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Comparison of Kriging and Neural Networks With
Application to the Exploitation of a Slate Mine1

J. M. Mat ı́as,2 A. Vaamonde,3 J. Taboada,4

and W. González-Manteiga5

To carry out an efficient and effective exploitation of a slate mine, it is necessary to have detailed
information about the production potential of the site. To assist us in estimating the quality of slate
from a small set of drilling data within an unexploited portion of the mine, the following estimation
techniques were applied: kriging, regularization networks (RN), multilayer perceptron (MLP) networks,
and radial basis function (RBF) networks. Our numerical results for the test holes show that the best
results were obtained using an RN (kriging) which takes into account the known anisotropy. Differing
deposit configurations were obtained, depending on the method applied. Variations in the form of
pockets were obtained when using a radial pattern with RBF, RN, and kriging models while a stratified
pattern was obtained with the MLP model. Pockets are more suitable for a slate mine, which indicates
that the selection of a technique should take account of the specific configuration of the deposit according
to mineral type.
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INTRODUCTION

The spatial prediction of random functions from a realization of the process is ex-
tremely useful in disciplines such as geology, hydrogeology, meteorology, mining,
etc. This problem has traditionally been tackled using methods such as kriging,
inverse distance weighting, interpolating polynomials, splines, etc. The range of
procedures has given rise, moreover, to comparative studies as to the suitability
of the different methods in different contexts. Thus, Yakowitz and Szidarovszky
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(1985), Weber and Englund (1992, 1994), and Zimmerman and others (1999),
among others, describe theoretical and computational comparisons for a range of
predictors.

Another method of prediction is the neural network, capable of recogniz-
ing and reproducing the internal structure of processes from observations. Neural
networks have proven to be extremely useful in the resolution of a wide range
of statistical problems and engineering applications, such as pattern recogni-
tion and the classification of data with multiple attributes. A general overview
of these techniques, their computational problems, and statistical interpretation
can be found in the literature (Bishop, 2000; Haykin, 1999; Ripley,
1996).

Of particular interest is the application of neural networks to the treatment
of dependent data, given the difficulties involved in recognizing and modeling
the underlying dependency structure. Chakraborty and others (1992) and Koike,
Matsuda, and Gu (2001) are just some of the works in which different techniques
of network design and training are described with a view to obtaining predictions
of spatial or temporal processes that are as precise as possible.

This article describes the statistical bases for and the relationships between
kriging and a variety of neural networks and highlights points in common and
differences. This will facilitate a comprehension of the procedures as well as
of the alternatives available when faced with our specific problem, namely the
reconstruction of a slate deposit model using a sample set of borehole
data.

The structure of the document is as follows.

1. We commence showing the formal reslationship between kriging and reg-
ularization networks (Girosi, Jones, and Poggio, 1995), as a generalization
of the well-known relationship between kriging and splines (Cressie, 1993;
Laslett, 1994; Wahba, 1990a). Both techniques result in the same formal
solution even they start from different statistical hypothesis.

2. Originating from interpolation techniques and closely related to kernel
smothers, a radial basis function (RBF) network is a linear smoother with
fewer centers than data. We will describe an efficient method for RBF
model selection based on the fundamental role that the width of the basic
functions plays in the complexity of the network.

3. We introduce multilayer perceptron networks, a nonradial technique for
multivariate regression, estimated using nonlinear optimization algo-
rithms. The main problem with this method is the possibility of obtaining
local optimums in the optimization problem. Bayesian model selection
methods are a better choice than are other more heuristic methods.

4. We apply all these techniques to the problem of predicting the exploita-
bility of a slate mine and compare the performance and complexity of
each. Finally, we summarize our conclusions.
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UNIVERSAL KRIGING

The stochastic hypotheses of universal kriging (Cressie, 1993; Journel, 1977;
Matheron, 1973; Ripley, 1981; Ribeiro and others, 1997) can be formulated as
described immediately below.

Let the random function of interest be

Z(x) =
m∑

i=1

αi gi (x)+ U(x) (1)

where x∈ C ⊂ Rd, α = (α1, . . . , αm) ∈ Rm is an unknown parameter vector;gi :
Rd → R, i = 1, . . . ,m are known functions; andU(x) is a zero-mean stochastic
process, second-order stationary with a covariance function:

κ(x, x′) = Cov(U(x),U(x′)) =
{

k(x, x)+ σ 2 if x = x′

k(x, x′) if x 6= x′

wherek is a conditionally positive definite function and whereσ 2 (the nugget
effect) may be zero.

The objective is to obtain an estimatorẐ(x) for the processZ(x) from n
observations{Z(xi ) = zi }ni=1 (henceforth we will assume a fixed design for x).

Theuniversal kriging estimator̂Z(x0) of Z for a new point x0 ∈ C is the linear
estimator,Ẑ(x0) = λt Z, unbiased with minimum variance, whereλ ∈ Rn,Z =
(Z1, . . . ,Zn)t with Zi = Z(xi ). The optimality conditions of the corresponding
Lagrange problem are{

(K + σ 2I )λ+ Qµ = k0

Qtλ− g0 = 0
≡
[

K + σ 2I Q

Qt 0

][
λ

µ

]
=
[

k0

g0

]
(2)

where (K )i j = k(xi , x j ), (Q)i j = gj (xi ), (k0)i = k(x0, xi ), (g0) j = g j (x0), and
whereµ ∈ Rm is the Lagrange multiplier vector. We will denote these condi-
tions more briefly asK̄ λ̄ = k̄0. The solution to the problem is̄λ = K̄−1k̄0 and
so the universal kriging estimatorẐ0 = Ẑ(x0) of Z0 = Z(x0) can be alternatively
written as

Ẑ0 = λtZ = λ̄t Z̄ =
n∑

i=1

λi Zi (3)

= k̄t
0c̄=

n∑
i=1

ci k(x0, xi )+
m∑

j=1

dj gj (x0) (4)
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whereZ̄ = (Zt , 01×m)t with 01×m the vector ofm zeros, and ¯ct = (ct , dt ) with c ∈
Rn, d ∈ Rm. Using Equation (2), we immediately obtain the error
variance:

Var(Z0− Ẑ0) = k(x0, x0)− λ̄t k̄0 (5)

A particular case to be examined further below is when the functionsgj are
polynomials of lesser degree thanm.

The expression of the estimator in Equation (3) in terms ofλ̄with the optimal-
ity conditions described above is known as theprimalkriging formulation, whereas
its expression in Equation (4) in terms of ¯c= K̄−1z̄ wherez̄= (zt , 01×m)t with
z= (z1, . . . , zn)t is known as thedualkriging formulation, where ¯c is the solution
to the systemK̄ c̄= z̄:

{
(K + σ 2I )c+ Qd= z

Qtc= 0
≡
[

K + σ 2I Q

Qt 0

][
c

d

]
=
[

z

0

]
(6)

In the above expressions, the termσ 2I guarantees the nonsingularity of the
matrix K̄ in a way analogous to ridge regression as a result of applying the regu-
larization approach to the regression problem.

REGULARIZATION NETWORKS (SPLINES)

In the framework of the regression problem

Y ≡ Y(x) = E(Y/x)+ ε

with ε random noise, Girosi, Jones, and Poggio (1995) generalized the results
of Wahba (1990a) with splines and defined the regularization networks (RNs) as
those resulting from resolving the following regularization problem:

min
f ∈H

L( f ) = min
f ∈H
{‖y− f‖2+ λR( f )} (7)

where y= (y1, . . . , yn)t is a vector of independent and identically distributed
observations for a set of points{xi }ni=1; f = ( f (x1), . . . , f (xn))t is a vector of
estimations for these points;λ is a regularizing constant; andR is a stabilizer
(Tikhonov and Arsenin, 1977) defined in the familyH of the functions under
consideration.
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Regularization converts an ill-posed problem (without a solution, without a
unique solution, or nonstable) into a well-posed problem. In this respect, the first
term in Equation (7) reflects the degree of realiability with which the estimatorf
reproduces the data whereas the second term penalizes its degree of complexity,
thus endeavoring to stabilize the problem and equip it with a unique solution. The
greater the regularizerλ the more importance is given to the smoothness of the
function and the less importance is attached to the degree of fit. In the opposite
case,λ = 0, the priority is the fit and if the familyH is sufficiently rich then
interpolation occurs.

It can be demonstrated (Girosi, Jones, and Poggio, 1995; Haykin, 1999, p.
273; Wahba, 1990a) that the space of possible functions takes the form:

H = { f =
∑

i

ai k(·, xi ) : ai ∈ R, xi ∈ C}

wherek(·, xi )(x) = k(x, xi ) andk is the Green function of an operator associated
with the stabilizerR. If k is positive definite, the solution to the problem (7) is

f̂ (x) =
n∑

i=1

ci k(x, xi )

where

c= (K + λI )−1y (8)

and if, in general, the functionk is conditionally positive definite of orderm, then
the solution takes the form:

f̂ (x) =
n∑

i=1

ci k(x, xi )+
m∑

j=1

dj gj (x) (9)

where{gj : gj ∈
∏

m(Rd)}mj=1 is a basis of the space of polynomials of degree less
thanm. (If m= 0, we have the previous case.) The coefficients c= (c1, . . . , cn)t

and d= (d1, . . . ,dm) result from the equations:

{
(K + λI )c+ Qd= y

Qtc= 0
(10)

where the parameterλ contributes to the good conditioning of the matrix (K + λI ).
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The Smoothness of a Function

A link between the above formulation and the information that may be avail-
able a priori on the smoothness of the regression function to be estimated is obtained
by means of a stabilizer proposed by Girosi, Jones, and Poggio (1995):

R( f ) =
∫
Rd

| f̃ (ω)|2
k̄(ω)

dω

where f̃ is the Fourier transform off and k̄ is a positive function, symmetrical
and integrable with lim‖ω‖→∞ k̄(ω) = 0. The expressionR( f ) is a measure of the
smoothness of the functionf in the frequency domain, given that from the Parseval
identity ∫

Rd
| f̂ (ω)|2dω =

∫
Rd
| f (x)|2 dx

is thequantity of energyof the functionf that gives a measurement of its oscillatory
behavior. Since the quotient 1/k̄(ω) is a filter of the low frequencies off (high
pass filter), R( f ) gives a measure of the energy off at its higher frequencies.

Special cases of the above (Girosi, Jones, and Poggio, 1995; Wahba, 1990a)
are smoothing spline, thin-plate splines and the RNs with Gaussian radial basic
functions:

k̄(ω) = e−‖ω‖
2σ 2

k /2→ k(x− x′) = e−‖x−x′‖2/2σ 2
k

f (x) =
n∑

i=1

ci exp

( −1

2σ 2
k

‖x− xi ‖2
)

A COMPARISON OF KRIGING AND REGULARIZATION NETWORKS

The comparison between kriging and RNs inherits many of the characteristics
of the comparison between kriging and splines, a fact which has caused certain
controversy (Cressie, 1989, 1990; Wahba, 1990b).

From a comparison of the dual equations (Eq. (6)) for kriging and for RNs
(Eq. (10)) it can be concluded that universal kriging and RNs (splines) will have
the same solution when the covariance functionk of the process coincides with
the kernelk of the latter and when the quantity of regularization applied to RN
coincides with the nugget effect (λ = σ 2).

More specifically, the fact that the kernelk selected for RN is a conditionally
positive definite function of orderm is equivalent to considering, for kriging, an
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intrinsic random function of orderm (equivalence class of processes with mean∑m
j=1 α j g(x) ∈∏m; Matheron, 1973), with a generalized covariance functionk

of the same order. Consequently, the solution provided by RNs corresponds to the
dual formulation for universal kriging:

Ẑ(x) =
n∑

i=1

ci k(x, xi )+
m∑

j=1

dj gj (x) = f̂ (x) (11)

In particular, RN with a kernel of the orderm= 1 is equivalent to ordi-
nary kriging, if the kernel is positive definite (m= 0) then the result is simple
kriging.

Finally, for all the above cases, the absence of a nugget effect for kriging
is equivalent to considering a null regularizing parameterλ = 0 for RN, in other
words, giving precedence to the fit of the data in the regularization problem in
Equation (7).

This formal equivalence between the two techniques permits the solution (Eq.
(11)) to be interpreted in terms of two mutually dual approaches, which can be
distinguished, fundamentally, by the proportion of variability that they assign to a
(deterministic) trend component and to a stochastic component.

1. The first approach (regression using independent observations) assigns
all the variability to the trend function and postulates a model that will
be flexible enough to adapt to the data and smooth enough to reproduce
the degree of regularity of the phenomenon. Moreover, the attempt to
avoid the learning of possible noise in the data may impose additional
smoothing conditions, via regularization techniques, whose intensity (the
regularizing parameter) is estimated a posteriori using model selection
techniques (cross-validation, bootstrapping, etc.)

2. The second approach (prediction of a random function) distributes the vari-
ability of the phenomenon between the trend component and the stochastic
component, firstly modeling the latter from the data (variogram or covar-
iogram) and assuming a parametric model for the former.

In general, for the latter case, the trend model is simpler than in the for-
mer since a significant part of the variability in the phenomenon is assigned to
the stochastic component. Nonetheless, the final trade-off between the two com-
ponents depends on prior information being available about the problem under
consideration.

Under the above-mentioned duality, the term
∑n

i=1 ci k(x, xi ) in the expression
(11) can be seen as a term expressing trend (RN) or as a term expressing dependency
(kriging), and in both cases, the analytical properties ofk determine the degree of
regularity in the estimation.
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The term
∑m

j=1 dj gj (x) from the expression (11), on the other hand, consti-
tutes, for both approaches, a trend term (even if its use in RNs is infrequent, given
that these networks do not need it to approximate any continuous function; Poggio
and Girosi, 1989).

A synthesis between the two methods is given by the Bayesian approach in
the regression problemY(x) = E[Y(x)/x] + ε (e.g., MacKay, 1998), whereε is
random independent noise with a zero mean and where the regression function is
subject to uncertainty and is modeled as a random functionF(x) = E[Y(x)/x]. In
this context it makes sense to consider the dependency measure Cov(F(x),F(x′)),
which can be estimated using an estimator of

Cov(Y(x),Y(x′) = Cov(F(x)+ ε,F(x′)+ ε′) = Cov(F(x),F(x′))

This fact would justify using, in RNs and RBFs, a kernel estimated from
data as in spatial statistics, the benefits of which we will evaluate below in our
application problem.

Three major differences exist between kriging and RNs in their normal
application.

1. The first difference resides in the selection method for thek function. In
kriging this function (or the variogram) is estimated from the data us-
ing proven methods. For RNs, however, the kernel is selected assuming a
smoothness hypothesis for the regression function. Nonetheless, in prac-
tice it is often difficult to codify the prior information in these terms.
For this reason, standard kernels, such as the Gaussian, multiquadric, or
polynomial functions (splines) are often used, despite the lack of a strong
empirical basis, in the belief that the choice of kernel has less influence
than the estimation of the parameters for the corresponding family.

That said, as we shall see in our applications this practice is somewhat
risky, and it does not take advantage of the information contained in the
data to formulate a hypothesis in regard to the kernel.

Probably one of the circumstances giving rise to this habit is the
frequent high dimensionality of the application problems typical of the
neural networks, in which the above task is extremely difficult to perform.

2. The second major difference lies in the fact that because of the statistical
hypotheses governing kriging, this—unlike RN—provides the error vari-
ance (Eq. (5)) (even though splines can be formally seen as a particular
case of kriging; Laslett, 1994).

RNs (and RBFs) are linear smoothers, and this permits the variance
of the estimator of the regression function to be estimated. However, the
variance of the predictor cannot be estimated, unless the noise variance is
estimated by another method.



P1: IZO

Mathematical Geology [mg] pp1234-matg-487847 May 17, 2004 21:57 Style file version June 25th, 2002

Kriging vs. NN in a Slate Mine 471

3. Finally, we should point out kriging’s capacity to predict specific functions
of the random process in the framework of different supports (Cressie,
1990), a facility not shared with RNs.

The characteristics of our application problem do not permit an evaluation of
the impact of the latter two aspects, but they do permit the effects of the first to be
tested experimentally.

A priori, these circumstances tip the balance in favor of the spatial statistical
techniques when the dimensionality of the input space is no greater than 3 (which
occurs in the application problem described below). For problems of greater di-
mensionality, the estimation techniques for the dependency structure, although
desirable, are somewhat more problematic.

RBF NETWORKS

RBF networks essentially arose in the context of interpolation technique,
(Broomhead and Lowe, 1988; Moody and Darken, 1989), although they were also
inspired by kernel-type smoothing techniques (Schi¨oler and Hartmann, 1992).
They were intended as a means of applying the said techniques to the problem
of regression with observations subject to noise for which data interpolation was
not appropriate. The RBF model is very similar to kriging and the regularized
networks, but its training is different, giving rise to estimators different from those
described above.

The radial basis network is an expansion in basic functions, in general, non
orthogonal:

f (x) =
m∑

j=1

cj kj (‖x− µ j ‖)+ b

whereb, cj ∈ R and eachkj : R+ → R is a function of the distance between x and
its centerµ j . In general,m¿ n, and so this model tends to be more parsimonious
than the ones described above. Moreover, ifkj = k ∀ j andk is a density func-
tion, if kj (‖x− µ j ‖)/

∑n
j=1 kj (‖x− µ j ‖) are considered as normalized distance,

if the centers coincide with the dataµ j = x j , j = 1, . . . ,n, and if the coefficients
are prefixed:cj = yj , j = 1, . . . ,n, then we have the traditional kernel estimator,
which has the advantage of being capable of immediate training and the disadvan-
tage of having as many basic functions as data.

For its good smoothing properties the basic functionskj are frequently chosen
as Gaussian:

kj (h) ∝ exp

(
− 1

2σ 2
j

h2

)
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Figure 1. Feed-forward neural network withd input units,mneurons
in the hidden layer, andc neurons in the output layer.

but other classical basic functions (multiquadric, etc.) from the interpolation field
are also used. Below we will assume basic Gaussian functions all with the same
radiusσr .

In neural network terms RBF is a feed-forward network with a hidden layer
(Fig. 1), the units of which possess as an activation function the basic functions
kj , in addition to an output layer with a linear activation function with coefficients
cj andb.

The different approaches for training the RBF networks (see, for an over-
all view, for example, Bishop, 2000; Haykin, 1999) are basically distinguished
on the basis of being performed in a single phase by estimating all the param-
eters at once, or in two phases, by estimating first the parameters in the hid-
den layer and then the parameters in the output layer. The latter approach has
the disadvantage that the estimation of the hidden layer is performed without
taking into account the values of the response variable. Of the first approach,
of note are the algorithms which perform nonlinear optimization of all the pa-
rameters simultaneously and those in which the output linear regression is per-
formed by means of a forward selection of variables via orthogonal lest squares
(Chen, Cowan, and Grant, 1991) introducing centers gradually from the sample
data. The first method has the problem of local minimums; the second, although
also suboptimal, is often preferable because of being less costly in computational
terms.

The main difficulty with the RBF networks is model selection, in other words,
the determination of the number of basic functions (or centers). To facilitate the
task of model selection, we use the training algorithm described as follows: if,
for example, basic Gaussian functions are used, their widthσr determines the
degree of redundancy of the hidden variables and so the final selection of this
parameter determines the number of basic functions required. For this reason the
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algorithm starts off from a prefixed setA of possible radiiσr and for eachσr ∈ A
the schematic development is as follows.

1. Determination of the number of basic functions. CalculateK with Ki j =
k(‖xi − x j ‖), i, j = 1, . . . ,n, obtain the eigenvalues{α j } and, once
ordered, calculate

l = min

{
j ∈ {1, . . . ,n} : cond(K ) = αn

α j
< cond0

}

where cond0 is a condition number fixed a priori that ensures the nonsin-
gularity of the matrixK t K at the software precision level. Finally, select
mr = n− l as the number of basic functions associated withσr .

2. Training. Apply orthogonal least squares forward selection to the linear
regression of the output level. The solution is the classical expression of
linear regression in terms of the hidden variables:

ŷ = K t (K t K )−1K ty = Sy (12)

where (K )i j = k(‖xi − x j ‖), i = 1, . . . ,n, j = 1, . . . ,mr .

Once trained the RBF network is a linear smoother, the equivalent kernels of
which are the rows of thehat matrix S. The trace of the matrix provides a measure of
its complexity (effective number of parameters). Thus, model selection methods
can be applied that are available in analytical form, such as crossed validation,
Bayesian information criterion (BIC), etc., or else more recent model combination
methods.

MULTILAYER PERCEPTRON (MLP) NETWORKS

It would be impossible to summarize adequately here the mathematical, sta-
tistical, and computational aspects of the MLP neural networks, and we therefore
refer the reader to the excellent monographs existing in the literature (e.g., Bishop,
2000; Haykin, 1999).

Focussing on the networks with one hidden layer and a single output, the MLP
model—a special case of the feed-forward multilayer network—has the following
formulation,

f (x) = ψ
(

m∑
j=1

cjφ
(
ut

j x+ u j 0
)+ c0

)
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whereφ is the activation function for the units in the hidden layer—generally
sigmoid (logistic, hyperbolic tangent, etc.)—andψ is the activation function for
the output level, which may be of the Heaviside type for a classification problem,
or sigmoid or linear for a regression problem.

The model selection problem for the MLP networks consists of the selection
of an optimum number of basic functions that provide a maximum generaliza-
tion capacity. Among the various techniques proposed, we highlight the Bayesian
method implemented by Foresee and Hagan (1997), following on from MacKay
(1992), which depends to a lesser extent on expert criterion. This method is really
a regularization technique, the objective function of which—under a hypothesis
of normality in the data and in the prior distribution of the parameters—can be
viewed from a Bayesian perspective as the logarithm of the posterior distribution
to be maximized (apart from a constant):

ln p(w/D) ≡ L(w) = β

2
‖y− f‖2+ α

2

m∑
j=1

w2
i

whereD represents the data, w is the vector of all the parameters of the network
andα, β are the hyperparameters that are selected by means of maximization of
theevidence p(D/α, β) (MacKay, 1992),

p(α, β/D) ∝ p(D/α, β)p(α, β)

wherep(α, β) is the prior distribution of the hyperparameters which is assumed
to be noninformative.

APPLICATION OF THE DIFFERENT TECHNIQUES
TO A SLATE MINE

Objectives and Methodology

The techniques described above were applied to the estimation of the ex-
ploitability of a slate mine on the basis of a set of 10 continuous-core sampling bore-
holes (Fig. 2), which uncovered the exploitable levels of slate (Taboada, Saavedra,
and Vaamonde, 2001). The cores had a diameter of 63 mm and were perfomed for
each 0.5 m, to evaluate the quality variables of the rock bed.

To determine exploitability, the geotechnical quality of the rock bed was
analyzed (Garc´ıa and others, 1998), in other words, the possibility of obtain-
ing blocks of slate sufficiently large to make the process of producing roof-
ing slate economically viable, a conditioning factor common to all ornamental
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Figure 2. Exploitability training sample. The circles indicate exploitability (Y(x)= 1). The axes
(scaled to [0,1]) represent: X east, Y north, and Z, deposit depth.

rock-quarrying activities (Taboada and others, 1997). The variables considered in
this case (Taboada and others, 1998) were rock quality designation (RQD), frac-
tures, sandy intercalations, surface alterations, crenulation schistosity, kink bands,
and quartz veins.

As a result of the drilling, available was a sample{(xi , yi )}Ni=1 with N = 1932
observations from the 10 boreholes (Fig. 2), whereY(x) ∈ {0, 1} indicates if the
slate is exploitable (Y(x) = 1) or nonexploitable, and where x∈ R3 identifies the
geographic location of the observation.

The data for each borehole were assigned aleatorily to two sets, the first a
training sample of sizen = 1000 and the second a test sample of sizen′ = 932
for evaluating the quality of the estimation provided by each model.

In this context, the main objectives of the study were as follows:

1. to compare the different estimations of the deposit produced by kriging
and the neural networks, in terms of both performance and morphology;

2. to compare the estimations of the nugget effectσ 2 in kriging and of the
regularizerλ in RNs, given their equivalence, and bearing in mind the
different methods of estimation used in each case: parametric estimation
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of the dependency structure for the kriging and cross-validation for RNs;
and

3. to evaluate the benefits of using kernels estimated using spatial statistical
methods in the RN and RBF neural networks.

Given the discrete character of the variableY(x) ∈ {0, 1}, the estimatorŝf (x)
obtained using neural networks were used to estimate the a posteriori probabilities
P(Y(x) = 1/x) (Bishop, 2000; Ripley, 1996) that each observation was exploitable.
The following decision rule was subsequently adopted:

Ŷ(x) =
{

1 if f̂ (x) > 1
2

0 otherwise

where f̂ (x) = P̂(Y(x) = 1/x) is the estimation of the said probabilities by each
model.

As a measure of performance the classification error for the test sample was
used:

Test Error= 1

n′

n′∑
i=1

1{Ŷ(xi )6=Y(xi )}

For kriging, the same methodology can be based as follows in the context
of indicator kriging (Cressie, 1993, pp. 281–283): the exploitability of the slate is
determined by evaluating 12 variables{ξi , (x)}12

i=1 that reflect the characteristics
of the slate that negatively affect its exploitability (slate is not characterized by
grades or continuous variables typical of other mining scenarios). Of these, 11 are
discrete variables (many of them indicators) that reflect the existence or otherwise
of specific macroscopic properties, and the 12th variable is a continuous variable
(RQD) that reflects the degree of fragility of the slate. These 12 variables are
evaluated together by an expert with a view to determining the exploitability of
the slate, either visually or using physical tests.

Therefore, the existence of an underlying processZ(x) can be postulated,
continuous but unknown, a function of the previous set of variables:

Z(x) = g(ξ (x))

with ξ (x) = (ξi (x), . . . , ξ12(x))t . This functiong will reflect the expert decision
process, depending on the values for the vectorξ (x). We will not go into the
estimation of theg function here, given that the above variablesξi were not defined
specifically for this particular purpose. This classification problem will be tackled
in future research, once the variablesξi have been carefully redefined.
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In the above context, the observed processY(x) is defined as

Y(x) =
{

1 if Z(x) ≤ z0

0 if Z(x) > z0

in such a way thatE[Y(x)/x] = P[Y(x) = 1/x] is unknown. In this way the ap-
plication of indicator kriging to the processY(x) produces (Cressie 1993, p. 282)
estimatorsŶ(x) of the probabilities:

P[Z(x) ≤ z0/Y(x1), . . . ,Y(xn)] = P[Y(x) = 1/Y(x1), . . . ,Y(xn)]

in which we have applied the definition of the variableY(x). Thus, a criterion
available for decision making as to exploitability is the estimator:

Ŷ(x) = P̂[Y(x) = 1/Y(x1), . . . ,Y(xn)]

through the decisionplug-in rule:

Ỹ(x) =
{

1 if Ŷ(x) > 1
2

0 if Ŷ(x) ≤ 1
2

In this framework, if the estimated covariogram forY(x) does not possess
discontinuity at the origin, the kriging predictor̂Y(x) becomes an interpolator
for the points of the sample. If, on the other hand, the estimated covariogram is
discontinuous at the origin,̂Y(x) could lose this interpolating property, although
the resulting plug-in estimator̃Y(x) may well keep it.

Modeling Spatial Variability

To be able to use the estimated covariogram as the kernel for the radial
neural networks, we first estimated the following isotropic Gaussian-exponential
covariogram model:

C(h) ={
0.23− 0.104(1− exp(−h/0.0083))− 0.126(1− exp(−(h/0.043)2 if h>0

0.26 if h = 0
(13)

which, as can be observed, has discontinuity at the origin of a magnitude of 0.03.
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Nonetheless, in view of the observations of the referees, a subsequent aniso-
tropic study was made so as to compare kriging with the neural networks using all
the predictor potential of the former.

Slate is a particularly anisotropic material, given that it originates from a pro-
cess of regional metamorphism. Slate is used in roofing because it has a schistosity
plane, which, for the deposit studied, coincides with the azimuth N120◦E and has
a slope of 60◦S. Figure 3 illustrates the experimental variograms obtained for the
three anisotropic directions of the slate: the direction of maximum weakness (L1)
(azimuth N120◦E, dip 0◦), the schistosity dip (N210◦, dip 60◦) and the direction
prependicular to the schistosity plane (N210◦E, dip−30◦). The variogram range
is observed to be greatest in the direction N120◦E, i.e., the direction of maximum
weakness (L1).

On the basis of this data, the following nested model was considered,

γ (h)= γ0(|h|)+ γ1(|h1|) (14)

Figure 3. Experimental variograms in the main anisotropic directions of the slate: [N120◦ E,
dip 0◦], [N210◦, dip 60◦] and [N210◦ E, dip−30◦], and overall representation.
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whereγ0(|h|) = 0.07 is the nugget effect andγ1(|h1|) is a model with geometric
anisotropy, exponential in nature, with a sill of 0.25 and ranges of 0.3339, 0.0669,
and 0.0617 in the directions [N120◦E, dip 0◦], [N210◦E, dip 60◦], and [N210◦E,
dip−30◦], respectively.

RESULTS

The models used for the comparison were as follows.

1. Ordinary kriging (OK) using the estimated anisotropic variogram
(Eq. (14)).

2. Ordinary kriging using the isotropic covariogram with nuggest effect (Eq.
(13)).

3. Regularized neural network using as kernel the function:

C′(h) = 0.23− 0.104(1− exp(−h/0.0083))

− 0.126(1− exp(−h/0.043)2) (15)

in other words, the isotropic covariogram of Equation (13) without the
nugget effectσ 2 = 0.03. The nugget effectσ 2 = 0.03 was not included
here with a view to comparing the value of this parameter with that of
regularizerλ estimated using 10-fold cross-validation (see below) which
finally resulted inλ = 0.04. This RN is equivalent to an OK with the same
covariogram.

4. Regularized neural network with a Gaussian kernel of radiusσr = 0.022
and with a regularizer valueλ = 0.9. Both the radius and the regularizer
were selected by means of 10-fold cross-validation. This model is equiva-
lent to ordinary kriging with the same Gaussian covariogram plus a nugget
effect ofσ 2 = λ = 0.9.

5. Radial basis neural network with Gaussian basic functions having the same
width σr = 0.09, with the model (width) selection also made by means of
10-fold cross-validation.

6. Radial basis neural network using the isotropic covariogram in Equation
(13) as the basic function.

7. Multilayer perceptron network containing 14 sigmoid hidden units, with
Bayesian training. Although our problem is essentially a classification
problem, we preferred to use a regression focus for comparing the MLP
network to the other techniques in equal conditions. Because of its sim-
plicity, we selected a linear activation function at the output level and least
squares loss.
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Thes-fold cross-validation method consists of randomly allocating the train-
ing data tos groups of more or less equal size and calculating, for the data in each
group, the performance of the estimator trained using the data of the remaining
s− 1 groups. ifs= n, this is the leave-one-out method of cross-validation. More
specifically, ifg : {1, . . . ,n} → {1, . . . , s} is the allocation of the points to thes
groups, and̃y−γ (x) is the estimation obtained without the data of theγ th group,
the selection criterion is

s-fold-CV = 1

n

n∑
i=1

`(yi , ỹ−g(i )(xi ))

where` is the loss function. In our case,`(yi , ỹ−g(i )(xi )) = 1{yi 6=ỹ−g(i )(xi )} is the loss
0− 1.

As can be observed, models 4, 5, and 7 above do not use prior information
nor the information that may be contained in the data on the spatial variability of
the deposit (as it happens, models 4 and 5 use erroneous information). Models 2
and 3 only use this information partially.

The results obtained are reproduced in Table 1, where for each of the models
the following data is shown: thehyperparametersused (Hyperparam), the error
in the test sample (Test Error), the number of basic functions (NBF), the effective
number of parameters (ENP), and the interpolating character of the plug-in esti-
matorỸ (x) (Int). In view of the aims of this study, the following comments are in
order.

1. First of all, regarding the test error, OK with an anisotropic variogram pro-
duced interesting results, which would indicate the benefits of an appro-
priate estimation of the spatial dependency structure. The improvements
are evident with respect to kriging without anisotropy and above all, in

Table 1. Performance of the Estimators

Model Hyperparam. Test error NBF ENP Int.

Ordinary kriging – anisotropic variogram Eq. (14) 0.108 1000 1000.0 Yes
Ordinary kriging – isotropic covariogram Eq. (13);σ 2 = 0.03 0.117 1000 697.1 Yes
RN – isotropic covariogram Eq. (15);λ = 0.04 0.114 1000 643.3 Yes
RN – gaussian kernel σr = 0.022,λ = 0.9 0.121 1000 311.3 No
RBF – gaussian kernel σr = 0.09 0.127 163 164.0 No
RBF – isotropic covariogram Eq. (15) 0.119 1000 1000.0 Yes
MLP (14 hidden units) — 0.118 14 64.5 No

Note.The columns represent, in this order, the hyperparameters for the model, the error in the test
sample, the number of resulting basic functions, the effective number of parameters (see text), and the
interpolating character of the resulting estimator.
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relation to the radial neural networks, whose kernels are selected a priori,
with no particular justification for this decision.

For the case of the RN and the RBF networks, it is interesting to
observe the positive effect of using an estimated isotropic covariogram.

In the specific case of RBF, the good results produced by the use of the
estimated omnidirectional covariogram were surprising, given that all the
sample data were selected as centers in the feed-forward linear regression
of the output level, which is normally accompanied by a strong over-fit ef-
fect. In fact, RBF with covariogram was an interpolator of the data, unlike
what usually happens with this kind of networks. Thus, with as many cen-
ters as data, this RBF with the estimated isotropic covariogram produces
exactly the same estimator as simple kriging without noise in the data:

ŷ = Kc when c= (K ′K )−1K ′y = K−1y

with Ki j = k(xi , x j ) = C(‖xi − x j ‖).
2. The MLP network produced satisfactory results in terms of test error,

speed of training, and parsimony (see below). Nonetheless, if initial ran-
dom conditions are used, each new training session can produce a distinct
solution, and the estimation of the exploitable areas may thus result some-
what arbitrary. An interesting line of research could be the incorporation
of prior information in these networks, for example, establishing the main
direction beforehand in training.

3. It is interesting to observe how RNs with isotropic covariogram andλ =
0.04 (equivalent to isotropic kriging with a nugget effect of 0.04) improve
the results of the kriging with a nugget effect of 0.03, suggesting that
this parameter had initially been undervalued. This would indicate that
it might be a good idea to occasionally contrast the original estimation
of this crucial parameter using an a posteriori model selection technique,
such as, cross-validation.

4. Analyzing the exploitability maps for the deposit (Figs. 4 and 5 for the
Gaussian RBF and the MLP), we can divide the techniques used into
two groups: those, such as the MLP networks, which use projection-type
basic functions to produce a reconstructed deposit in stratified form; and
those, such as the RBF networks and kriging, based on a distance function
(whether kernel or covariogram), which produce reconstructions in pocket
form.

The case of anisotropic kriging (Fig. 6) is particularly interesting
since it incorporates anisotropy in its representation of the deposit. This
kind of estimator could be considered as an intermediate case between the
radial configuration and projection configuration, the latter occurring at
the limit.
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Figure 4. Estimation of the exploitable zones using Gaussian RBF. The image shows the
regions in whichf̂ (X) ≤ 1/2, where f̂ is the estimator ofP[Y(x) = 1/x] provided by RBF.
Test error: 0.12661.

Figure 5. Estimation of the exploitable zones using an MLP neural network. The image shows
the regions in whichf̂ (x) ≥ 1/2, where f̂ is the estimator ofP[Y(x) = 1/x] provided by the
MLP. Test error: 0.11803.
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Figure 6. Estimation of the exploitable zones using kriging with an anisotropic variogram. The image
shows the regions in whicĥY(x) ≤ 1/2, whereŶ(x) is the estimator ofP[Y(x) = 1/x] provided by
the indicator kriging. Test error: 0.10837.

TheENPcolumn reflects theeffectivenumber of parameters for each model,
giving an idea of its complexity. In the case of the MLP networks, this quantity is
obtained form the Bayesian training algorithm, giving also an idea of the degrees of
freedom in the model (Foresee and Hagan, 1997). In the case of the RBF network
this quantity is the trace of thehat matrix Sof the equation in (12).

Given that the kriging estimator and, analogously, the RN estimator are also
linear estimators, we applied the said concept to these estimators. Thus, the kriging
estimator in the data is written as (Eq. (3)):

ŷ = [k̄x1, . . . , k̄xn ]
t K̄−1ȳ = [K t Qt ] K̄−1ȳ

where ȳ = (yt , 01×m)t , therefore the squaredn× n left-superior submatrix of
[K t Qt ] K̄−1 contains the coefficients of the observationsy1, . . . , yn that make up
each estimation̂yi . Denominating the submatrix asS, we define

ENP (Kriging)= trace(S)

a definition which we also apply to the estimator of the regularization networks.
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The most parsimonious of all the techniques used was the MLP network.
With regard to the radial techniques, it can be observed from Table 1 how the
models with a noise/nugget hypothesis in the data possess a more reduced ef-
fective number of parameters as a result of the smoothing they perform. Despite
this, in some cases (isotropic kriging and RN with covariogram andλ = 0.04)
the interpolating property of the plug-in estimator based on indicator kriging is
preserved.

CONCLUSIONS

This article has compared estimation and prediction techniques from fields
as different as Spatial Statistics and Neural Networks and applied them to the
estimation of the exploitability of a slate quarry. Our conclusions are as follows.

Firstly, whenever possible (problems of dimensionality less than or equal to
3 as in the case of the spatial problems), the dependency structure of the process
under consideration should be carefully modeled. Spatial statistical techniques
have important advantages over the neural networks whose kernels are selected
arbitrarily.

Secondly, of note are the different morphologies of the estimations of the
deposit produced by the compared estimators. The reason for these differences
lie with the specific architecture of the estimators whose basic functions possess
different contour surfaces: ridges for the MLP networks and hyperspheres (hyper-
ellipses for the anisotropic case) for kriging, RN, and RBF. This kind of distinction
is not a novel one; see for example Donoho and Johnstone (1989) for a comparison
of kernel estimators with the projection pursuit regression (Friedman and Stuetzle,
1981) another technique based on projections such as MLP.

The third aspect of relevance in the tests was the degree of smoothing/inter-
polation of the estimators. In this respect, the MLP network was not capable of
interpolating while maintaining an adequate generalization capacity. In various
tests carried out without controlling the complexity of the model (increasing grad-
ually the number of basic functions/epochs), the test error increased as the training
error was reduced. In contrast, the other models permit the interpolation capacity
to be controlled without restricting the generalization capacity. The key to the
interpolation of RBF lay in the use of the estimated isotropic covariogram as a
basic function. This opens a wide range of possibilities when selecting the basic
functions for these networks.

Aspects that require further exploration in the future are, for example, the
use of prefixed directions for the MLP networks as a means of incorpora-
ting prior information into the model, and the use of norms of the type‖x− x′‖∑ =
(x− x′)t

∑
(x− x′) in the RBF networks with a view to including

anisotropy.
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