozoic); 2, 3 – IVAC: 2 – miaskites of the Vishnevogorsk and Ilmenogorsk plutons, 3 – zones of metasomatites, carbonatites and carbonate-silicate rocks of Central Alkaline belt; 4 – gabbros of ophiolitic complex (O_1 – Early Ordovician); 5 – ultramafic rocks of ophiolitic complex (O_1); 6 – meta-ultramafic rocks of the Buldym complex (PR_2 – Paleoproterozoic ?); 7 – volcano-sedimentary rocks of the Tagil-Magnitogorsk megasynclinorium (Pz_1); 8 – garnet-mica schists and eclogites of the eastern Ufalei complex (Pz_1 – Early Paleozoic); 9 – plagioschists and quartzites of the Sysert-Ilmenogorsk complex (R – Riphean); 10 – plagiogneisses, granitic migmatites, crystalline schists, amphibolites, and quartzites of the Sysert-Ilmenogorsk and Ufalei complexes; 11 – faults and unconformities; 12 – Nb and REE deposits and carbonatite occurrences (figures in circles): *1* – Buldym (Nb and REE); *2*, *3* – Vishnevogorsk (Nb): *2* – zone 125; *3* – zone 140, Vishevogorsky miaskite satellite saddle-shaped body; *4* – Spirikha (REE); *5* – Svetlinskoe (Nb); *6* – Kagan (REE); *7* – Potanino (Nb); *8* – Uvildy (Nb); *9* – Baidashevo (Nb); *10* – Ishkul (Nb); *11* – Ilmeny, mine 97 (Nb and REE); *12* – Khaldikhino; *13* – Sungul.

флогопит-тетраферрифлогопит, акцессорные пирохлор, циркон, магнетит, ильменит, пирротин, пирит и сопровождаются мощными зонами флогопитрихтеритовых метасоматитов. Поздние доломитовые карбонатиты (бефорситы) содержат монацит, эшинит, редкоземельный пирохлор, колумбит, ферсмит, апатит, ильменит, циркон, стронцианит и другие акцессорные минералы.

Наиболее крупные месторождения карбонатитов находятся в северной части комплекса в зоне эндо- и экзоконтакта Вишневогорского миаскитового интрузива. Вишневогорское месторождение ниобия, которое было открыто в 40-х гг. и разрабатывалось более 50 лет, связано с пирохлорсодержащими карбонатитами в северо-западном эндоконтакте Вишневогорского массива миаскитов (Зона 147), а также в седловидной залежи миаскитов (Зона 140). Кроме того, отдельные зоны Вишневогорского месторождения связаны с карбонатитами в фенитовом ореоле Вишневогорского интрузива (Зона 125, 135).

Многочисленные месторождения пирохлорсодержащих карбонатитов установлены и разведаны в Центральной щелочной полосе. Самое крупное из них – Потанинское месторождение ниобия – разведано в 1985 г., и запасы отнесены в разряд резервных. Кроме того, здесь открыты Светлоозерское, Увильдинское, Байдашевское и Ишкульское рудопроявления пирохлорсодержащих карбонатитов (Левин и др., 1997) (см. рис. 1).

Булдымское и Спирихинское месторождения ниобия и редких земель, а также Халдихинское рудопроявление, связанное с карбонатитами в одноименных массивах ультрабазитов, залегающих вблизи западного контакта Вишневогорского интрузива, были открыты и разведаны в 1980-х гг. (Левин и др., 1978). Рудопроявления карбонатитов с Nb-P3Э минерализацией установлены также в ультрабазитовых массивах Каганского и Силачского комплексов, в 2 км западнее Вишневогорского массива (Левин и др., 1997; Свяжин, 1966). В обрамлении Ильменогорского миаскитового массива в ультрабазитах восточного экзоконтакта открыты рудопроявления редкометалльно-редкоземельных карбонатитов (Ильменское рудопроявление, копь 97) (Поляков, Недосекова, 1990).

Ильмено-вишневогорский комплекс послужил прототипом "линейных" карбонатитовых комплексов (или комплексов "линейно-трещинного типа") - самостоятельного формационного типа карбонатитов, связанных с линейными зонами щелочных метасоматитов, нефелин-сиенитовыми и щелочно-сиенитовыми породами. Особенности геологического строения ИВК (линейная форма, широкое развитие щелочных метасоматитов и фенитов, распространение карбонатитов в виде жильных тел, штокверков и метасоматических зон), пространственная и генетическая связь карбонатитов с нефелиновыми сиенитами и зонами фенитизации, отсутствие серий щелочно-ультраосновных магматитов (йолит-уртитовых, мелилитсодержащих серий и др.), а также особенности петрохимии и геохимии щелочных пород и карбонатитов отличают его от кольцевых карбонатитовых комплексов Naультраосновной щелочной формации и формации К-щелочно-основных пород. Эти особенности позволили выделить ильмено-вишневогорский комплекс в самостоятельный формационный тип "карбонатитов, нефелиновых сиенитов и линейных зон щелочных метасоматитов" (Бородин, 1966, 1994; Гинзбург, Самойлов, 1983; Левин и др., 1978), также названный "формацией карбонатитов линейно-трещинных зон" (Багдасаров, 1992).

К настоящему времени аналогичные карбонатитовые комплексы "линейного типа", связанные с нефелиновыми сиенитами и фенитами, известны на Украине (Черниговская зона), в Сибири (Татарская зона, Енисейский кряж), Норвегии (Стьёрней, Сорроу), Финляндии (Сиилиньярве), Канаде (Лонни, Пери-Ривер, Верайти, Кастингтон, Кравье, Нисикатч), Индии (Корати), Бразилии (Анджико Дос Диас), Австралии (Муд Танк), Анголе, Намибии.

РУДНАЯ И ГЕОХИМИЧЕСКАЯ СПЕЦИАЛИЗАЦИЯ КАРБОНАТИТОВЫХ КОМПЛЕКСОВ УРАЛА

Рудная редкометалльная минерализация ильмено-вишневогорского комплекса представлена минералами группы пирохлора (пирохлор, U-пирохлор (гатчеттолит), РЗЭ-пирохлор (мариньякит), бетафит), минералами группы эшинита (эшинит, тороэшинит, ниобоэшинит, алюмоэшинит), минералами группы колумбита (колумбит, титанколумбит, магнезиоколумбит), цирконом, ильменитом, монацитом, сфеном. Реже встречаются такие редкометалльные акцессорные минералы, как ильменорутил, ферсмит, торианит, кальциостронцианит, хроммагниевый чевкинит, Се-фергусонит, давидит, бритолит, церит, бастнезит, ортит, барилит, катаплеит (Бонштедт-Куплетская, 1951; Еськова, Назаренко, 1960; Еськова и др., 1964; Ефимов и др., 1985; Поляков, Недосекова, 1990; Лебедева, Недосекова, 1993; Левин и др., 1997; Попов, Попова, 2006).

Основным рудным минералом редкометалльных месторождений ильмено-вишневогорского комплекса является пирохлор. Пирохлор в ИВК, как и в других комплексах щелочных пород и карбонатитов, является продуктом остаточной кристаллизации карбонатизированной щелочной магмы и образуется на заключительных стадиях функционирования щелочно-силикатно-карбонатной магматической системы, а также при более поздних метасоматических процессах ремобилизации и переотложения рудного вещества. В результате пирохлор является сквозным минералом и присутствует во многих разновидностях пород - в миаскитах и сиенитах, особенно в их пегматоидных разностях, миаскит-пегматитах (биотит-нефелинмикроклиновых), сиенит-пегматитах (биотит-микроклиновых и эгирин-авгит-микроклиновых), меланократовых карбонатно-силикатных породах. В наиболее значительных количествах пирохлор встречается в карбонатитах, как ранних, так и поздних стадий карбонатитообразования (севиты I, севиты II, севиты III), а также в щелочных метасоматитах (альбититах, фенитах, слюдитах, флогопитрихтеритовых метасоматитах и др.).

В миаскитах и сиенитах пирохлор представлен октаэдрическими кристаллами темно-бурого, иногда оранжевого цвета размером 0.01-0.1 мм. В пегматоидных разностях размеры пирохлора увеличиваются до 0.5 см, а в пегматитах – до нескольких сантиметров. Распределение пирохлора неравномерное: в пегматитах и альбититах он образует струевидные скопления и мелкую рассеянную вкрапленность (размеры кристаллов от 2-3 мм до нескольких сантиметров). В меланократовых карбонатносиликатных породах и в ранних карбонатитах (севитах I) пирохлор образует мелкие кристаллы черного и зеленовато-черного цвета (гатчеттолит), а также темно-бурого и желтого цвета (собственно пирохлор). В поздних карбонатитах (севитах II) пирохлор образует октаэдрические кристаллы размером 0.05-1.5 см красно-бурого и желтого цвета, в которых присутствуют реликты раннего (черного) пирохлора со следами растворения и преобразования. В доломит-кальцитовых карбонатитах (севитах III) Булдымского массива пирохлор образует красно-бурые кристаллы и зерна размером 0.5– 10 см. В ассоциирующих флогопит-рихтеритовых метасоматитах также встречается мелкая вкрапленность желто-бурого пирохлора, в слюдитах отмечается гатчеттолит (округлые зерна черного цвета размером 0.1–0.5 см с зеленовато-черными каймами) и темно-бурый РЗЭ-пирохлор, образующий крупные кристаллы (до 15 см), обрастающие кристаллами эшинита. В доломитовых карбонатитах присутствуют мелкие кристаллы эшинита, чевкинита и колумбита.

Нами были изучены коллекции пирохлора из разных месторождений и рудопроявлений ИВК, переданные нам известным исследователем и первооткрывателем месторождений комплекса В.Я. Левиным, а также пирохлоры и другие редкометалльные минералы, собранные авторами. Было проведено исследование химического и микроэлементного состава 30 проб редкометалльных минералов из различных месторождений ИВК – Вишневогорского, Потанинского и Булдымского, а также рудопроявлений Пургино и Увильды. Химический состав пирохлоров и эшинитов ИВК был изучен на микрозонде Сатеса-100 в ИГГ УрО РАН (аналитик Д.В. Замятин).

Рудная ниобиевая минерализация редкометалльных месторождений миаскит-карбонатитового комплекса (Вишневогорское, Потанинское месторождения, Увильдинское рудопроявление) представлена собственно пирохлором, U-(Та)-пирохлором (гатчеттолитом), Ті-пирохлором (бетафитом), Та-, РЗЭ- и Sr-содержащими разновидностями пирохлоров (Левин и др., 1997; Недосекова, Прибавкин, 2015). На Булдымском и Спирихинском месторождениях баикского ультрабазитового комплекса основным рудным минералом также является пирохлор (в том числе U-пирохлор и РЗЭсодержащие разновидности пирохлора); кроме того, в значительных количествах присутствуют колумбит, эшинит, монацит, хроммагнезиочевкинит (Поляков, Недосекова, 1990; Левин и др., 1997; Недосекова, 2007).

Согласно последней номенклатуре пирохлоровой группы минералов (на основе преобладающего катиона или аниона в позициях B = Nb, Ti, Ta; A = Ca, Na, P3Э, Y, Sr, Ba, Mn, Mg, U, Th и Y = O, OH, F) (Atencio et al., 2010) пирохлоры ИВК могут быть классифицированы как U-оксикальциопирохлоры, фторкальциопирохлоры, а также Ta-, P3Э_{Ce}и Sr-содержащие фторкальциопирохлоры.

Разновидности пирохлора ильмено-вишневогорского комплекса приурочены к определенным типам пород и определенной эволюционной стадии функционирования щелочно-магматической системы.

Так, *U-(Та)-содержащие разности пирохлоров* (15–24 мас. % UO₂; 1–14 мас. % Та₂O₅) встречаются в меланократовых силикатно-карбонатных по-

родах и ранних карбонатитах (севиты I) Потанинского и Увильдинского месторождений Центральной щелочной полосы (ЦЩП), а также на Булдымском месторождении. Этот тип пирохлоров наиболее ранний и, вероятно, образуется на позднемагматической стадии кристаллизации щелочнокарбонатитовой системы.

Та-содержащие разности пирохлоров (1.5–5.0 мас. % Ta_2O_5 ; 0.0–4.2 мас. % UO_2) встречаются в нефелиновых пегматитах в апикальной части Вишневогорского массива (Вишневогорское месторождение, Рудная зона 147), а также на Потанинском месторождении. Этот пирохлор формируется на пегматитовой стадии кристаллизации щелочного расплава.

Собственно пирохлоры (Са-Na пирохлоры) с максимальными содержаниями Nb_2O_5 (65–69 мас. %), наиболее стехиометричными составами и низкими содержаниями микропримесей широко развиты в полевошпатовых жилах и ранних кальцитовых карбонатитах (севиты I) и, видимо, связаны с раннекарбонатитовой стадией эволюции расплава. Этими разновидностями пирохлора сложены основные рудные зоны Вишневогорского (Рудные зоны 140 и 147) и Булдымского месторождений, встречаются они также и на Потанинском месторождении.

РЗЭ-содержащий пирохлор (3–6 мас. % TR₂O₃) встречается в поздних карбонатитах (севиты II) и фенитах ЦЩП и в доломитовых карбонатитах (бефорситы IV) Булдымского массива. Этот тип пирохлора широко представлен на Потанинском и Булдымском месторождениях, реже встречается на Вишневогорском (Рудная зона 125) месторождении. Формируется на позднекарбонатитовой и сиенит-пегматитовой стадиях эволюции комплекса.

Sr-содержащий пирохлор (1.5–4.5 мас. % SrO) также образуется на поздней карбонатитовой стадии и характерен для поздних карбонатитов (севиты II) апикальной части Вишневогорского массива и его фенитового обрамления (Рудные зоны 147 и 125, Вишневогорское месторождение).

Исследование геохимии пород ильмено-вишневогорского миаскит-карбонатитового комплекса Южного Урала показало, что и миаскиты, и карбонатиты характеризуются значительными содержаниями высокозарядных (HFSE) элементов – прежде всего Nb и Ta, а также Zr, Hf, V, Ti, близкими таковым рифтогенных карбонатитовых комплексов ультраосновной щелочной формации (УЩК). При этом породы ильмено-вишневогорского комплекса обогащены по сравнению с породами карбонатитовых комплексов УЩК крупноионными литофильными элементами (LILE) – прежде всего Sr, в меньшей степени K, Rb, Cs, Li, РЗЭ, что сближает их с карбонатитовыми комплексами щелочно-основной формации (Главнейшие провинции..., 1974), а также с комплексами коллизионных тектонических режимов (Hou et al., 2006). Одновременная обогащенность высокозарядными (HFSE) и крупноионными литофильными элементами (LILE) является характерной особенностью щелочно-карбонатитовых комплексов "линейно-трещинного" типа (Недосекова, 2012).

Содержания HFSE-элементов в рудных карбонатитах ильмено-вишневогорского миаскиткарбонатитого комплекса (г/т): Nb (до 1500), Zr (до 100), Hf (0.5), Ta (3.6), Ti (100–1000), V (10–70), сопоставимы (но несколько ниже) с содержаниями в редкометалльных карбонатитовых месторождениях УЩК-формации (в среднем 800 г/т и до 4 мас. % Nb и в среднем 47 г/т и до 0.2 мас. % Ta). При этом карбонатиты ИВК значительно обогащены Sr (3700–21000 г/т) по сравнению с ранними фациями карбонатитов УЩК (в среднем 5800 г/т). Содержания РЗЭ в карбонатитах ИВК (1500–3200 г/т) близки содержаниям в ранних высокотемпературных карбонатитах УЩК.

Средние содержания основных рудных компонентов Nb₂O₅ и P3Э ₂O₃, попутные компоненты, а также минеральный состав руд месторождений карбонатитовых комплексов Урала приведены в сопоставлении с основными промышленными типами ниобиевых месторождений в табл. 1 (Методические рекомендации..., 2007).

Средние содержания Nb_2O_5 в карбонатитовых рудах Потанинского месторождения составляют (мас. %): 0.168, в фенит-карбонатитовых – 0.126; содержания попутных компонентов карбонатитовых руд: SrO - 1, $ZrO_2 - 0.078$, $P3\Theta_2O_3 - 0.15$, $P_2O_5 - 1.1$, U - 0.0065, Th - 0.0026, $Ta_2O_5 - 0.0008$. Средние содержания Nb_2O_5 в карбонатитовых рудах Вишневогорского месторождения (Рудные зоны 147, 140) составляют 0.09 и 0.14 мас. % соответственно; попутные компоненты: $ZrO_2 - 0.04$, $P3\Theta_2O_3 - 0.07$, $Ta_2O_5 - 0.001$ (Левин и др., 1997; Золоев и др., 2004).

Таким образом, ильмено-вишневогорский миаскит-карбонатитовый комплекс, являющийся представителем нефелин-сиенит-карбонатитовой формации (или формации "линейно-трещинных зон"), имеет ниобиевую специализацию. Руды Вишневогорского и Потанинского месторождений представлены ниобиевым (пирохлоровым) карбонатитовым промышленным типом руд (с попутными компонентами P, P3Э, Zr, U, Th, Sr), аналогичным таковому в месторождениях карбонатитовых комплексов УЩК-формации. При этом содержания рудных компонентов, в частности Nb₂O₅, в них несколько ниже, чем в богатых рудах (0.2– 0.8 мас. %) карбонатитовых месторождений УЩКкомплексов.

Концентрации редких элементов в рудных карбонатитах баикского ультрабазитового комплекса (г/т): РЗЭ – 2000–48000, при LREE/HREE = 4–125 и La/Yb = 15–3045, Nb – до 1600, Sr – 3700–12 000, Таблица 1. Промышленные и потенциально-промышленные типы месторождений ниобия и РЗЭ-руд (Методические рекомендации..., 2007) и редкометалльные месторождения карбонатитовых комплексов Тимано-Уральского региона

Table 1. Industrial and potentially industrial types of niobium and REE-deposits (Metodicheskie rekomendatsii..., 2007) ore and rare metal deposits of carbonatite complexes of the Timan-Ural region

Промышленный тип руд	Nb ₂ O ₅ , %	TR ₂ O ₅ , %	P ₂ O ₅ , %	Попутные	Природный (минеральный)
и примеры месторождений				компоненты	тип руд
Ниобиевый в массивах ультраосновных пород и карбонатитов					
Белозиминское (Россия),	Богатые		2-4	P, REE, Ta, U, Zr	Пирохлоровый (апатит, монацит,
Сент-Оноре (Канада)	0.2-0.8				иногда циркон, бадделеит, магне-
	Бедные				тит)
	0.05-0.08				
Вишневогорское (Урал)	0.07-0.28	0.05-0.1	0.2-2.3	Zr, P, U, Th, Sr	Пирохлоровый (апатит, циркон,
	(0.14)	(0.07)	(1.3)		ильменит, пирротин, магнетит)
Потанинское (Урал)	0.07-0.3	0.05-0.26	0.4-2.8	Zr, REE, P, U,	То же
	(0.15)	(0.13)	(1)	Th, Sr	
Булдымское (Урал)	0.05-0.65	0.1-0.9	0.3-4.5	P, Ta, U, Th	Пирохлоровый (колумбит, мона-
	(0.16)				цит, эшинит, чевкинит, магнетит,
					апатит)
Спирихинское (Урал)	0.06-0.73	0.15-0.56	Нет дан-		То же
	(0.22)		ных		
Цериевоземельный в бастнезитовых карбонатитах					
Карасугское (Россия),		Богатые		Fe, U, Th, Sr, 6a-	Бастнезитовый (монацит, барит,
Маунтин-Пасс (США)		5-10		рит, флюорит	флюорит, гематит, апатит)
		Бедные			
		0.9–5			
Косью (Тиман, Россия)	до 0.04	1-4	1-6	Fe, U, Th, Sr,	Бастнезитовый (монацит, барит,
				Ba, F	F-карбонаты, флюорит, гематит,
					апатит)

Примечание. Содержания рудных компонентов и средние содержания (в скобках) для месторождений Урала приведены по (Левин и др., 1997; Золоев и др., 2004; Недосекова, 2007; Недосекова и др., 2009), для месторождений Тимана по (Ковальчук и др., 2013; Недосекова, Прибавкин, 2015).

Note. The content of ore components and the average content (in brackets) for the Urals deposits are by (Levin et al., 1997; Zoloev et al., 2004; Nedosekova, 2007; Nedosekova et al., 2009), for Timan deposits by (Koval`chuk et al., 2013; Nedosekova, Pribavkin, 2015).

Th – до 1400, Ba – 200–550, Ti – 100–1000, V – 10– 70, Zr – до 40, Hf – 0.5 (Nedosekova et al., 2016), сопоставимы с карбонатитами соответствующих фациальных разновидностей в УЩК-комплексах. Средние содержания основных рудных компонентов в рудах месторождениях баикского ультрабазитового комплекса Nb₂O₅ – 0.164 мас. % (Булдымское месторождение), Nb₂O₅ – 0.22 мас. %, при TR₂O₃ – 0.71 мас. % (Спирихинское месторождение) (Левин и др., 1997). Эти данные в совокупности с наличием рудной РЗЭ-Nb-минерализации (пирохлор, колумбит, чевкинит, эшинит, монацит) определяют редкоземельно-ниобиевую специализацию месторождений баикского комплекса.

КАРБОНАТИТЫ ТИМАНА

Карбонатиты на Среднем Тимане были открыты в 60–70-х гг. XX в. в пределах Четласского камня в составе Четласского комплекса дайковых щелочных ультрабазитов (Ивенвсен, 1964; Черный и др., 1972). В 1980-х гг. в связи с поисками коренных источников алмазов Тимана Ухтинской ГРЭ были

ЛИТОСФЕРА том 17 № 2 2017

выполнены специализированные тематические работы по исследованию потенциально алмазоносных щелочных пикритов четласского комплекса. Положительных результатов при проведении специального крупнообъемного опробования на алмазы не было получено. Здесь известны лишь единичные находки алмаза (Макеев и др., 2008) и псевдоморфоз по алмазу (Фролов и др., 2005). При этом в результате проведенных исследований в породах четласского комплекса установлено широкое развитие щелочных метасоматитов и карбонатитов с редкометалльно-редкоземельной минерализацией (Черный и др., 1972; Степаненко, 1979, 1981, 1982; Костюхин, Степаненко, 1987).

Четласский комплекс дайковых щелочных базит-ультрабазитов, фенитов и карбонатитов находится на Среднем Тимане, занимая площадь около 1000 км², в юго-восточной части Четласского камня, представляющего собой выступ рифейских пород в области перикратонного прогиба Русской платформы (рис. 2а). Вмещающими породами для Четласского комплекса являются терригенные и терригенно-карбонатные образования четласской

Рис. 2. Схема тектонического строения Среднего Тимана по (Кузнецов и др., 2006) (а) и схематическая геологическая карта четласского комплекса (в центральной части Косьюского поля) по (Макеев и др., 2008) (б).

а. 1 – Восточно-Европейский кратон; 2–5 – фундамент Печорской плиты: 2 – Тиман, 3 – Ижемская зона, 4 – выходы на поверхность комплексов фундамента, 5 – Печорская зона; 6 – Припечорско-Илыч-Чикшинская зона разломов; 7 – район развития четласского дайкового комплекса.

б. 1–2 – терригенно-осадочные отложения четласской свиты (PR₂ ct₂): 1 – кварцевые и полевошпат-кварцевые песчаники и их фенитизированные разности, кварциты, 2 – аргиллиты и алевролиты; 3–5 – магматические образования четласского комплекса (V): 3 – пикриты, лампрофиры и их брекчии, 4 – карбонатиты Косьюского массива, 5 – щелочные и субщелочные габброиды; 6 – контуры тел, выходящих на поверхность; 7 – контуры тел, не выходящих на поверхность; 8 – тела, предполагаемые по геофизическим данным; 9: а – разрывные нарушения, б – геологические границы; 10 – скважины и их номера.

Fig. 2. Tectonic scheme of the Middle Timan after (Kuznetsov i dr., 2006) (a) and Geological schematic map of Chetlassky complex (in the central part of the Kosyu field) after (Makeev et al., 2008) (6).

a. 1 – East European Craton; 2–5 – the foundation of the Pechora plate: 2 – Timan, 3 – Izhemsk zone, 4 – outcrops of the basement complexes, 5 – Pechora zone; 6 – Pripechora-Ilych-Chikshinskaya fault zone; 7 – area development of Chetlassky dike complex. 6. 1–2 – terrigenous sediments of Chetlassk formation (PR₂ ct₂): 1 – quartz and feldspar-quartz sandstones and their fenitized various, difference quartzites; 2 – argillite and siltstone; 3–5 – magmatic formations of Chetlassk complex (V): 3 – picrites, lamprophyres and breccias, 4 – carbonatites Kosyu massif, 5 – alkaline and sub-alkaline gabbro; 6 – body, leaving the surface; 7 – the body does not go to the surface; 8 – body alleged by geophysical data; 9: a – faults, 6 – geological boundaries; 10 – well and its numbers.

 (R_2) свиты и быстринской (R_3) серии. Дайковые тела ультрабазитов трассируют разломы СВ простирания, образуя дайковые поля. Выявлено около 50 таких полей (Мезенское, Косьюское, Бобровское и Октябрьское и др.), в которых насчитывается несколько тысяч даек. Ведущей формой тел ультрабазитов являются крутопадающие дайки протяженностью до 3 км. Их мощность обычно варьирует от 0.5 до 3 м, при этом в дайках фиксируются раздувы и коленообразные перегибы, в которых мощность тел возрастает до десятков метров. Имеются также штокообразные тела, которые осложняются жильными инъекциями во вмещающие породы. В тесной пространственной, структурной и временной связи с дайками ультрабазитов находятся щелочные метасоматиты (фениты, флогопитовые слюдиты, полевошпатовые метасоматиты) и карбонатиты с акцессорной редкометалльной минерализацией - монацитом, ильменорутилом, бастнезитом, колумбитом, пирохлором, а также гидротермальные гетит-полевошпатовые и кварц-гетитгематитовые породы (Ивенсен, 1964; Костюхин, Степаненко, 1987).

Четласский дайковый комплекс представлен пикрит-лампрофировыми сериями с калиевым типом щелочности (от умеренно щелочных до щелочных разностей пород). Наиболее магнезиальные разновидности представлены субщелочными пикритами и сопоставимы с жильными "кимберлитпикритами" (Костюхин, Степаненко, 1987; Поляков, Недосекова, 1990). Большая часть дайковых пород Четласского комплекса представлена лампрофирами альнеит-польценитового ряда (Ивенкин, 1964; Черный и др., 1972). А.Б. Макеев показал принадлежность части лампрофиров Четласского комплекса к спессартит-керсантитовому ряду (Макеев и др., 2008). Необходимо отметить, что значительная часть дайковых ультрабазитов Четласского комплекса сложена карбонатсодержащими лампрофирами, содержащими в базисе наряду с флогопитом и пироксеном карбонат (5-50%), апатит, амфибол, гранат. Кроме того, установлены "лампроитоподобные" пикриты, петрохимические, минералогические и геохимические характеристики которых (молекулярные отношения $K_2O/Na_2O = 2.76-5.0$, $K_2O/Al_2O_3 = 0.52-0.72$; ($K_2O +$ $+ Na_2O)/Al_2O_3 = 0.66-1.1$) приближаются к таковым лампроитов (потенциально алмазоносных пород) (Wooley et al., 1996). С "лампроитоподобными" пикрит-лампрофировыми сериями Четласского комплекса ассоциируют редкоземельноредкометалльные карбонатиты.

Карбонатиты и сопровождающие их щелочные метасоматиты локализованы в тех же, что и дайковые ультрабазиты, тектонических зонах СВ простирания, но в отличие от ультрабазитов они проявлены на отдельных участках. Карбонатиты слагают жилоподобные тела, штокверки и зоны карбо-

ЛИТОСФЕРА том 17 № 2 2017

натизации, часто залегают в зальбандах тел ультрабазитов. Внешние части тел карбонатитов сложены флогопитовыми метасоматитами (по ультрабазитам) и альбит-микроклин-эгириновыми фенитами (по вмещающим кварцито-песчаникам). Карбонатиты и щелочные метасоматиты часто приурочены к раздувам дайковых тел, что может свидетельствовать об их кристаллизации на завершающей стадии функционирования щелочно-карбонатносиликатной магматической системы.

Наиболее крупное проявление карбонатитов известно в Косьюской зоне разлома, в районе раздува дайки щелочных ультрабазитов (рис. 2б). Карбонатиты образуют шток диаметром около 300 м (массив р. Косью), широко развиты флогопитовые слюдиты и полевошпатовые метасоматиты, а также меланократовые фениты. Здесь же отмечаются штокверковые дугообразные зоны гетитполевошпатовых пород и кварц-гетит-гематитовые крутопадающие жилы и прожилки, которые пересекают все породы массива, завершая процесс карбонатитообразования. Жилы карбонатитов также встречаются и во вмещающих фенитизированных осадочно-метаморфических породах быстринской серии.

Дайковые ультрабазиты Четласского комплекса представляют собой полнокристаллические породы порфировой и "миндалекаменной" структуры, содержащие вкрапленники фенокристов оливина (7–30, до 60%), клинопироксена (авгит-Ті-авгит) (5-40%), флогопита (5-30%), пойкилокристы флогопита в микролитовом флогопит-пироксеновом базисе. В базисе часто присутствует карбонат (до 20%), иногда апатит, гранат, амфибол. Наряду с вкрапленниками в породах отмечаются мегакристы оливина, ярко-зеленого клинопироксена и буровато-зеленого хромшпинелида, а также ксенолиты серпентинитов, серпентин-тальковых пород, фенитизированных гнейсов и кристаллических сланцев. Встречаются разновидности лампрофиров, которые наряду с фенокристами клинопироксена, флогопита и оливина содержат крупные пойкилокристы зеленовато-бурого амфибола (до 60%) с включениями пироксена. Базис в этих породах сложен микролитами клинопироксена и слюдистым агрегатом (замещенным калишпатом?).

Щелочными разностями лампрофиров сложены наиболее мощные дайковые тела (в местах раздувов), в частности на участке Косью. В щелочных лампрофирах, содержащих вкрапленники оливина, клинопироксена и флогопита, а также мегакристы оливина и буровато-зеленой шпинели, базис сложен игольчатым синевато-зеленым амфиболом, карбонатом, апатитом и тетраферрифлогопитом. Вкрапленники оливина замещены серпентином и карбонатом. К этим породам приурочены жилы кальцит-доломит-анкеритовых карбонатитов с редкоземельной минерализацией.

Жилы карбонатитов распространены на Косьюском и Бобровском участках. Особенно широко они развиты в массиве Косью, где их количество существенно возрастает с глубиной. Карбонатиты сложены мелко- и микрозернистым доломитанкерит-сидеритовым агрегатом (реже кальцитом, магнезитом) и содержат слюды (ряда флогопиттетраферрифлогопит), иногда щелочные амфиболы (ряда арфведсонит-эккерманит), эгирин, КПШ, альбит, кварц. В переменных количествах карбонатиты содержат акцессорные апатит, магнетит, хлорит, пирит, халькопирит, галенит, сфалерит, пирротин, а также редкометалльные акцессорные минералы монацит, ильменорутил, бастнезит, пирохлор, колумбит, бадделеит, циркон, сфен, апатит, магнетит, ильменит, барит, торит, ортит (Костюхин, Степаненко, 1987; Ковальчук и др., 2009; Ковальчук, 2011; Шумилова и др., 2012). В гетитполевошпатовых и кварц-гетит-гематитовых породах также широко развита редкоземельно-торийредкометалльная минерализация - монацит, бастнезит, ксенотим, колумбит, ильменорутил, торит и необычные выделения ториевых фаз в редкоземельных карбонатах (Удоратина и др., 2012).

Формационная принадлежность четласского комплекса до сих остается предметом дискуссий. В формационной классификации щелочных комплексов Л.С. Бородина четласский комплекс является представителем калиевой шелочно-базальтоидной формации (Главнейшие провинции..., 1974). В.И. Степаненко доказывает, что первично магматический состав даек был щелочной пикритовый, а вариации химического и минерального состава пород связывает с постмагматическими преобразованиями (Степаненко, 2015). Ряд исследователей относят породы четласского комплекса к группе лампрофировых пород (Ивенсен, 1964; Черный и др., 1972; Макеев и др., 2008; Недосекова и др., 2011), так как они обладают первичными признаками лампрофиров - гипабиссальных магматических пород с мафическим фенокристами, особенности которых определяются прежде всего флюидонасыщенностью щелочных базитультрабазитовых расплавов, что приводит к кристаллизации (наряду с оливином и пироксеном) водосодержащих (тетраферрифлогопит, Na-Caамфиболы) и карбонатных (первичных) минералов. Ультрамафитовые лампрофиры богаты К, Mg, Cr, Ni, Sr, Ba, РЗЭ и летучими, содержат меньше Si и больше Са, чем другие силикатные магматические породы, и эволюционируют в карбонатиты (Rock, 1986). Ассоциации таких дайковых серий могут содержать и алмазы (Тарре et al., 2008).

РУДНАЯ И ГЕОХИМИЧЕСКАЯ СПЕЦИАЛИЗАЦИИ КАРБОНАТИТОВ ЧЕТЛАССКОГО КОМПЛЕКСА (СРЕДНИЙ ТИМАН)

Рудная минерализация карбонатитов четласского комплекса долгое время оставалась слабо изученной из-за мелких (менее 20 мкм) размеров зерен рудных минералов. Микрозондовые исследования и сканирующая электронная микроскопия позволили детально охарактеризовать рудные минералы карбонатитов. Кроме известных здесь ранее монацита, бастнезита, пирохлора, колумбита, ильменорутила (Костюхин, Степаненко, 1987), в карбонатитах были установлены анкилит, U-пирохлор, циркон, молибденит, англезит, стронцианит, торит/ хаттонит, карбоцернаит, ильменорутил (Ковальчук, 2011; Ковальчук и др., 2009, 2013).

Проведенные нами исследования карбонатов из карбонатитов массива Косью показали, что ранние кальциты представлены Ba-TR-Sr-содержащими разновидностями, содержащими (мас. %): 5.44 SrO, 0.44 BaO, 0.23 La₂O₃ (рис. 3), а более поздние кальциты имеют низкие содержания изоморфных примесей этих элементов (1.0 SrO, 0.69 BaO, 0.01 La₂O₃), но при этом содержат мельчайшие (п мкм) вростки РЗЭ-Sr-карбонатых фаз – анкилита (Sr_{0.59-} $_{0.68}Ca_{0.23-0.28})_{0.97-0.91}(La_{0.54-0.55}Ce_{0.48-0.51})_{1.01-1.06}(OH)\cdot H_2O$ СО3 и бурбанкита – (Na_{2.05-2.26}Сa_{0.95-0.74})_{3.0}(Sr_{1.82-} $_{1.71}Ca_{0.65-0.83}La_{0.13-0.17}Ce_{0.1-0.16}Ba_{0.09-0.11})_{2.87-2.97}(CO_3)_5.$ Кроме того, в карбонатах отмечаются также включения карбоцернаита, стронцианита, барита, а к зернам фосфатов (апатит) тяготеют мелкие включения монацита (см. рис. 3). Поздние карбонатные прожилки содержат более крупные выделения (до n·100 мкм) фторкарбонатов редких земель – бастнезита $(Ce_{0.47-0}La_{0.45-0.40}Nd_{0.05-0.06}Pr_{0.04}Ca0_{0.02-0.05})_{0.99-}$ 1.02(CO₃)F (см. рис. 36), паризита, а также включения апатита, барита, гематита, кварца, флюорита.

Таким образом, РЗЭ-Sr-содержащие минералы – фторкарбонаты и карбонаты редких земель (бастнезит, бурбанкит, карбоцернаит, стронцианит, паризит и др.), а также РЗЭ-Sr-фосфаты редких земель (монацит и Sr-PЗЭ-апатит) образуют обильную вкрапленность и прожилки в карбонатах карбонатитов Четласского комплекса и представляют собой легкообогатимые руды, не требующие сложных технологий обогащения.

Исследование геохимии лампрофиров и карбонатсодержащих лампрофиров Четласского комплекса показало, что они характеризуются обогащением как совместимыми (Ni, Co, Cr), так и несовместимыми элементами (РЗЭ, Sr, Ba, Nb) (Недосекова и др., 2013). По содержанию редких элементов карбонатсодержащие лампрофиры близки (но не идентичны) карбонатитам кимберлитовых ассоциаций (Шумилова и др., 2006; Rock, 1986) и отличаются от карбонатитов разных формационных

Рис. 3. РЗЭ-Sr-карбонаты в карбонатитах четласского комплекса

a – вростки бурбанкита (серый), анкилита (светло-серый) и барита (ярко-белые зерна) в кальците; **б** – выделения бастнезита (белый) в поздних карбонатных прожилках, секущих зерна раннего Sr-P3Э-кальцита; **a** и **б** – изображения в отраженных электронах (BSE); **в** и **г** – изображение в рентгеновских лучах: **в** – La, **г** – Sr; справа на фотографиях **в** и **г** – высокостронциевый кальцит (мас. %): 5.44 SrO, 0.44 BaO, 0.23 La₂O₃, слева – низкостронциевый кальцит (1.0 SrO, 0.69 BaO, 0.01 La₂O₃) с вростками анкилита и бурбанкита, внизу – участок зерна апатита с включениями монацита. *Арt* – апатит, *Mz* – монацит, *Burb* – бурбанкит, *Anc* – анкилит, *Bst* – бастнезит.

Fig. 3. REE-Sr-carbonates in carbonatites of Chetlassky complex.

a – intergrowths burbankite (gray), ankilite (light gray) and barite (bright white grains) in calcite; **6** – allocation of bastnasite (white) in the late carbonate veinlets cutting the grain early Sr-REE-calcite; **a**, **6** – BSE-image; **b** – X-ray image La, \mathbf{r} – X-ray image Sr; right – hight Sr-calcite (wt %): 5.44 SrO, 0.44 BaO, 0.23 La₂O₃, left – low Sr-calcite (1.0 SrO, 0.69 BaO, 0.01 La₂O₃) with ankilite and burbankite ingrowths; bottom – apatite grains plot with monazite inclusions. *Apt* – apatite, *Mz* – monazite, *Burb* – burbankite, *Anc* – ancilite, *Bst* – bastnesite.

типов. В них довольно высокие содержания (г/т) Ni (120–460), Co (35–50), Cr (170–895) и пониженные Ba (500–1780), Sr (165–1500), Nb (75–110), РЗЭ (40–490) по сравнению с таковыми карбонатитов.

Собственно карбонатиты четласского комплекса, содержащие редкоземельно-редкометалльную минерализацию, имеют высокие содержания (г/т) РЗЭ (8800–35300), Ва (1600–9600), Sr (1060–9700), Th (20–165), пониженные Nb (3–250, в среднем – 110) и более низкие Ni (8–110), Co (1–44), Cr (9– 187) по сравнению с таковыми лампрофиров и сопоставимы с карбонатитами поздних стадий карбонатитообразования. По содержаниям редких элементов карбонатиты четласского комплекса близ-

ки среднемировым составам магнезио- и феррокарбонатитов (Woole, Kempe, 1989), отличаясь очень низкими содержаниями HREE и, соответственно, экстремально высокими La/Yb (до 6540) и LREE/ HREE (до 240) отношениями. Необходимо также отметить низкие Sr/Ba (0.4–4.0) отношения, что характерно для вулканических и малоглубинных карбонатитов (Самойлов, 1984), а также повышенные содержания Cr, Ni, Co, что характерно для карбонатитов, образующихся из К-ультраосновных пикрит-кимберлитовых магм (Владыкин, 2008).

По оценке прогнозных ресурсов и запасов по категории C2, проведенной по результатам работ Среднетиманской экспедиции C3ГУ и Ухтинской экспедиции Коми-Ненецкого ГУ, средние содержания $P3Э_2O_5$ в карбонатитовых рудах Косьюского рудопроявления составляют 1.84 мас. % (Ковальчук и др., 2013), при вариациях от 1 до 4 мас. %, что соответствует рудам редкоземельных месторождений. При этом средние содержания $Nb_2O_5 - 0.04$ мас. %, ниже бортовых содержаний для ниобиевых месторождений, при высоком содержании $Ta_2O_5 - 0.007$ мас. %.

Средние содержания $P33_2O_3$ и Nb_2O_5 , попутные компоненты, а также минеральный состав руд рудопроявления карбонатитов Косью в сопоставлении с основными промышленными типами ниобиевых месторождений (см. табл. 1) соответствуют цериевоземельному типу в бастнезитовых карбонатитах.

Таким образом, рудопроявление карбонатитов Косью четласского комплекса, являющееся представителем дайкового щелочного ультрабазит-карбонатитового комплекса с калиевым типом щелочности, имеет редкоземельную специализацию. Руды Косьюского месторождения представлены редкоземельным (бастнезитовым) карбонатитовым промышленным типом руд (с попутными компонентами Fe, Th, Ba, F), аналогичным таковым в месторождениях бастнезитовых карбонатитов комплексов щелочно-основной формации. Содержания рудных компонентов РЗЭ $_2O_5$ (1–4 мас. %) в них несколько ниже, чем в богатых рудах (5–10 мас. %) месторождений этого типа (Маунтин-Пасс и Баян-Обо).

ЗАКЛЮЧЕНИЕ

Таким образом, установлена рудная специализация карбонатитовых комплексов Урало-Тиманского региона: *ниобиевая* – для миаскиткарбонатитового, *редкоземельно-ниобиевая* – для ультрабазит-карбонатитового комплексов Урала и *редкоземельная* – для карбонатитов Тимана. Масштабы оруденения и содержания Nb и LREE месторождений и рудопроявлений, связанных с карбонатитовым магматизмом Урало-Тиманского региона (Вишневогорское, Потанинское, Булдымское, Спирихинское месторождения (Урал) и рудопроявление Косью (Тиман), соответствуют требованиям, предъявляемым к качеству ниобиевого и редкоземельного сырья. Рудная специализация карбонатитовых комплексов Урала и Тимана определяется их формационной принадлежностью.

Карбонатитовые комплексы Урала – представители формации "линейно-трещинных зон" - имеют ниобиевую и редкоземельно-ниобиевую специализацию. Так, ильмено-вишневогорский миаскиткарбонатитовый комплекс (Вишневогорское и Потанинское месторождения) имеет ниобиевую специализацию с пирохлоровым промышленным типом руд (с попутными компонентами Zr, P, P3Э, U, Th, Sr), аналогичным карбонатитовым комплексам Na-щелочно-ультраосновной формации. При этом содержания рудного компонента Nb₂O₅ (в среднем 0.15 мас. %) в них несколько ниже, чем в богатых рудах месторождений (0.2–0.8 мас. %), связанных с карбонатитами Na-щелочно-ультраосновных комплексов. Рудная ниобиевая минерализация представлена собственно пирохлором, U-(Та)пирохлором (гатчеттолитом), Ті-пирохлором (бетафитом), Та-, РЗЭ- и Sr-содержащими разновидностями пирохлоров.

Руды баикского карбонатит-ультрабазитового комплекса (Булдымское и Спирихинское месторождения) представлены редкоземельно-ниобиевым (монацит-эшинит-колумбит-пирохлоровым) типом руд с более высокими содержаниями рудных компонентов (Nb₂O₅ – в среднем 0.16–0.22 мас. % и $TR_2O_3 - 0.1$ –0.71 мас. %), близким карбонатитовым комплексам Na-щелочно-ультраосновной формации, что определяет *редкоземельно-ниобиевую* специализацию месторождений баикского комплекса.

Четласский дайковый комплекс К-базитультрабазитов и карбонатитов Среднего Тимана имеет редкоземельную специализацию. Руды Косьюского месторождения представляют собой цериевоземельный тип руд с высоким содержанием $P33_2O_3$ (в среднем 1 мас. %) и попутными компонентами (Fe, Th, Sr, P, Nb, Ta, барит, флюорит), аналогичными таковым в месторождениях бастнезитовых карбонатитов К-щелочно-основной формации. Рудные минералы – карбонаты и фторкарбонаты редких земель (бастнезит, бурбанкит, карбоцернаит, анкилит, стронцианит, паризит), а также фосфаты редких земель (монацит и Sr-P3Э-апатит) образуют обильную вкрапленность и прожилки в карбонатитах Четласского комплекса и представляют собой легкообогатимые руды, не требующие сложных технологий обогащения. Содержания рудных компонентов РЗЭ2О5 (1-4 мас. %) в них несколько ниже, чем в богатых рудах (5-10 мас. %) типовых месторождений бастнезитовых карбонатитов, таких как Маунтин-Пасс и Баян-Обо. Щелочные "лампроитоподобные" пикрит-лампрофировые серии пород четласского комплекса имеют перспективы алмазоносности.

Авторы выражают глубокую признательность Н.В. Владыкину за консультации, содействие и предоставление материалов для исследования.

Работа поддержана грантом РФФИ № 17-05-00154 и проектом УрО РАН 15-11-5-17.

СПИСОК ЛИТЕРАТУРЫ

- Багдасаров Ю.А. (1979) Линейно-трещинные тела карбонатитов – новая субформация ультраосновныхщелочных карбонатитовых комплексов. Докл. АН СССР, **248**(2), 412-415.
- Багдасаров Ю.А. (1992) О полиформационности карбонатитов и объеме термина "карбонатит". *Зап. ВМО*, (2), 110-16.
- Бонштедт-Куплетская Э.М. (1951) Минералогия щелочных пегматитов Вишневых гор. М.: Изд-во АН СССР, 105 с.
- Бородин Л.С. (1966) Карбонатитовые месторождения редких элементов. *Геохимия, минералогия и генетические типы месторождений редких элементов. Т. III.* М.: Наука, 215-256.
- Бородин Л.С. (1994) Генетические типы и геохимические особенности мантийно-коровых карбонатитовых формаций. *Геохимия*, (12), 1683-1692.
- Владыкин Н.В. (2008) Формационные типы карбонатитов, их геохимия и генезис. Глубинный магматизм, его источники и плюмы. Тр. VIII Междунар. семинара. Иркутск: Изд-во Ин-та географии СЩ РАН, 45-58.
- Гинзбург А.И., Самойлов В.С. (1983) К проблеме карбонатитов. *Зап. ВМО*, **112**(2), 164-176.
- Главнейшие провинции и формации щелочных пород. (1974) (Под ред. Л.С. Бородина). М.: Наука, 375 с.
- Еськова Е.М., Жабин А., Мухитдинов Г. (1964) Минералогия и геохимия редких элементов Вишневых гор. М.: Наука, 319 с.
- Еськова Е.М., Назаренко И.И. (1960) Пирохлор Вишневых гор, его парагенетические ассоциации и особенности химического состава. Вопросы геологии, геохимии и генезиса месторождений редких элементов. Тр. ИМГРЭ. Вып. 4, 33-50.
- Ефимов А.Ф., Еськова Е.М., Лебедева С.И., Левин В.Я. (1985) Типохимизм акцессорного пирохлора в породах щелочного комплекса Урала. *Геохимия*, (2), 202-208.
- Золоев К.К., Левин В.Я., Мормиль С.И., Шардакова Г.Ю. (2004) Минерагения и месторождения редких металлов, молибдена, вольфрама Урала. Екатеринбург: ИГГ УрО РАН; ОАО УГСЭ, 336 с.
- Ивенсен Ю.П. (1964) Магматизм Тимана и полуострова Канин. М.: Наука, 124 с.
- Ковальчук Н.С. (2011) Эволюция химического состава пирохлора из карбонатитов Косьюского массива. Структура, вещество, история литосферы Урало-Тиманского сегмента. Сыктывкар: Геопринт, 74-76.
- Ковальчук Н.С., Шумилова Т.Г., Козырева И.Г. (2009) Минералогия редкоземельных фаз косьюских карбонатитов. Минералогическая интервенция в микрои наномир: мат-лы Междунар. минерал. семинара. Сыктывкар: ИГ Коми НЦ УрО РАН, 296-297.

Ковальчук Н.С., Шумилова Т.Г., Степаненко В.И. (2013)

ЛИТОСФЕРА том 17 № 2 2017

Редкоземельная минерализация в карбонатитах Косьюского массива (Средний Тиман). Зап. РМО, 142(3), 109-132.

- Костюхин М.Н., Степаненко В.И. (1987) Байкальский магматизм Канино-Тиманского региона. Л.: Наука, 232 с.
- Кузнецов Н.Б., Соболева А.А., Удоратина О.В., Герцева М.В., Андреичев В.Л., Дорохов Н.С. (2006) Доуральская тектоническая эволюция северовосточного и восточного обрамления Восточно-Европейской платформы. Статья 1. Протоуралиды, Тиманиды и Доордовикские гранитоидные вулканоплутонические ассоциации севера Урала и Тимано-Печорского региона. *Литосфера*, (4), 3-22.
- Лебедева И.О., Недосекова И.Л. (1993) О процессе эшинитизации пирохлора из карбонатитов Булдымского массива (Вишневые горы, Урал). Зап. ВМО, (2), 69-75.
- Левин В.Я. (1983) Проблемы интрузивного щелочного магматизма Урала. Вопросы геологической корреляции и металлогении Урала. М.: Наука, 100-110.
- Левин В.Я., Роненсон Б.М., Левина И.А. (1978) Карбонатиты щелочной провинции Ильменских-Вишневых гор на Урале. Докл. АН СССР, **240**(4), 930-933.
- Левин В.Я., Роненсон Б.М., Самков В.С и др. (1997) Щелочно-карбонатитовые комплексы Урала. Екатеринбург: Уралгеолком, 270 с.
- Макеев А.Б., Лебедев В.А., Брянчанинова Н.И. (2008) Магматиты Среднего Тимана. Екатеринбург: УрО РАН, 348 с.
- Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов (2007) М.: Министерство природных ресурсов Российской Федерации, 40 с.
- Недосекова И.Л. (2007) Новые данные по карбонатитам Ильмено-Вишневогорского комплекса (Ю. Урал, Россия). Геология рудных месторождений, **49**(2), 146-164.
- Недосекова И.Л. (2012) Возраст и источники вещества Ильмено-Вишневогорского щелочного комплекса (Ю. Урал): геохимические и Rb-Sr, Sm-Nd, U-Pb и Lu-Hf изотопные данные. *Литосфера*, (5), 77-95.
- Недосекова И.Л., Владыкин Н.В., Прибавкин С.В., Баянова Т.Б. (2009) Ильмено-Вишневогорский миаскиткарбонатитовый комплекс: происхождение, рудоносность, источники вещества (Урал, Россия). Геология рудных месторождений, **51**(2), 157-181.
- Недосекова И.Л., Владыкин Н.В., Удоратина О.В. и др. (2013) Карбонатиты Четласского комплекса (Средний Тиман): геохимические и изотопные данные. *Ежегодник-2012*. Тр. ИГГ УрО РАН. Вып. 160, 150-158.
- Недосекова И.Л., Прибавкин С.В. (2015) Рудная ниобиевая минерализация редкометальных месторождений и рудопроявлений Ильмено-Вишневогорского щелочно-карбонатитового комплекса (Южный Урал). Ежегодник-2014. Тр. ИГГ УрО РАН. Вып. 162, 175-183.
- Недосекова И.Л., Удоратина О.В., Владыкин Н.В., Прибавкин С.В., Гуляева Т.Я. (2011) Петрохимия и геохимия дайковых ультрабазитов и карбонатитов Четласского комплекса (Средний Тиман). *Ежегодник-2010*. Тр. ИГГ УрО РАН. Вып. 158, 122-130.
- Поляков В.О., Недосекова И.Л. (1990) Минералогия апогипербазитовых фенитов и карбонатитов южной ча-

сти Ильменских гор. Минералы месторождений и зон техногенеза рудных районов Урала. Свердловск: УрО АН СССР, 24-35.

- Попов В.А., Попова В.И. (2006) Минералогия пегматитов Ильменских гор. Минералогический альманах. Т. 9, 151 с.
- Свяжин Н.В. (1966) Доломитовые карбонатиты Вишневогорского комплекса ультраосновных и щелочных пород. Изв. АН СССР. Сер. геол., (5), 65-72.
- Степаненко В.И. (1979) Особенности геологического строения и состава карбонатитового комплекса Среднего Тимана. *Тр. Ин-та геологии Коми фил. АН СССР*. Вып. 29, 52-61.
- Степаненко В.И. (1981) Геохимия докембрийских гидротермально-метасоматических образований Среднего Тимана. *Тр. Ин-та геологии Коми фил. АН СССР*. Вып. 34, 25-34.
- Степаненко В.И. (1982) Карбонатитовый комплекс Среднего Тимана. Автореф. дис. ... канд. геол.-мин. наук. Свердловск, 24 с.
- Степаненко В.И. (2015) Поздне- и постмагматические изменения щелочных пикритов Среднего Тимана. Вестник Коми НЦ УрО РАН, **247**, 9-13.
- Удоратина О.В., Козырева И.В., Швецова И.В., Капитанова В.А., Филиппов В.Н. (2012) Особенности редкометальной акцессорной минерализации жильной серии карбонатитов (рудное поле Косью, Средний Тиман). Кристаллическое и твердое некристаллическое состояние минерального вещества. Минералогическая кристаллография. Сыктывкар, 331-333.
- Францессон Е.В., Черная И.П. (1983) Кимберлиты Среднего Тимана. Методы крупномасштабного прогноза месторождений алмазов. Тр. ЦНИГРИ. Вып. 182, 53-63.
- Фролов А.А., Лапин А.В., Толстов А.В., Зенчук Н.Н., Белов С.В., Бурмистров А.А. (2005) Карбонатиты и кимберлиты. М.: НИА-Природа, 540 с.
- Черный В.Г., Смирнов В.Г., Черная И.П. (1972) Формационный анализ магматических пород Тимана. Материалы по геологии и полезным ископаемым Северо-Востока европейской части СССР. Вып. 7. Сыктывкар, 167-179.
- Шумилова Т.Г., Ковальчук Н.С., Мингалев А.Н., Диваев Н.К. (2012) Изотопный состав углерода и кислорода карбонатов карбонатитов Косьюского массива (Средний Тиман). Вестник Коми НЦ УрО РАН, (4), 9-13.
- Шумилова Т.Г., Козырева И.В., Ковальчук Н.С. (2009)

Минералогические особенности монацита косьюских карбонатитов на микроуровне. *Материалы XV Геологического съезда РК. Т. II.* Сыктывкар: Геопринт, 431-432.

- Шумилова Т.Г., Филиппов В.Н., Каблис Г.Н. (2006) Графит и его псевдоморфозы по алмазу в карбонатитах Косьюского массива (Тиман). Алмазы и благородные металлы Тимано-Уральского региона: мат-лы Всерос. совещ. Сыктывкар: Геопринт, 137-138.
- Atencio D., Andrade M.B., Christy A.G., Giere R., Kartashov P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. *Canad. Mineral.*, 48, 73-698.
- Hou Z., Tian S., Yuan Zie Y.L., Yin S.P., Yi L.S., Fei H.C., Yang Z.M. (2006) The Himalayan collision zone carbonatites in western Sichuan. SW China: Petrogenesis, mantle source and tectonic implication. *Earth Planet*. *Sci. Lett.*, 244, 234-250.
- Nedosekova I.L., Belyatsky B.V , Belousova E.A. (2016) Trace elements and Hf isotope composition as indicators of zircon genesis in the evolution of the alkaline-carbonatite magmatic system (Ilmeno-Vishnevogorsky complex, Urals, Russia). *Russian Geology and Geophysics*, 57, 891-906.
- Nedosekova I.L., Belousova E.A., Sharygin V.V., Belyatsky B.V., Baynova T.B. (2013a) Origin and evolution of the Il'meny-Vishnevogorsky carbonatites (Urals, Russia): insights from trace-elements compositions, Rb-Sr, Sm-Nd, U-Pb and Lu-Hf isotope data. *Mineral. Petrol.*, **107**(1), 101-123.
- Rock N.M.S. (1986) The nature and origin of Ultramafic Lamprophyres: Alnoites and Allied Rocks. J. Petrol., 27, 155-196.
- Tappe S., Foley S.F., Kjarsgaard B.A., Romer R.L., Heaman L.M., Stracke A., Jenner G.A. (2008) Between carbonatite and lamproite – Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. *Geochim. Cosmochim. Acta*, 72, 3258-3286.
- Wooley A.R., Bergman S.C., Edgar A.D., Le Bas M.J., Mitchel R.H., Rock N.M.S., Smith B.H.S. (1996) Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, leucitic rocks. *Canad. Mineral.*, 34, 175-186.
- Wooley A.R., Kempe D.R.C. (1989) Carbonatite: nomenclature, average chemical compositions and element distributions. *Carbonatites: genesis and evolution*. London, Unwin Hyman, 1-14.

Ore specialization of carbonatite complexes at the Urais and Timan

I. L. Nedosekova*, D. A. Zamyatin*, O. V. Udoratina**

*Institute of Geology and Gtochemistry Urals Branch of RAS **Institute of Geology Komi Science Centre Urals Branch of RAS

The ore specialization of carbonatite complexes of Urals-Timan region has been established: niobium and rare earth-niobium – for the Urals' carbonatite complexes, the rare-earth – for carbonatites of Timan. The carbonatites of Il'meno-Vishnevogorsky miaskite-carbonatite complex (Urals) are a type of industrial niobium deposits (pyrochlore type of ores). The carbonatites of Baiksky ultrabasic complex (The Urals) are rare earth-niobium type deposits (monazite-aeschynite-columbite-pyrochlore type of ores). The carbonatites of bastnesite carbonatites (with monazite-bastnesite type of ores). The picrite-lamprophire series of Chetlassky complex have diamond prospects. The ore specialization of the Urals and Timan carbonatite complexes are determined by their formational affiliation.

Key words: ore-formational types of carbonatites, types of niobium and rare earths deposits, pyrochlore carbonatites, bastnesite carbonatites, the Urals, Timan.

REFERENCES

- Bagdasarov Yu.A. (1979) Line-fractured carbonatite body – the new subformation ultrabasic-alkaline carbonatite complexes. *Dokl. Aakd. Nauk SSSR*, **248**(2), 412-415. (In Russian)
- Bagdasarov Yu.A. (1992) About poliformation genesis of carbonatites and scope of the term "carbonatite". *Zap. VMO*, (2), 110-16. (In Russian)
- Bonshtedt-Coopletskaya E.M. (1951) *Mineralogiya* shchelochnykh pegmatitov Vishnevykh gor [Mineralogy of alkaline pegmatites Vishnevye mountains]. Moscow, Akad. Nauk SSSR, 105 p. (In Russian)
- Borodin L.S. (1966) Carbonatite deposits of rare elements. Geohimiya, mineralogiya i geneticheskie tipy mestorozhdenii redkikh elementov. T. III [Geochemistry, mineralogy and genetic types of deposits of rare elements. V. III]. Moscow, Nauka Publ., 215-256. (In Russian)
- Borodin L.S. (1994) Genetic types and geochemistry of mantle-crust carbonatite formations. *Geokhimiya*, (12), 1683-1692. (In Russian)
 Vladykin N.V. (2008) Formational types of carbonatites,
- Vladykin N.V. (2008) Formational types of carbonatites, their geochemistry and genesis. *Glubinnyi magmatizm, ego istochniki i plyumy. Tr. VIII Mezhdunar. seminara* [Deep magmatism, its sources and plumes. Proc. VIIIth Intern. Workshop]. Irkutsk, Institute of Geography SO RAN, 45-58. (In Russian)
- Ginzburg A.I., Samoilov V.S. (1983) To carbonatite problem. *Zap. VMO*, **112**(2), 164-176. (In Russian)
- Glavneishie provintsii i formatsii shchelochnykh porod. (1974) (Pod red. L.S. Borodina) [The principal province and the formation of alkaline rocks (Ed. L.S. Borodin)]. Moscow, Nauka Publ., 375 p. (In Russian)
- Es'kova E.M., Zhabin A., Mukhitdinov G. (1964) *Mineralogiya i geokhimiya redkikh elementov Vishnevykh gor* [Mineralogy and geochemistry of rare elements Vishnevye mountains]. Moscow, Nauka Publ., 319 p. (In Russian)
- Es'kova E.M., Nazarenko I.I. (1960) Pyrochlore of Vishnevye mountains, its parageneses and features of the chemical composition. *Voprosy geologii, geohimii i genezisa mestorozhdenii redkikh elementov* [Geology,

ЛИТОСФЕРА том 17 № 2 2017

geochemistry and genesis of deposits of rare elements]. Trudy IMGRE, Vol. 4, 33-50. (In Russian) Efimov A.F., Es'kova E.M., Lebedeva S.I., Levin V.Ya.

- Efimov A.F., Es'kova E.M., Lebedeva S.I., Levin V.Ya. (1985) Typochemism accessory pyrochlore in the rocks of the alkaline complex of the Urals. *Geokhimiya*, (2), 202-208. (In Russian)
- Zoloev K.K., Levin V.Ya., Mormil' S.I., Shardakova G.Yu. (2004) *Minerageniya i mestorozhdeniya redkikh metallov, molibdena, vol'frama Urala* [Minerageny and deposits of rare metals molybdenum, tungsten in the Urals]. Ekaterinburg, IGG UrO RAN, UGSE, 336 p. (In Russian)
- Ivensen Yu.P. (1964) Magmatizm Timana i poluostrova Kanin [Magmatism of Timan and Kanin Peninsula]. Moscow, Nauka Publ., 124 p. (In Russian)
- Koval'chuk N.S. (2011) The evolution of the chemical composition of pyrochlore from carbonatites Kos'yu massif. *Struktura, veshchestvo, istoriya litosfery Uralo-Timanskogo segmenta*. Syktyvkar, Geoprint, 74-76. (In Russian)
- Koval'chuk N.S., Shumilova T.G., Kozyreva I.G. (2009) Mineralogy of rare earth phases of Kos'yu carbonatite. *Mineralogicheskaya interventsiya v mikro- i nanomir: Mat-ly Mezhdunar. Mineral. Seminara* [Mineralogical intervention in micro- and nanoworld: Proc. Intern. Mineral. Seminar]. Syktyvkar, IG Komi NTs UrO RAN, 296-297. (In Russian)
- Koval'chuk N.S., Shumilova T.G., Stepanenko V.I. (2013) Rare earth mineralization in carbonatite Kosyuskogo array (Middle Timan). *Zap. RMO*, **142**(3), 109-132. (In Russian)
- Kostyuhin M.N., Stepanenko V.I. (1987) *Baikal`skii magmatizm Kanino-Timanskogo regiona* [Baikal magmatism Kanin-Timan region]. Leningrad, Nauka Publ., 232 p. (In Russian)
- Kuznetsov N.B., Soboleva A.A., Udoratina O.V., Gertseva M.V., Andreichev V.L., Dorohov N.S. (2006) Pre-Uralian tectonic evolution of the eastern and northeastern framing of the East European platform. Article 1. Protouralides, Timanides Pre-Ordovician granitoid and volcanic-plutonic association of the North Urals and Timan-Pechora region. *Litosfera*, (4), 3-22. (In Russian)

- Lebedeva I.O., Nedosekova I.L. (1993) The process of aeschynitization of pyrochlore from carbonatites Buldym massif (Vishnevye Mountains, the Urals). *Zap. VMO*, (2), 69-75. (In Russian)
- Levin V.Ya. (1983) Problems of intrusive alkaline magmatism of the Urals. Voprosy geologicheskoi korrelyatsii i metallogenii Urala. Moscow, Nauka Publ., 100-110. (In Russian)
- Levin V.Ya., Ronenson B.M., Levina I.A. (1978) Carbonatites of alkaline province Ilmeny-Vishnevye mountains in the Urals. *Dokl. Akad. Nauk SSSR*, 240(4). 930-933. (In Russian)
- Levin V.Ya., Ronenson B.M., Samkov V.S., Levina I.A., Sergeev N.S., Kiselev A.P. (1997) Shchelochno-karbonatitovye kompleksy Urala [Alkaline carbonatite complexes of the Urals]. Ekaterinburg, Uralgeolkom Publ., 270 p. (In Russian)
- Makeev A.B., Lebedev V.A., Bryanchaninova N.I. (2008) *Magmatity Srednego Timana* [Magmatites of Middle Timan]. Ekaterinburg, UrO RAN Publ., 348 p. (In Russian)
- Metodicheskie rekomendatsii po primeneniyu Klassifikatsii zapasov mestorozhdenii i prognoznykh resursov (2007) [Guidelines on the application of the Classification of field reserves and prognostic resources]. Moscow, Ministerstvo prirodnykh resursov Rossiiskoi Federatsii, 40 p. (In Russian)
- Nedosekova I.L. (2007) New data on carbonatites of Il'meny-Vishnevye Mauntains complex (the Southern Urals, Russia). *Geol. Rudn. Mestorozhd.*, **49**(2), 146-164. (In Russian)
- Nedosekova I.L. (2012) The age and substance sources Il'meny-Vishnevye Mauntains alkaline complex (the Southern Urals) geochemical and Rb-Sr, Sm-Nd, U-Pb and Lu-Hf isotope data. *Litosfera*, (5), 77-95. (In Russian)
- Nedosekova I.L., Vladykin N.V., Pribavkin S.V., Bayanova T.B. (2009) Il'meny-Vishnevye Mauntains miaskite carbonatite complex: origin, ore content, substance sources (the Urals, Russia). *Geol. Rudn. Mestorozhd.*, 51(2), 157-181. (In Russian)
- Nedosekova I.L., Vladykin N.V., Udoratina O.V. i dr. (2013) Carbonatites Chetlas complex (Middle Timan). Geochemical and isotopic data. *Ezhegodnik-2012*. Trudy IGG UrO RAN. V. 160, 150-158. (In Russian)
- Nedosekova I.L., Pribavkin S.V. (2015) Ore niobium mineralization of rare metal deposits and occurrences Il'meny Vishnevye Mauntains alkaline-carbonatite complex (the Southern Urals). *Ezhegodnik-2014*. Trudy IGG UrO RAN. V. 162, 175-183. (In Russian)
- Nedosekova I.L., Udoratina O.V., Vladykin N.V., Pribavkin S.V., Gulyaeva T.Ya. (2011) Petrochemistry and geochemistry of ultramafic dyke and carbonatite Chetlas complex (Middle Timan). *Ezhegodnik-2010*. Trudy IGG UrO RAN. V. 158, 122-130. (In Russian)
- Polyakov V.O., Nedosekova I.L. (1990) Mineralogiya apogiperbazitovykh fenitov i karbonatitov yuzhnoi chasti Il'menskikh gor. *Mineraly mestorozhdenii i zon tekhnogeneza rudnykh raionov Urala*. Sverdlovsk, UrO AN SSSR, 24-35. (In Russian)
- Popov V.A., Popova V.I. (2006) Mineralogy of Pegmatites of Il'meny Mauntains. *Mineralogicheskii al'manakh*. V. 9, 151 p. (In Russian)
- Svyazhin N.V. (1966) Dolomitovye karbonatity Vishnevogorskogo kompleksa ul`traosnovnykh i shcheloch-

nykh porod. Izv. AN SSSR. Ser. geol., (5), 65-72. (In Russian)

- Stepanenko V.I. (1979) The features of geological structure and composition of carbonatite complex Middle Timan. *Trudy Inst. Geologii Komi fil. AN SSSR*, Vyp. 29, 52-61. (In Russian)
- Stepanenko V.I. (1981) Geochemistry of Precambrian hydrothermal-metasomatic formations of the Middle Timan. *Trudy Inst. Geologii Komi fil. AN SSSR*, Vyp. 34, 25-34. (In Russian)
- Stepanenko V.I. (1982) Karbonatitovyi complex Crednego Timana. Avtopef. dis. ... kand. geol.-min. nauk [Carbonatite complex of Middle Timan. Kand. geol. and min. sci. diss.]. Sverdlovsk, 24 p. (In Russian)
- Stepanenko V.I. (2015) Late and post-magmatic changes in alkaline picrites of Middle Timan. *Vest. Komi NTs UrO RAN*, **247**, 9-13. (In Russian)
- Udoratina O.V., Kozyreva I.V., Shvetsova I.V., Kapitanova V.A., Philippov V.N. (2012) Properties of accessory rare-metal mineralization of vein carbonatites series (Kos'yu ore field, Middle Timan). Kristallicheskoe i tverdoe nekristallicheskoe sostoyanie mineral'nogo veshchestva. Mineralogicheskaya kristallografiya. Syktyvkar, 331-333. (In Russian)
- Frantsesson E.V., Chernaya I.P. (1983) The kimberlites of Middle Timan. Metody krupnomasshtabnogo prognoza mestorozhdenii almazov. Trudy TsNIGRI, 182, 53-63. (In Russian)
- Frolov A.A., Lapin A.V., Tolstov A.V., Zinchuk N.N., Belov S.V., Burmistrov A.A. (2005) *Karbonatity i kimberlity* [Carbonatites and kimberlites]. Moscow, NIA-Priroda Publ., 540 p. (In Russian)
- Chernyi V.G, Smirnov V.G., Chernaya I.P. (1972) Formatsionnyi analiz magmaticheskikh porod Timana. *Materialy po geologii i poleznym iskopaemym Severo-Vostoka evropeiskoi chasti SSSR*. Vyp. 7. Syktyvkar, 167-179. (In Russian)
- Shumilova T.G., Koval'chuk N.S., Mingalev A.N., Divaev N.K. (2012) Isotopic composition of carbon and oxygen in carbonates of Kos'yu carbonatite massif (Middle Timan). *Vest. Komi NTs UrO RAN*, **4**, 9-13. (In Russian)
- Shumilova T.G., Kozyreva I.V., Koval'chuk N.S. (2009) Mineralogical features of monazite Kos'yu carbonatites at the micro level. *Materialy XV Geologichesk*ogo s''ezda RK. V. II [Proc. XV-th Geological Congress of the Republic Komi. V. II]. Syktyvkar, Geoprint, 431-432. (In Russian)
- Shumilova T.G., Philippov V.N., Kablis G.N. (2006) Graphite and its pseudomorphs on diamond in carbonatites Kos'yu massif (Timan). Almazy i blagorodnye metally Timano-Ural'skogo regiona. Mater. Vseros. soveshchaniya [Diamonds and precious metals Timan-Ural region: Proc. of Naitional meeting]. Syktyvkar, Geoprint, 137-138. (In Russian)
- Atencio D., Andrade M.B., Christy A.G., Giere R., Kartashov P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. *Canad. Mineral.*, 48, 73-698.
- Hou Z., Tian S., Yuan Z.X., Xie Y.L., Yin S.P., Yi L.S., Fei H.C. (2006) The Himalayan collision zone carbonatites in western Sichuan, SW China: Petrogenesis, mantle source and tectonic implication. *Earth Planet. Sci. Lett.*, 244, 234-250.

- Nedosekova I.L., Belyatsky B.V , Belousova E.A. (2016) Trace elements and Hf isotope composition as indicators of zircon genesis in the evolution of the alkaline-carbonatite magmatic system (Ilmeno-Vishnevogorsky complex, Urals, Russia). *Russian Geology and Geophysics*, 57, 891-906.
- Nedosekova I.L., Belousova E.A., Sharygin V.V., Belyatsky B.V., Baynova T.B. (2013a) Origin and evolution of the Il'meny-Vishnevogorsky carbonatites (Urals, Russia): insights from trace-elements compositions, Rb-Sr, Sm-Nd, U-Pb and Lu-Hf isotope data. *Mineral. Petrol.*, **107**(1), 101-123.
- Rock N.M.S. (1986) The nature and origin of Ultramafic Lamprophyres: Alnoites and Allied Rocks. J. Petrol., 27, 155-196.
- Tappe S., Foley S.F., Kjarsgaard B.A., Romer R.L., Heaman L.M., Stracke A., Jenner G.A. (2008) Between carbonatite and lamproite–Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. *Geochim. Cosmochim. Acta*, **72**, 3258-3286.
- *chim. Acta*, **72**, 3258-3286.
 Wooley A.R., Bergman S.C., Edgar A.D., Le Bas M.J., Mitchel R.H., Rock N.M.S., Smith B.H.S. (1996) Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, leucitic rocks. *Canad. Mineral.*, **34**, 175-186.
- Wooley A.R., Kempe D.R.C. (1989) Carbonatite: nomenclature, average chemical compositions and element distributions. *Carbonatites: genesis and evolution*. London, Unwin Hyman, 1-14.