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SUMMARY

Compact analytical formulae are derived for particle motions of surface waves in a weakly
anisotropic, flat-layered medium. Theory only incorporates coupling between fundamental
mode Rayleigh and Love waves but comparison against numerical results show that a good
match is achieved for anisotropy up to approximately 10 per cent. Among various types of
particle motions for Rayleigh and Love waves, it is proposed that Love wave vertical polar-
ization, defined by the ratio of the vertical to the transverse displacement, may be a good,
cleanly measurable quantity. Derived formulae show that vertical polarization contains 26 and
460 azimuthal dependence, similar to the well-known phase velocity variations. Formulae show
depth kernels explicitly and can be used for the inversion of anisotropic parameters. The mea-
surement of polarization as a function of azimuth then provides constraints on anisotropy under
a seismic station. The derived formulae are a natural extension of Smith & Dahlen’s results on
phase velocity to particle motions.
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1 INTRODUCTION

Understanding anisotropy in the crust and mantle is of potential im-
portance because anisotropy is related to geodynamically important
physical quantity in the Earth such a strain field at depth. In the
past, the main source of information for anisotropy came from (1)
Pn azimuthal anisotropy (e.g. Hess 1964; Francis 1969; Raitt et al.
1969), (2) P-wave particle motion (e.g. Schulte-Pelkum et al. 2001),
(3) S-wave splittings (e.g. Vinnik et al. 1989; Silver & Chan 1991;
Silver 1996), (4) surface wave azimuthal anisotropy (e.g. Forsyth
1975; Tanimoto & Anderson 1985; Montagner & Nataf 1986;
Tanimoto 1986; Nishimura & Forsyth 1989; Montagner &
Tanimoto 1991) and (5) surface wave particle motion (e.g. Park &
Yu 1993; Pettersen & Maupin 2002). In addition, there are many im-
portant theoretical contributions for the anisotropic effects for body
waves, in general (e.g. Jech & Psencik 1989; Chevrot & van der
Hilst 2003). All of these approaches provide important information
but have limitations due to the nature of specific seismic waves used
to recover anisotropy. Our understanding of anisotropy is therefore
based on complimentary information from all types of measure-
ments and will probably continue to be in a similar state in the near
future. It is then desirable to explore new methods of measurements
which will bring new types of constraints on the anisotropy of the
interior. This paper is an attempt for such an endeavour.

In this paper, we examine surface wave polarization as a new
source of information for anisotropy. Our proposed approach is
similar to Park & Yu (1993), the fifth item (5) in the above list,
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in that we examine surface wave polarization but it differs in that,
while Park and Yu examined teleseismic data for tectonically in-
teresting paths, we seek to retrieve azimuthal variations of particle
motion at a single station and to obtain constraints on anisotropic
structure under this seismic station. Specifically, we take a look at
surface wave particle motions and see how they change with az-
imuth of arrival. Such an approach requires data from all azimuth
and was not viable before at most stations. With the maturity of
global seismic networks, however, we believe it is becoming a viable
approach.

This study basically extends the analysis by Smith & Dahlen
(1973), who demonstrated azimuthal dependence of surface wave
velocities for the first time. In the next section, we derive formulae
for surface wave particle motions in an anisotropic medium from
which it is clear that there are many anisotropic effects in surface
wave particle motions which can potentially be explored. Among
those many effects, we propose that Love wave vertical polariza-
tion may be a good quantity to cleanly measure anisotropic effects
in data because, in principle, effects from lateral heterogeneity are
separable. We then derive the formulae for Love wave vertical po-
larizations. Because the method is essentially a perturbation theory,
the derived formulae will be tested against direct numerical integra-
tion results in the following section in order to verify its validity.
In the final section, we discuss an interesting qualitative aspect of
particle motions where clockwise versus counter-clockwise particle
motions switch with azimuth. Such a change may be observed in a
robust manner.
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2 FORMULATION OF THE PROBLEM

2.1 Definitions

We consider propagating, infinitesimal surface waves in a perfectly
elastic, weakly but generally anisotropic, non-gravitating half-space,
the properties of which are a function of depth alone. We let x, y
and z be the Cartesian coordinates, with the X axis pointing east,
the ¥ axis pointing north, and the Z axis pointing upward (Fig. 1);
the surface z = H is a free surface where three stress components
disappear 0., = 0,, = 0., = 0. For direct numerical integration
in a later section, we assume existence of an isotropic half-space at
bottom where we can start the integration with analytical solutions
for an isotropic half-space (e.g. Takeuchi & Saito 1972). We define
the top of this half-space as z = 0 which can be made as deep as we
want. We let k = (k,, k,) be the horizontal wave vector of a surface
wave in this medium.

We let u(r, ¢) be the infinitesimal elastic displacement field in the
medium. Defining w to be the angular frequency of surface waves,
we assume that u is of the form

u(r,t) =s(z)expli(k - r — wt)], (1)

where s(z) is the vertical eigenfunction, decaying at large depth, and
r=(x,y)

We define the Cartesian components of the strain tensor €;; by

1
€j = E(ajui + 0iu;), 2

where i and j vary among x, y and z. Stress o ; and strain relations
are given by

Oij = Cijki€r (3)

In the following analysis, we make use of the stationarity of the
Lagrangian density defined by

H H
C(u;k ui) = a)2/ puiu; dz —/ Cijk1€,-*j€k1 dz, 4)

o0

where repeated indices assume summations over x, y and z.

2.2 Ansatz

We assume that the medium is only weakly anisotropic and the
eigenfunctions can be written as a combination of Rayleigh and

irection of Propagation

5] Free Surface

Layering: Cijkl(z)

Lower Halfspace

Figure 1. Definitions of the coordinate system. Azimuth of the wave vector
(6) is measured from the x-axis.

Love wave eigenfunctions in the reference, isotropic medium. The
validity of this assumption will be verified by comparing the results
against the direct integration results in the next section.

Let the eigenfunctions of the reference isotropic medium be ug
and u;. where the subscripts refer to Rayleigh waves and Love waves,
respectively. We assume that the eigenfunctions of the anisotropic
medium can be written as

u=aguy + AarUug, (5)

where a;, and ar are the coefficients to be determined from the
stationarity of the Lagrangian.
The form of u; and ug can be taken as

u, = [—BW(2), aW(z), 0]e et (6)
and
ug = [aV(z), BV (2), i U(z)]e ke +hn-iot (7)

where o = cos 6 and B = sin6 and 0 is the direction of the wave
vector measured from the x-axis (Fig. 1). In eqs (6) and (7), W(z) is
the Love wave eigenfunction, normalized by

H
/ pWrdz =1 (8)
and U(z) and V(z) are Rayleigh wave eigenfunctions normalized by
H
/ p(U? +VHdz = 1. )

We substitute eq. (5) in eq. (4) and seek the stationarity state of the
Lagrangian by using the relations dL/da;, = 0 and dL/dar = 0.
The problem is then reduced to an eigenvalue—eigenvector matrix
problem given by

A E ar, —wz ap, (10)
E B [25:3 B [25:3 ’

where 4, B and E consist of azimuthally dependent terms up to 4 6.
We use the notations

H

A= f dz(Lo+ Lycos20 + L,sin20+ L;cos46 + L, sin40),
—00

(11)
H

B = [ dz (Ro + Ry cos20 + R, sin20+ R3 cos46 + R4 sin46),
—00

(12)
H

E = / dz (M, cos 20 + M, sin26 + M5 cos46 + M, sin49),

—00

(13)

where the isotropic term in £ identically disappears (M, = 0). For-
mulae for Lo—L4, Ry—R4 and M,—M, are given in the Appendix.
Formulae for Ly—L4 and Ry—R4 are given in our notation, but are
equivalent to those of Smith & Dahlen (1973). Those for M ,—M,
are our contribution.

For a given wavenumber k&, Love wave phase velocity is generally
larger than that of Rayleigh wave phase velocity. Therefore, in the
remainder of this paper, we assume 4 > B.

2.3 Eigenvalues

Eigenvalues for the matrix problem (10) are given by

A+ B+ J(A—BP +E2
=2t (2 Y+ (14)
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but simplifies further to the following form in the limit of weak
anisotropy under |4 — B| > E:
2 2
o' =A+ E—, J
A—B A—B

The terms with £ are clearly second order due to the above assump-
tion |4 — B| > E. Thus, to first order, the two eigenvalues are w? =
A and B. E vanishes from the eigenvalue formulae and makes our
results equivalent to those of Smith & Dahlen (1973).

However, first-order corrections to the eigenvectors contain terms
proportional to E. A normalized eigenvector (up to first order) as-
sociated with the eigenvalue 4 + E?/(A — B) is given by

(15)

E
(av, ar) = (1, m) (16)
and that associated with B — E?/(4 — B) is

E
(ar, ar) = (—A —3 1). (17)

We will refer to the former as the quasi-Love wave because particle
motions are predominantly those of Love waves and the latter as the
quasi-Rayleigh waves for the same reason.

2.4 Particle motion

The eigenfunction of the quasi-Love wave is obtained from (5) and
(16) as

u:(—,BW+ aV,aW+LﬂV,iLU>. (18)

A—-B A—B A-B
The surface particle motion for Love waves in an isotropic medium
is linear in the transverse direction. However, the form of eq. (18)
indicates that the particle motion in an anisotropic medium is no
longer linear; it is clearly elliptical because of a small vertical com-
ponent with a phase lag denoted by the imaginary factor i. Also
within the horizontal plane, the particle motion is no longer strictly
transverse; because of this, the particle motion in the horizontal
plane is no longer perpendicular to the direction of wave vector,
although it should be close to 90° under weak anisotropy (Fig. 2).
The other eigenfunction is that of the quasi-Rayleigh wave and is
given by

E E
u_< A_BﬁW—l-otV,A_BaW—f—,BV,zU). 19)
The surface particle motion for Rayleigh waves in an anisotropic
medium is (already) an ellipse and is polarized within the plane
defined by the radial and the vertical directions. In an anisotropic
medium, the particle motion remains as an ellipse, but the plane
of polarization deviates from the radial direction by a small angle

(Fig. 2) due to the introduction of small transverse component in
eq. (19).

2.5 Love wave vertical polarization

Examinations of the formulae for particle motions in eqs (18) and
(19) (Fig. 2) suggest that some anisotropic effects may be hard to
observe due to other complicating factors in the real Earth. For
example, deviation of the quasi-Rayleigh wave particle motion from
the radial-vertical plane is difficult to measure because the same
effect can be created by lateral refraction of surface waves (e.g.
Laske 1995). In such a case, it would be impossible to distinguish
this lateral refraction effect from the anisotropic effect.

© 2004 RAS, GJI, 156, 73-78
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Figure 2. Love wave surface particle motion becomes elliptical instead of
linear in an anisotropic medium because of the small vertical component.
Also the plane of polarization is no longer transverse. The plane of the
Rayleigh wave particle motion also tilts with respect to the plane defined by
radial and vertical directions.

On the other hand, we propose that Love wave vertical polarization
may be a relatively clean parameter to constrain anisotropy. We
define the Love wave vertical polarization by the ratio of the vertical
to the transverse displacements. From (18) this is given by (to first
order)

_E UH)
= T"BWaE)

where U(H) and W(H) are surface values of eigenfunctions. This
can be rewritten, to first order, in the form

(20)

€ = E;cos260 + E,sin20 + E;cos46 + E4sindf, 21
where

L uH) [T M dz

~ WH) [ (R — Ly)dz

i (22)
for i = 1-4. Here, we approximated 4 — B by their first terms Ry
and L.

Non-zero values for € occurs even in an isotropic medium if het-
erogeneity near the station is strong. However, such an effect should
be isotropic and does not contain azimuthal dependence. On the
other hand, anisotropic effects should show azimuthal dependence
of 26 or 40 as eq. (21) indicates. Therefore, we claim that, by mea-
suring the azimuthal dependence of this quantity, we should be able
to measure effects of anisotropy cleanly. There may be some practi-
cal observational difficulty in avoiding interference from body wave
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signals, but as long as 26 or 40 dependence are detected, their inter-
pretation will be obtained relatively straightforwardly by using the
formula (21).

3 COMPARISON WITH DIRECT
INTEGRATION

The formulae derived in the previous section are basically based on
a perturbation theory and thus the basis functions, used to describe
the solution, are somewhat restricted (fundamental mode Rayleigh
and Love wave eigenfunctions). Therefore, depending upon the de-
gree of anisotropy, its validity may be suspect. In order to check this
point, we made comparison of the numerical results of the formula
(21) against the results obtained by direct numerical integration; in
the latter case, we set up a full 6 x 6 anisotropic system of elastody-
namic equations of motions consisting of six first-order differential
equations and integrated this system starting from three independent
solutions in the lowermost half-space. This type of approach is a nat-
ural extension of Gilbert & Backus (1966) who worked on separable
P-SV- and SH-type problems and has been used ever since. Matrix
approach for stacked homogenous layers was derived for the same
problem by Crampin (1975), although our preference is for verti-
cal integration scheme because it allows one to treat continuously
varying anisotropy in the z direction.

We used a simple one-layer over a half-space model. The upper
layer has a thickness of 30 km with density of 3000 (kg m~3). It has
transversely isotropic symmetry with the symmetry axis pointing in
the x-direction. In the first example (Fig. 3a), P-wave velocity along
the x-axis is 6.765 (km s~') (hereafter ay) and P-wave velocity in
the perpendicular plane (ay) is 6.435 (km s™!). S-wave velocity
along the x-axis (By) is 3.9975 (km s~!) and S-wave velocity in the
perpendicular plane (By) is 3.8025 (km s~!). Both P-wave velocity
and S-wave velocity have 5 per cent anisotropy. In the lower half-
space, we assumed an isotropic medium with density 3300 (kg m~3),
P-wave velocity 8.0 (km s™!) and S-wave velocity 4.6 (km s™'). In
the second example, we used an isotropic P-wave velocity and 10 per
cent anisotropy for S-wave velocity in the upper layer.
Directintegration ofthe 6 x 6 system was performed by starting inte-
grations from three independent solutions in the isotropic lowermost
half-space. For a given wavenumber & and an azimuth 6, three inde-
pendent solutions can be written analytically (e.g. Takeuchi & Saito
1972). Integrations were performed by the fourth-order Runge—
Kutta method and eigenfrequencies were determined by matching
the free-surface boundary conditions at z = H.

In order to evaluate the formula (21), we computed the eigenfre-
quencies and eigenfunctions of the reference isotropic medium (U,
V and W). We simply took the average of oy and ay for P-wave
velocity and the average of Sy and By for S-wave velocity in the
upper layer and computed the eigenfrequencies and eigenfunctions
of Rayleigh and Love waves.

Fig. 3(a) shows the comparison between the direct integration
results (solid circles) and the results by the formula (21). In addition
to Love wave polarization (bottom of Fig. 3a), excellent matches
of azimuthal variations of phase velocities are shown in the top
two panels. Clearly, the derived formula is valid up to 5 per cent
anisotropy.

Fig. 3(b) shows the case where S-wave velocity had 10 per cent
anisotropy. The match is still quite good, although we start to see
some discrepancies between our theory and the direct numerical
integration. If the anisotropy exceeds much more than 10 per cent,
the validity of eq. (21) may thus be suspect.

4.40 Love Phase Velocity
T
E 4'35_\\/\\/\/\\/
é .
4.30_I||||||||||||||||||||||||||||||||||
90 180 270 360
4.00 Rayleigh Phase Velocity
T
g 3.95
é -
3-90_|||||||||||||||||||||||||||||||||||
90 180 270 360
0.10 Love V-Polarization (Z/W)
0.00+* ) )
'0-10_|||||||||||||||||||||||||||||||||||
90 180 270 360

Azimuth (anti-clockwise from East)

Figure 3. (a) Comparison between our analytical results and direct nu-
merical integrations. The medium is transversely isotropic with the axis of
symmetry pointing in the x-axis. Both P- and S-waves have anisotropic ve-
locity differences of 5 per cent. Phase velocities of Love and Rayleigh waves
are also shown in addition to Love wave vertical polarization data (bottom).
(b) The same as (a) except for isotropic P-wave velocity and 10 per cent
anisotropy for S-wave velocity.

Discrepancies found in Fig. 3(b) may be partly related to re-
stricted basis functions, namely fundamental-mode Rayleigh and
Love waves with the same wavenumber only. There must be con-
tributions from higher mode surface waves and fundamental modes
with different (but adjacent) wavenumbers. It is certain that a better
fit for the case in Fig. 3(b) can only be achieved by incorporat-
ing such wider range of basis functions. After all, even within the
realm of first-order perturbation theory, eigenfunction perturbation
is given, rigorously, by the infinite number of orthogonal eigen-
functions (e.g. Schiff 1968). We have only used the leading order
term by as a guess (therefore called Ansatz) which matches exact
(numerical) calculations reasonably well.

4 DISCUSSION: CLOCKWISE
VERSUS COUNTER-CLOCKWISE
PARTICLE MOTION

The main contribution of this paper is the derivation of analytical
formulae for surface wave particle motions. We specifically pro-
posed that Love wave particle motion may provide a new constraint
on anisotropic structure under a particular seismic station and de-
rived formulae for depth inversion. We believe formulae are useful
practically because, with almost 15 yr long observation at some
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Figure 3. (Continued.)

Vertically Polarized Motion

Figure 4. Switching of particle motions between clockwise and counter-
clockwise motion must occur and may be easier to measure than the ratio of
two axes in the ellipsoid defined by surface particle motion. The Love wave
is assumed to propagate in and out of this plane.

broad-band stations, it is relatively easy to collect Love wave verti-
cal polarization data at many stations. The key is to detect 26 and
460 azimuthal dependence in such measurements.

We suspect, however, that, since vertical displacement is small in
Love wave signals, it may be hard to measure Love wave vertical
polarization accurately and detect azimuthal dependence in this pa-
rameter. Under such circumstances, focusing on qualitative aspects
of particle motions may be useful; our derived formula (21) implies
that the direction of particle motions switch signs with azimuth. De-
pending on the sign of polarization, particle motion should be either
clockwise (left in Fig. 4) or counter-clockwise (right in Fig. 4). In
Fig. 4, Love wave is assumed to be propagating in and out of the
plane. It is important to note that, since there is no isotropic term
Ej in eq. (21), this switching of particle motion must occur within
360°. Detection of such switching of particle motions (as a function
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of azimuth) may be easier than measuring the ratio of the vertical to
horizontal amplitude accurately. This may be analogous to P-wave
first motion analysis where sign of up-down motion provides criti-
cal information on nodal planes, while P-wave amplitudes are much
harder to understand quantitatively.
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APPENDIX: FORMULAE FOR M;, L, AND R;

Expressions for the coupling (#/;) are the main contribution of this paper. Expressions for the Love wave azimuthal terms L; and the Rayleigh

wave azimuthal terms R; (i = 0 — 4) given below in our notations but are equivalent to Smith & Dahlen (1973). The same formulae (R; and

L;) were also published in Montagner & Nataf (1986) and Tanimoto (1986; appendix A). Primes indicate differentiation with respect to z

M():O

M,
M,
M
M,
Lo
L,
L
Ls
Ly
Ro
Ry
Ry
R3
Ry

Y(Cruee + Coppy WEWV = Congy kU'W + Coy. W' (V' + kU)
i(_c‘x” + nyyy)k2 Vw + %(Cxxzz — Cy)KU'W + %(—szyz + Cpoy )V + KU)W
NCrrry = oy VW
[ % (Crxxr + Cyypy) + 3Crsyy + 3Crpuy | PV W
4 Cane + Co)— Lo+ 1o W 4 HCo 4 Crp
H=Crors + Cpp) W7
—Czy W7
[ % (Crxxr + Coypy) + 3Crryy + 3Crpuy | W2
H=Crony + Cop P W?
(Caxrr + Coppp) + $Crrpy + 3Capny | PV = (Cizz + Cpp)kU'V + C....U* + HCroi + Cpoy )V + KUY
% Crxxr — nyyy)k2 v+ (=Crxzz + nyzz)kU/V + %(szxz - Cyzyz)( V' + kU )2
(Corer + Coppy W2V = 2Coc KUV + H(Crre = Cpoy) (V' + KUY
[1(Cronx + Crppy) = $Cryy — 1 Copy | 212
HCrony = Cop V2.

3
8
(
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