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Abstract

The main purpose of the present paper is to present the mathematical expression for the frequency-dependent effective
acoustic properties of a liquid—bubble mixture. Effects of the bubble resonance, the heat and mass transfer between the liquid
and bubbles, and the viscoelasticity of the liquid are included in the expression. Several characteristic frequencies associated
with these internal processes are represented by simple functions of the material and condition parameters. Using these
expressions, the acoustic properties of bubbly magmas are calculated and analyzed. It is shown that the dispersion and
attenuation of the pressure wave are particularly considerable in the frequency range lower than the characteristic frequency of
the mass transfer and in the range near the characteristic frequency of the viscous response of the bubble radius. In the
frequency range bounded by these two frequencies, the bubbly magma can be regarded as an elastic medium with the slow
sound speed. The significance of such acoustic properties on resonance of a body of bubbly magma is demonstrated in a simple
one-dimensional system.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is generally considered that the sound speed of
magma is significantly reduced by the presence of
bubbles. Many features of seismo-acoustic activities
of volcanoes are ascribed to the reduced sound speed
of the magma (e.g., Chouet, 1996; Benoit and
McNutt, 1997; Kumagai and Chouet, 2000; Garces
and McNutt, 1997; Neuberg et al., 2000). However,
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other essential aspects of the acoustic properties of
liquid—bubble mixtures are the dispersion and atten-
uation, which have not been considered sufficiently in
previous studies on the volcanic phenomena. This
paper focuses on the dispersion and attenuation of
the pressure waves in the bubbly magma.

As the pressure wave propagates in the bubbly
magma, the liquid and bubbles cease to be in equi-
librium, and internal processes are set up toward
restoration of equilibrium. The bubbles tend to expand
or shrink so as to restore the mechanical equilibrium.
In addition, the expansion or compression of the
bubbles perturbs the thermodynamic equilibrium so
that the heat and the volatile components are trans-
ferred between the liquid and bubbles. These process-
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es control the volume change of the bubbles and,
eventually, the apparent compressibility of the mix-
ture. However, the restoration of the equilibrium does
not always follow the pressure change in the wave
field. Immediate expansion or compression of the gas
in the bubbles is prevented by viscous resistance and
inertia of the liquid. The heat and mass transfer by
diffusion takes place comparatively slowly. The delay
of the internal processes causes the rate-dependent
response of the mixture and attenuation of the pres-
sure wave.

There exists a number of literatures on the acoustic
properties of a bubbly liquid with viscosity as low as
that of water. The characteristics of the wave disper-
sion and attenuation have been investigated theoreti-
cally (Commander and Prosperetti, 1989; Varadan et
al., 1985; Gaunaurd and Uberall, 1981; Prosperetti,
1984; Caflish et al., 1985) and experimentally
(Cheyne et al., 1995; Silberman, 1957). Good agree-
ment has been obtained between the theoretical and
experimental results. In the low viscosity liquids, the
dispersion and attenuation of the waves are mainly
caused by the resonant scattering of bubbles (Com-
mander and Prosperetti, 1989; Gaunaurd and Uberall,
1981) and the heat transfer between the liquid and
bubbles (Prosperetti, 1991).

On the other hand, understandings of the acoustic
properties of bubbly magmas are not sufficient. In
volcanic systems, the magma viscosity is an important
controlling parameter. Lensky et al. (2002) recently
demonstrated a possibility that the effective bulk
viscosity of the bubbly magma has a negative value
due to the non-linear coupling between the viscous
resistance against the bubble expansion and the vol-
atile diffusion from the liquid to the bubble. They
derived a notable conclusion that this negative bulk
viscosity can cause amplification of seismic waves.
However, because of the non-linear nature of the
process, their conclusion may not be applicable to
the general cases.

The main purpose of the present paper is to present
the mathematical expressions for the effective acous-
tic properties of a liquid—bubble mixture. Effects of
the viscoelasticity of the liquid, the volatile diffusion,
the bubble resonance and the heat transfer are includ-
ed in the expressions. They are useful in evaluating
the speed and attenuation of the pressure wave as a
function of the frequency in various conditions. Char-

acteristics of the frequency dependence of the wave
speed and attenuation changes at the time scales of the
internal processes such as the viscous resistance
against the bubble expansion (contraction), the bubble
resonance and the volatile diffusion. These time scales
are expressed by simple functions of the parameters
representing the material properties (viscosity, elastic
moduli, heat and mass diffusivities, etc.) and the
condition (pressure, temperature, void fraction, etc.).
As an example of the applications, the resonance
behavior of a layer of bubbly magma is investigated.
It is shown that the resonance of the bubbly magma
depends considerably on the dispersion and attenua-
tion of the waves due to the internal processes.

2. Mathematical formulation
2.1. Bulk modulus of a bubble

The bulk modulus of a bubble, K,, is defined as:

R 0P,
Kg - 3 9R ’ (1)
where P, is the pressure in the bubble and R is the
bubble radius.

The bubble should also be regarded as a viscoelas-
tic body with the bulk modulus depending on the
frequency. For example, the bulk modulus of an ideal-
gas bubble in an adiabatic process ( PgR3V:constant)
is K,=7P,, where y is the specific heat ratio. If the
oscillation is very slow, the process is more likely to
be isothermal (PgR3 = constant) so that K,=P,. Tak-
ing account of thermal diffusion in the bubble, Pros-
peretti (1991) formulated the bulk modulus of a

bubble in a periodic pressure field (o e ) as:
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where P, is the static pressure, that is the center of the
oscillation of Py, and «r is the thermal diffusivity of
the gas in the bubble.

The volumetric change of a bubble is influenced
also by the volatile transfer between the liquid and
bubble. The process is controlled by the diffusion of
the volatile in the liquid. Including this effect, we have
formulated the effective bulk modulus of a bubble
as:

K,
P—g =90/{O[0 +3(y — 1)A_ + 3944\/%)]

+3i[(y = 1)(044 —2) + pdy (/%0 + 204)] },

(4)
P, 0C,
g =F10 e (5)
pg OP
Kg|
_ g 6
Xg Xy’ (6)

where p; and p, are the densities of the liquid and the
gas, respectively, Ceq( P) denotes the volatile concen-
tration which is in equilibrium with the gas phase at
pressure P, and g is the diffusivity of the volatile in
the liquid. The physical meaning of the dimensionless
parameter, A, is explained as follows. If the pressure
change of AP is given in a quasi-static process, the
mass of the volatile component in a unit volume of the
liquid phase is to change by p,AP3dC.,/dP, while the
gas density in the bubble is to change by p,AP/P,,.
The ratio of the former to the latter is the parameter,
Ag. The derivation process of Eq. (4) is explained in
Appendix A.

2.2. Viscoelasticity of the liquid

For the present study, we employ the simplest
linear viscoelastic model, which is quite general and
often used to describe the fundamental features of
elastic and viscous behaviors of silicate melts (Webb
and Dingwell, 1995; Webb, 1997).

If a sinusoidal oscillation is applied to the
viscoelastic material, the shear and bulk moduli
are described by complex functions of the frequen-
cy of the oscillation (Webb and Dingwell, 1995;

Webb, 1997), which are denoted by u, and K,
respectively:

Hey = Ko 177.7 (7)

(8)

where u., and K are the unrelaxed rigidity (shear
modulus) and bulk modulus (volumetric modulus),
respectively, and K, is the equilibrium bulk modu-
lus (relaxed modulus). The shear and volume re-
laxation times (75 and 7,, respectively) are given as
the ratio of the low frequency shear and bulk
viscosity (1, and (,, respectively) and the relaxa-
tional part of the elasticity (Webb and Dingwell,
1995; Webb, 1997):

Ts = ’70/#007 (9)

Ty = o/ (K = Ko). (10)

As the viscosity is a function of stress and strain
rate, the complex shear and bulk moduli are converted
into the complex viscosities, which are denoted by #,,
and {,, respectively:

Ny = :uw/(_iw)v (11)

{o = (Ko = Ko)/(—iw). (12)

2.3. Effective properties of a liquid—bubble mixture

It is assumed that the acoustic property of a
liquid—bubble mixture is represented by the effective
bulk modulus (K,,), shear modulus (y,), and density
(pm), in the same way as a homogeneous material.
The mathematical procedure to calculate these effec-
tive properties is described in the separate paper
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(Ichihara et al., 2004). Here, we just present the final
expressions:

4
K‘U+§¢F“u)
Kp=——>
1—¢rI
_ Kg_Ku)
F774
Kg+§”w
x 1 1)
2 p2
plCOR . P1
- PP 1+ iR
3K +4p, Kw+§llw
-5
‘um:‘uw 1— lu(u ’
=2 (1 )| 34—t (uﬁ)
15 K 4 o
o T3l
L 3 |
(14)
Pm = Pg® +p1(1 = ¢) (1|~ Knl), (15)
b —p 1= ¢(p1 = pg)/(p1 +2p,)
" ! 1 +2¢(p1 - pg)/(pl +2pg)
(1o | <1Ku ), (16)

where ¢ is the void fraction and p, is the
shear modulus of the bubble which represents its
deformability.

The expression of Eq. (13) represents a dynamical
response of the mixture, which contains the bubble
resonance with a resonance frequency obtained by the
vanishing of the real part of the denominator of 7, and
with the imaginary term in the denominator determin-
ing the radiation width of this resonance (Gaunaurd
and Uberall, 1981). With the relaxed (u,=0) and
unrelaxed (p,=f.,) shear moduli, the relaxed and

unrelaxed resonance frequencies (denoted as m, and
., respectively) are determined as:

1 /3K

CUOZE T]g (wofs<<l)a (17)
1 3K, +4p

Wy =—1|————=2 (w1,>1). 18
e O S) (18)

In case that the frequency is much smaller than the
resonance frequency, Eq. (13) is simplified as:

4 4
K(/) Kg + § Ky + g ¢:uw (Kg - KU))
Ky~

. (19)
d)Kw + Kg + g He

Constitutive Eqs.(7) and (8) are substituted into Eq.
(19), and K. —K,=0 is assumed for simplicity. As-
suming p., > ¢K,+ K, (see Section 3.2 for the mag-
ma properties), Eq. (19) is approximated as:

o KoK,
T K, + (1 - 9)K,
T B) (K~ Ky
* 4
OKo+(1 = $)K][BKo+ (1 = D)Ky+ S 10
—iT), KK,
T iotm  pKo+ (1 — p)K,
o(1 — ) (Ko — Ky)*  —ivTn
¢Ko + (1 — ¢>)1<gg 1 — ity (20)
4
OK, + (1 - ¢)Kg + 5”” Ts
T 0K (1 d)K,

T3 Ko + (1 — P)K,

where 7, is introduced according to Eq. (9). Eq. (20)
has the same form as (8) with 1, corresponding to the
relaxation time. When wt,,,>>1, we obtain K, ~ K.



M. Ichihara, M. Kameda / Journal of Volcanology and Geothermal Research 137 (2004) 73-91 77

While for wt,,<<1, we obtain:

(¢ 1=\
Km ~Km0 - (Fg + Ko ) ’ (22)

where K, is the generally used bulk modulus of the
liquid—bubble mixture (e.g., Garces, 1997).

The effective density is different between the cases
that the matrix is close to a solid and to a fluid where
relative motion between the inclusions and the matrix
can occur. The effective density for a fluid matrix, Eq.
(16), is governed by the inertia, while that for a solid
matrix, Eq. (15), is governed by the gravity (Kuster
and Tokséz, 1974).

The effective bulk and shear viscosities are calcu-
lated by é’m:(Km_Kmo)/(_ l(D) and M= ,um/(_ l(x)),
respectively, in the same way as 7, and (. If it is
assumed that the matrix is a Newtonian liquid
(Ko=K,—io(,, pe,=—iwn,) and the bulk modulus
of the bubble is constant, the bulk viscosity of the
mixture in the low-frequency limit is:

1-¢
[§ + (1 = $)K, /Ko

4 Ky \ K, \
5’]0(’5(1 _E> +Co (E) ‘|7

1—¢ 4 K.\
~ 4(4) n Kg/KO)2 [3 '70¢ + Co (é)

lim{, =
w—0 Cm

X

)

(23)

where we assume K, <K, and ¢<1. If we further
assume ¢>K,/K,, we obtain:
4 1—-¢

Cm - 5 Mo T (24)

Eq. (24) is often used to represent the bulk viscos-
ity of a liquid—bubble mixture (e.g. Massol and
Jaupart, 1999). On the other hand, the effective zero
shear-rate viscosity is approximately:

Hg
s L=

tim i =1y [ 1= 5 ——52 |- (25)
w— :ug
1+=2
3u,,

The parameter p/fi, represents the deformability
of the bubbles. Eq. (25) agrees with the Mackenzie’s

expression: 17, =1,(1-5¢/3) (Mackenzie, 1950; Lle-
wellin et al., 2002) with completely deformable bub-
bles (py/pt,=0), while it approaches the Sibree’s
expression: nm=1o(1—¢)~ >? (Sibree, 1934; Massol
and Jaupart, 1999) for ¢ — 0 with completely non-
deformable bubbles (i4/1t, = oo). Several other mod-
els for the shear viscosity of liquid—bubble mixtures
have been proposed. Most of the models suggest that
the effective viscosity linearly increases with the
increasing volume fraction of non-deformable bubbles
and linearly decreases with the increasing fraction of
deformable bubbles. Those models are reviewed and
tested by Llewellin et al. (2002). Their experimental
data were explained best by the Mackenzie’s model
for deformable bubbles and by the modified Taylor
model (1, =1o(1+9¢)) (Stein and Spera, 1992) for
non-deformable bubbles. They also demonstrated that,
as the frequency of the applied strain increases, the
deformability of bubbles increases, and consequently
the effective shear viscosity decreases. The transition
of the deformability occurs at a frequency around:

T = S/(NoR), (26)

where S is the surface tension (Stein and Spera, 1992;
Llewellin et al., 2002). We may represent such fre-
quency dependence of the bubble deformability by
defining:

,ug/:uw = 1/((’0‘503)2' (27)

Actually, the contribution of p, to the effective
shear modulus is of the order of ¢ and negligibly
small in the present conditions (¢ <<1).

3. Physical parameters of the system
3.1. Physical parameters of the bubble

We assume that H,O is the only volatile component
in the liquid—bubble system. In order to calculate K,
and p, using Eqgs. (4) and (27), we need the thermal
diffusivity (ict), the specific heat ratio (vy), and P,/p, in
the vapor phase, the diffusivity (icy) and the solubility
(Ceq) of H>O in the melt, and the surface tension (S).

We evaluate the above parameters for the pressure
up to 100 MPa, in which probability of existence of
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bubbles in magma is large according to the content
and the solubility of H,O (Sparks et al., 1994; Hollo-
way and Blank, 1994). The representative temperature
of the system is regarded as 1000 °C (1273 K).

The surface tension for the H,O vapor and silicate
melt interface at 1000 °C is about 0.3 N/m at 0.1 MPa
(Murase and McBirney, 1973) and decreases to 0.1 N/
m at 100 MPa (Khitarov et al., 1979; Dingwell, 1998).
Between these pressures, we assume that S is a linear
function of log P.

Data in Table 1 (Bowers, 1995) show that the
relation of H,O gas density to the temperature and
the pressure satisfies the equation of state for an ideal
gas, Eq. (A2). Therefore, we regard the gas as an
ideal gas. The heat capacity (C,,) of H,O as an ideal
gas with y=1.3 and R,=462 J/kg/K is 2000 J/kg/K,
which is calculated by C,=R,)/(y — 1). Although we
see a factor of difference between this value and the
measured heat capacity (Table 1), we use the former
for consistency with the ideal-gas assumption. Actu-
ally, the difference is not significant in the following
analyses and discussion which are concerned with the
order of differences.

The heat conductivity is estimated by A,=
0.12687 —26.82 mW/m/K, extrapolating the data
measured below 1050 K (JSME, 1983). Its depen-
dence on the pressure is negligible. At the temperature
of 1273 K, we obtain 1,=135 mW/m/K. Using this
value, the thermal diffusivity is calculated by Eq. (A6)
(Table 1).

The diffusivity of H>O in magma (k) depends on
temperature, pressure, magma composition, and con-
centration and condition of H,O (Zhang et al., 1991;

Table 1
The material parameters and the dimensionless parameter 4, (Eq.
(5)) for H,O vapor at the temperature of 1273 K

P, pg [ke/m?] Co [Dkg/K]  wp [m¥s] Ay

[MPa] Data Ideal Data  Ideal Ideal

0.1 0.170  0.170 2478 2000 3.97x10"* 8.19
1.0 - 1.70 - 3.97x107° 278
25 426 425 2493 1.59x107° 1.80
5.0 8.53 8.51 2508 7.93x10°°% 1.30
10 17.1 17.0 2540 3.97x107° 0.940
25 43.0 425 2640 1.59x107° 0.611
50 87.0 85.1 2812 7.93x1077 0.441
100 175 170 3113 3.97 %1077 0319

The data are from Bowers (1995).

T(C) Kgl(mzls)
seesoeee 800, 107

Decreasing T | ------- 800, 10,
--==r--- 800, 10
we=<feee- 800, 107

—=— 1000, 10,
—— 1000, 10,
—a&— 1000, 10
-x— 1200, 10,
-@— 1200, 10°
-+— 1200, 10.

+T - 1200, 10°
Increasing K
| " '9

107 10° 10" 102

Increasing P

Fig. 1. The relevant range of the dimensionless parameters
representing the effect of the volatile transfer in the magmatic
systems is shown as the gray area. The parameter 4, and o, are
defined as Eqgs. (5) and (6), respectively. The temperature (7) and
the volatile diffusivity (i) are assumed as shown in the legend, and
the pressure is varied from 0.1 to 100 MPa.

Zhang and Behrens, 2000; Nowak and Behrens, 1997;
Proussevitch et al., 1993). In a rhyolitic melt at 1273
K, 1 is about 10~ M m?s (Zhang et al., 1991; Zhang
and Behrens, 2000; Nowak and Behrens, 1997). The
diffusivity is larger by a few orders in a basaltic melt
(Proussevitch et al., 1993). Therefore, we consider
107" <Ky <107 ® m%s and use Ky =107 m?/s as
the standard value in the following analyses.

The solubility of H,O calculated by Burnham
model for various types of magma at 1273 K (Hollo-
way and Blank, 1994) is reasonably fitted by:

Ceq(P) = (2.240.2) x 107°P%, (28)

We use this relation with the coefficient of
2.2 x 10~ ® in the following analyses.

The contributions of the material parameters to the
bulk modulus of a bubble are collected in the two
parameters, A, and o, in Egs. (4—6). Fig. 1 shows the
possible range of these parameters in a magmatic
system. The magma density (p,) is assumed as 2600
kg/m®. The numerical values for Ay at T=1273 K are
listed in Table 1, too.

3.2. Physical parameters of magma

The magma properties are described by p; K,,
K., Wo, Ty, and 7,. There exist a number of
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experimental studies on viscoelastic properties of
silicate melts by using various techniques: ultrason-
ics (MHz frequencies), torsion deformation (mHz to
Hz), fiber elongation (mHz), viscosity measurements
(deformation rates of 10~ s~ ), and so on. Useful
compilations of the data can be found in Dingwell
and Webb (1989), Webb and Dingwell (1995), and
Webb (1997). Referring to these works we assume
K,, K., and u. are constants represented by 20, 30
and 10 GPa, respectively. The relaxation time (or
viscosity) of the shear deformation is treated as a
variable parameter, assuming the equal relaxation
times of the shear and volumetric deformation

(Ts=1y).

4. Results

4.1. Effects of heat and mass diffusion on the bulk
modulus of a bubble

The effective bulk modulus of a bubble is calcu-
lated by Eq. (4) for some selected values of 4, and
o, The thick broken lines in Fig. 2 are obtained
from Eq. (2) without the effect of the volatile
diffusion. As is noted in Section 2.1, the real parts
of the broken line approaches the isothermal bulk
modulus (P,) and the adiabatic bulk modulus (yP,)
of the ideal gas in the low and high frequencies,
respectively (Fig. 2a). The imaginary part, which
represents the energy loss, has a peak around
®2 ~ 30, where the transition between the isother-
mal and adiabatic conditions occurs. We define the
inverse of the peak frequency as the characteristic
time for the heat transfer (zr):

1t = R?/(15K7). (29)

The real part of K, (Re K,) including the volatile
diffusion falls off in the low frequencies (Fig. 2a),
where the imaginary part has another peak (Fig. 2b).
The volatile transfer between the bubble and melt
enhances the volumetric change of the bubble and
increases the apparent compressibility (Re Ky ") and
the loss of energy (Im K,). The dimensionless peak
frequency (denoted as @;eak) depends on both A,
and o, in different ways. As o, increases by an
order, @%eak also increases by an order (compare the

14 T T T T T T T T T T T
12}(@)
R} S
[e]
Q o8}
N
E:; 0.6
0.4 A =10,a =104
0.2 — otz=10'3
—a— o =105
0 | -o— A =10, a"=10"
(b) R\ o= A=0.1
= 03t [\ feee- NO diffusion
o
g 0.2
E
0.1
0 Tl etk whte et N SRR N SR S HRRAN

O?=20R Ik .

Fig. 2. The effective bulk modulus of a bubble calculated by Eq.
(4) as a function of the dimensionless frequency. The real and
the imaginary parts are presented in (a) and (b), respectively.
The thick broken lines indicated as ‘no diffusion’ are obtained
from Eq. (2), which eliminates the effect of the volatile
diffusion.

thick solid line and the lines with the solid marks in
Fig. 2b). On the other hand, @%eak increases by two
orders approximately (compare the thick solid line
and the lines with the open marks), as 4, increases
by an order.

We regard @ieak is important, because it repre-
sents the frequency below which the effect of
volatile diffusion becomes significant. Its value is
investigated over the relevant range of 4, and o,
and plotted against oché (Fig. 3a). It has been found
that values of ®§,eak fall on the broken line:

O = 18054, (30)
even though there exist deviations from the line at
the left end. When the data are re-plotted on the
plane of Aéfgeak/ag, all the points fall on a
single curve (Fig. 3b).

Let us consider the physical meaning of the
broken line relation (Eq. (30)). According to the
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Fig. 3. (a) Relation between the dimensionless frequency, @f,eak, at
which the imaginary part of the effective bulk modulus of a bubble
takes the maximum value (Fig. 2b) and the dimensionless
parameters, 4, and o,. The relation is approximately represented
by the broken line: @f,eak= 18o<gA§. (b) The same data are re-plotted
on the plane of ®§cak /otg versus Azg.

equation of state for an ideal gas, volume expansion
of a bubble, 0V, is:

mgoRe T R, T,
o =0Vp + 6V,
P(z) + omyg P p+

oVy = —0OP
(31)

where m, is the total mass of the gas in the bubble,
and the values at the center of oscillation are
denoted with subscript ‘o’. Here, dVp represents
the volumetric change due to the gas expansion,
and OV, represents the contribution of the mass
transfer (6m,). Significance of the latter contribution

is evaluated by:

oVm Py |Omyg]|
oVp  mg |OP|

(32)

Because of mass conservation, 6m, should be
compensated by the change of the volatile in the
liquid, so that:

o0 ¢
|6mg | = p, / 4mr?dCydr| = p RPOP—2
R oP
4 \/2
IV VT (33)

2] 0 ' e

where 6C, = Cy,C+ and C is given by Egs. (A26) and
(A28). The higher-order terms of ocg/®2 is neglected
when o,/0><1. Substituting Eq. (33) and mg,=(4m/
3)R’ pg into Eq. (32), we obtain:

N 1/2
o _ynh i v _(96)T
Ve T p, 0P © @ ) -

Eq. (34) indicates that the energy loss due to the
mass transfer takes the maximum value when
8V,,=8Vp//2 according to Eq. (30). The contribution
of the mass transfer is significant when oV,,>&Vp.
The corresponding condition is ©%<9a, Az < Oleq.
Actually, we can see the significant decrease of the
bulk modulus of a bubble in such a range in Fig. 2a.
We define the characteristic time of the effect of the
Volatilel diffusion (t,) so that Eq. (30) is satisfied at
0="14 :

R R [pPy 0C )
Tg= Plmo “>eq ) (35)

T o2 9k \ p, 0P

4.2. Effects of viscoelasticity of the liquid

The effective bulk and shear moduli of a liquid—
bubble mixture are calculated by Egs. (13) and (14),
respectively. In order to focus on the effect of liquid
viscoelasticity, we eliminate the effect of the heat and
mass transfer by fixing the bulk modulus of a bubble
(K,) at 1 MPa in the analyses presented in this section.
The void fraction and the bubble radius are assumed
as $=0.03 and R=10 m, respectively.

Two typical results are shown in Figs. 4 and 5, in
which the real and the imaginary parts of K, and p,,,
are plotted against wt,. For comparison, the values of



M. Ichihara, M. Kameda / Journal of Volcanology and Geothermal Research 137 (2004) 73-91 81

Wo T
40 T T T T = T T T
L@ «
m / m
o
o 20 O—0—K_(K_=K )
3? B /—._um
=) — — §
X
o) L _
n'e
20+ ]
| | | | | | | |
T T T T T T T
sol. (b) ]
©
& - —
O
= 40+ .
£
= L _
><E 20 K., B
E | " K, %)
>
—— O ——y——
O 1 I 1 1 1 1 1 1
10 10* 102 10° 102 10*
WTs

Fig. 4. The effective bulk modulus (X,,) and shear modulus () of
a liquid—bubble mixture calculated by Eqs. (13) and (14),
respectively. The liquid viscosity (#,) is assumed as 10 Pa s. The
relaxed bulk modulus (K,), the unrelaxed bulk modulus (X ..), and
the unrelaxed shear modulus (u.,) of the liquid are assumed as 20,
30 and 10 GPa, respectively. The bulk modulus of a bubble is fixed
at 1 MPa independently of the frequency. For comparison, K, for
K. =K,=20 GPa is shown (the thinner lines with diamonds). The
relevant characteristic frequencies are shown with the gray lines,
which are associate with the relaxation of the liquid (z; ') and the
bubble resonance in the relaxed liquid (@,).

K., with K_ =K, are shown by the lines with dia-
monds. The characteristic frequencies shown in the
figures are those associated with the relaxation of the
liquid (T3 ': Eq. (9)), the volumetric relaxation of the
mixture (T, ': Eq. (21)), and the bubble resonance in
the relaxed and unrelaxed state of the liquid (w, and
o.: Egs. (17) and (19)). Although we assumed
K_—K,=0 in obtaining Eq. (21) to calculate 7,,, its
applicability to the present system is justified by the
agreement of the thick lines and the thin lines with
open diamonds around ® ~ 7, (Fig. 5). It is noted
that the bulk modulus is significantly decreased by the
bubbles, but only in the low-frequency range. The
range is bounded by @, in case that the viscosity is
relatively low and the bubble resonance occurs in the
relaxed state of the liquid (Fig. 4). In the higher-
viscosity liquids, it is bounded by 1" (Fig. 5).

4.3. Dispersion and attenuation of pressure waves
The dispersion relation for pressure waves in the
liquid—bubble mixture is given in the same way as in

an elastic medium:

v K@)+ (o)

km(w)2 = pm3 ) (36)
em(®) = rk‘: o (37)
0,'(0) = s (38)

where kp, ¢m and O, ' denote the wave number, the
phase velocity and the attenuation factor of the

40 T T T T T T T T

Re K., 1, (GPa)

20~ | T

[ee]

T

—_

O ]
~

m

0 -wvoﬁﬁz;m" Km(K:=K°)

1 1 1 1 1 1 1 1
10%  10* 102  10° 10> 10*
WTs

Im K., U, (GPa)

Fig. 5. The effective bulk modulus (X,) and shear modulus (y,) of
a liquid—bubble mixture calculated by Egs. (13) and (14),
respectively. The liquid viscosity (i,) is assumed as 10° Pa s.
Values of the moduli are assumed as K,=20 GPa, K =30 GPa,
and xt., =10 GPa, and K, =1 MPa, in the same way as in Fig. 4. For
comparison, K, for K =K,=20 GPa is shown (the thinner lines
with diamonds). The relevant characteristic frequencies are shown
with the gray lines, which are associate with the relaxation of the
liquid (75 "), the volumetric relaxation of the mixture (t,,, '), and the
bubble resonance in the unrelaxed liquid (@ ..).
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Fig. 6. The phase velocity (c,,) and the attenuation (O, ') of the
pressure waves in the liquid—bubble mixture with various
viscosities (#,). The hydrostatic pressure (P,) is assumed as 1
MPa. Values of the liquid moduli are assumed as K,=20 GPa,
K. =30 GPa, and p, =10 GPa. The void fraction is ¢)=0.03. The
parameters representing the properties of the vapor are given in
Table 1. The diffusion coefficient of the volatile in the liquid (i) is
assumed as 10~ ° m?s. The characteristic frequencies of the
acoustic properties of the mixture (Table 2) are indicated with the
lines. The horizontal dash-and-dot line represents the value of ¢,
defined by Eq. (39).

pressure wave in the mixture, respectively (Gaunaurd
and Uberall, 1981; Aki and Richards, 1980).

The frequency dependence of ¢, and Op,' are
investigated for the conditions of the magmatic
systems and presented in Figs. 6 and 7. The
pressure is fixed at 1 MPa, and the viscosity of
the magma is varied in Fig. 6, while the viscosity is
fixed at 10° Pa s and the pressure is varied in Fig.
7. The other parameters are assumed as Kg=10""
m?/s for the volatile diffusivity in the liquid, ¢ =0.03

for the void fraction, and R=10> m for the bubble
radius.

On the figures are indicated the characteristic
frequencies for the heat transfer (z1 ': Eq. (29)),
the volatile diffusion (rg_l: Eq. (35)), the stress
relaxation of the liquid (z5 ': Eq. (9)), the volumetric
relaxation of the mixture (t,, ': Eq. (21)), and the
bubble resonance in the relaxed and unrelaxed con-
ditions (w, and w.: Eqgs. (17) and (18)). The
numerical values of these characteristic frequencies
are listed in Table 2. These various internal processes
bring about the complex dependence of the phase
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Fig. 7. The phase velocity (c,,) and the attenuation (O, ') of the
pressure waves in the liquid—bubble mixture at various hydrostatic
pressures (P,). The magma viscosity (17,) is assumed as 10° Pa s.
The other parameters are the same as in Fig. 6. The characteristic
frequencies of the acoustic properties of the mixture (Table 2) are
indicated with the lines. The horizontal dash-and-dot line represents
the value of ¢,,, defined by Eq. (39).
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Table 2
The characteristic frequencies (rads) of the liquid—bubble mixture
Internal process Symbol Equation g P, [MPa]

0.1 1 10 100
Heat transfer ! (29) R? 5.9%10° 5.9 % 10? 59 5.9
Mass transfer 75! (35) R ? 0.6 6.9%x10° 2 8.0x10 3 9.1x10 *
Mixture volume relaxation T | @ Mo 45x% 108 45x% 108 4.6 % 10° 54x10°
Bubble volume relaxation ! (40) Mo ! 9.8 x 10* 9.8 x 10° 9.8 x10° 9.8 x 107
Relaxed bubble resonance w, 17) R! 1.2 x 10* 3.9 10* 1.2x10° 3.9%10°
Unrelaxed bubble resonance . (18) R! 3.9 % 10° 3.9 % 10° 3.9%x10° 3.9 % 10°

It is assumed that the temperature is 1273 K, the magma viscosity is 1 Pa s, the bubble radius is 1 mm and the void fraction is 0.03.

velocity and the attenuation factor on the frequency.
The horizontal dash-and-dot line represents the value
of cpo:

Cmo = V Kmo/pm7

(39)

where K, is defined in (22). Eq. (39) is frequently
used to represent the sound speed in the liquid—
bubble mixtures (e.g. Kiefer, 1977). However, the
present results demonstrate that the phase velocity
agrees with ¢, in the limited range of frequency.

When the viscosity is small and the bubble
resonance occurs in the relaxed state of the liquid,
the upper limit of the frequency range is deter-
mined by the resonance frequency of the bubble
(Fig. 6a), as is expected from the analysis for the
effective bulk modulus presented in Fig. 4. In the
cases of the larger viscosities (Fig. 6b—d), the
phase velocity gets larger than ¢y, in the frequency
range of w>ty ' (15 ' <<1,, ') in contrast with that
the effective bulk modulus changes at o ~ 7, '
(Fig. 5). In fact, 75 ' is more important in the
volcanology because w, is usually much higher than
the frequency range of the observed volcanic phenom-
ena (cf. Table 2). The expression for 7, ' is given
below.

Analyzing Eq. (13), and considering the associ-
ated internal process of the volumetric motion of
the bubbles, we found that 1, ' is simply estimated
by:

3K,
! = 4—”*‘%. (40)

Eq. (40) is obtained from the equation describing
the viscosity-controlled radial motion of a bubble in
an infinite Newtonian liquid:

R
4no§:Pg7P17 (41)

where P; is the pressure in the liquid far from the
bubble (Proussevitch et al., 1993). Assuming a small
change of the bubble radius (6R) and using Eq. (1),
Eq. (41) is linearized as:

41,8R + 3Kz0R = —5PR. (42)

We can see that the characteristic solution is
OR=exp(—t/T,). The solution indicates that T, is
the characteristic time of the viscous deformation of
the bubble radius. If the time scale of the external
pressure change is much longer than 7y, change of the
bubble radius can follow so that the mechanical
equilibrium is maintained.

It is emphasized that the phase velocity and the
attenuation of the pressure waves in the liquid—bubble
mixture significantly depend on the frequency due to
the several internal processes such as bubble expan-
sion (contraction) and the volatile transfer. The sound
speed of the liquid—bubble mixture is represented by
Cmo Only in the limited frequency range. The range is
mainly bounded by 7, Vand o L. Namely, ¢, is valid
when the frequency of the pressure wave is large
enough to keep the effect of the mass diffusion
insignificant and small enough for the bubble radius
to follow the pressure change.



84 M. Ichihara, M. Kameda / Journal of Volcanology and Geothermal Research 137 (2004) 73-91

5. Discussion

5.1. Implications to resonance behaviors of a magma
body

Let us suppose a bubbly layer in a semi-infinite
body of magma (Fig. 8). A plane pressure wave
generated deep in the magma propagates through
the layer and is transmitted to the air. We demon-
strate the influence of the wave dispersion and
attenuation of the bubbly layer on the response of
the system by solving the simple one-dimensional
problem. The positions of the top and the bottom of
the bubbly layer are denoted by z, and z,, respec-
tively, and the position of the magma surface is
denoted by zy=0. The hydrostatic pressure of the
layer is approximated by P,= P+ pig%, where Py,
is the atmospheric pressure (10° Pa) and g is the
gravitational acceleration. The hydrostatic gradient
within the layer is neglected for simplicity. Al-
though the model is rather artificial, the main
purpose here is to demonstrate the basic features
of the effect of the wave dispersion.

Atmosphere

air

Bubble Layer
Kin Mm Pm

Zp
Magma
Km U P

z

Fig. 8. A simple example system to demonstrate how the resonance
behavior of a body of bubbly magma is influenced by its frequency-
dependent acoustic properties. A layer of bubbly region is assumed in
the magma. A plane P-wave penetrates into the layer from below. It is
partly reflected at the boundaries, but partly transmitted into the
atmosphere. The frequency dependence of the wave transmission is
calculated.

We apply the mathematical method presented by
Kennet and Kerry (1979) to calculate the effective
transmission coefficient of the layered medium. The
method is described in a companion paper (Marchetti
et al., 2004), so that only the equations used in the
calculation are presented in Appendix B. The ratio of
the pressure wave transmitted to the air (p,;) to the
incident wave (pj,) is calculated by:

4
o | Kotz H
— 1rclr © @
=|roG ) B2 @)

Pair
Pin

where p,;, and c,;; are the density and the sound
speed of the atmosphere, respectively, and
Tu(zo ,z5), Which is given by (B1), is the effective
transmission coefficient from beneath the bubbly
layer (z,) to just above the magma surface (zg).
Assuming that the temperature of the air at z; is the
same as that of the magma (1273 K), p,;;=0.27 kg/
m> and ¢,; =720 m/s.

We take the magma viscosity (7,) and the bubble
radius (R) as variable parameters in the following
analyses. The hydrostatic pressure in the bubbly layer
is fixed at P,=1 MPa, which corresponds to the depth
of the layer of z,=35.3 m. The void fraction is
assumed as ¢=0.03. Eq. (39) gives ¢mo=114 m/s at
this condition. The thickness of the bubbly layer is
assumed as the half-wave length of a 1-Hz wave with
this speed. Namely, z,—z;=Cmo/2 =57 m.

The response of the system (Eq. (43)) is pre-
sented as a function of frequency in Figs. 9 and 10.
In Fig. 9, the bubble radius is fixed at R=10" m
and the viscosity is varied, while the viscosity is
fixed at 7,=10* Pa s and the bubble radius is
changed in Fig. 10. The solid and broken vertical
lines in the figures present 7, "and 71, !, respec-
tively, defining the frequency range in which the
sound speed ¢, is valid. These characteristic fre-
quencies change with the viscosity and the bubble
radius as 7 ' o, ! and Ty "o« R™? (Table 2).

The peaks of the response curves in Figs. 9 and 10
indicate the resonant frequencies of the layered medi-
um. The resonance occurs due to the existence of the
impedance contrast between the bubbly layer and the
bubble-free layers. We can see that those peaks appear
on condition that they are included in the range of
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Fig. 9. The frequency dependence of the wave transmission from
the magma to the air through the bubbly layer as shown in Fig. 8.
The depth of the layer is fixed at z;=35.3 m (P, =1 MPa). The layer
thickness is assumed as z,—z,=57 m. The magma viscosity (7,) is
varied as (a) 1 Pas, (b) 10> Pa's, (c) 10° Pa s and (d) 10° Pa s. The
other parameters are the same as in Fig. 6. The dispersion relations
for the conditions corresponding to (a) and (d) are presented in Fig.
6b and c, respectively.

Ty '<w<1y !. The resonance fails outside the range
because the attenuation is too large (mSTgl,
® ~ Ty ') or the impedance contrast is too weak

(@1 ).
5.2. Applicability to the actual volcanic systems

The present expression for the effective properties
of the liquid—bubble mixture includes the effects of
the viscoelasticity of the liquid and the heat and mass
transfer between the liquid and bubbles. The actual
magmatic systems contain many other processes.
Here, we discuss the effects of possible important
factors.

5.2.1. Interaction between the bubbles

If we are to include the effect of the interaction
between bubbles in the present mathematical frame-
work to calculate the effective acoustic properties of
a liquid—bubble mixture, we have to consider the

multiple scattering. This effect has been treated by
Varadan et al. (1985) in calculating the phase veloc-
ity and attenuation of the pressure wave in the
liquid—bubble mixture without the effect of viscos-
ity. Their results agree with the other simpler calcu-
lations neglecting multiple scattering for the mixture
with a small void fraction. The existing experimental
results have also been explained by the simpler
theories quite well (Commander and Prosperetti,
1989; Prosperetti, 1984; Gaunaurd and Uberall,
1981; Ichihara et al., 2004). The maximum void
fraction to which the single-scattering theories are
applicable is generally regarded as several percents
(Toksoz and Cheng, 1980). Unfortunately, there are
few experimental data with which we can check their
applicability to the higher void fractions. Not on the
wave propagation, but Llewellin et al. (2002) pre-
sented experimental data on shear viscosity of lig-
uid—bubble mixture with void fractions up to 46.1%.
Their data demonstrated the linear relations between
the void fraction and the effective shear viscosity of
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Fig. 10. The frequency dependence of the wave transmission from
the magma to the air through the bubbly layer as shown in Fig. 8.
The depth of the layer is fixed at z,=35.3 m ( P, =1 MPa). The layer
thickness is assumed as z,—z,=57 m. The magma viscosity (1,) is
fixed at 10* Pa s, while the bubble radius is varied as (a) 1 mm, (b)
0.32 mm, (c¢) 0.1 mm and (d) 0.032 mm. The other parameters are
the same as in Fig. 6.
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the mixture: 17,,=17,(1 — (5/3)¢) for deformable bub-
bles, and #7,=17,(1+9¢) for non-deformable bub-
bles. As is noted in Section 2.3, similar relations are
derived from the present expression. This fact may
partly support the applicability of the single scatter-
ing method to the higher void fractions.

5.2.2. Translational motion of the bubbles

The volatile transfer between the liquid and a
bubble is affected by the flow around the bubble
due to the translational motion of a bubble. We regard
such an effect is unimportant, when the length scale of
the bubble translation is much smaller than both the
bubble radius and the diffusion layer thickness.

The terminal velocity of a spherical bubble
under gravity is uy,=AR>gpi/n,, where A.=1/3 for
a pure liquid and 2/9 for a liquid with surfactants.
The distance of the translational motion of a bubble
in a time scale of the volatile diffusion is repre-
sented by:

Aigp, R
= 44
“bTe 9 ﬂnglAé ’ (44)

where the constant 4, gp/9 is about 630 and 950
for the pure and impure liquid, respectively. On the

other hand, the thickness of the diffusion layer at
w=1, " is:

Vet = R/(34). (45)

The condition required to neglect the effect of the
translational motion is:

UpTg <R, (46)

UpTg <\ /KglTg. (47)

The conditions (46) and (47) are rewritten as:

Aigp R
> , 48
0% 7o e 2 (48)
7] > Atgpl R3 (49)
° 3 KglAg ’

respectively. The condition (48) is defining for 4, <1/
3, while condition (49) is defining for 4,>1/3. The
condition is presented on the R—#, plane in Fig. 11 as
the region above the line for each pressure.

5.2.3. Existence of highly deformed or connected
bubbles

We have presented that the sound speed is not
efficiently decreased by the presence of bubbles in a
high-viscosity magma assuming the spherical bub-
bles. On the other hand, it has been shown for
porous solids that a small amount of thin pores can
significantly decrease the elastic moduli and seismic
velocities, which are rather insensitive to the rounder
or spherical pores (Toksoz et al., 1976). It is because
the thinner pores are more deformable due to the
stress concentration along the arc with the highest
curvature. Furthermore, in a system consisting of
connected bubbles, another kind of slow wave con-
trolled by the permeable gas flow exists (Biot, 1956;
Shoenberg, 1983). It is certain that these matters are
involved in the volcanic systems and should be
studied in more detail. However, observations of
natural porous volcanic rocks have shown that the
amount of interconnected irregular network of bub-
bles is drastically reduced below a void fraction of
50% (Spieler et al., 2004). Therefore, we consider
that, in the actual volcanic processes, there are a
number of situations where the present formulation
and analyses are useful.

T T L |
- Translational
10° = bubble motion
MPa

| is negligible k
1

raianl
10°
R (mm)

o
oa

Fig. 11. The minimum viscosity that makes the translational motion
of a bubble negligible as a function of the bubble radius and the
pressure.
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5.2.4. Inhomogeneous bubble distribution and the
hydrostatic pressure gradient

The actual magma column is supposed to be
spatially inhomogeneous. The hydrostatic pressure
gradient and the resultant variation of the void
fraction cannot be ignored. Wave propagation in
such a vertically inhomogeneous two-phase system
is treated in the companion paper (Marchetti et al.,
2004).

6. Summary

(1) The effective acoustic properties of a liquid—
bubble mixture are represented by Egs. (13)—(16)
with Eq. (4) representing the effective bulk modulus
of a bubble. These equations include effects of the
bubble resonance, the heat and the mass transfer
between the liquid and bubbles, and the viscoelasticity
of the liquid. Using these equations, the phase veloc-
ity and attenuation factor of the pressure wave in the
mixture are calculated by Egs. (36)—(38) as functions
of the frequency.

(2) We defined seven characteristic times and
frequencies associated with the internal processes
controlling the dispersion and attenuation of the
pressure waves in the bubbly magmas: the relaxa-
tion time of the melt (tg: Eq. (9)), that of the
volumetric deformation of the mixture (7,: Eq.
(21)), the characteristic time of the viscosity-con-
trolled bubble expansion (contraction) (tp: Eq.
(40)), that of the heat transfer in the bubble
(tr:Eq. (29)), that of the volatile transfer (74 Eq.
(35)), and the resonance frequency of the bubble in
the relaxed or the unrelaxed condition (w,: Eq.
(17) or w: Eq. (18)). They are all represented by
simple functions of the material and condition
parameters.

(3) The phase velocity of the pressure wave
agrees with ¢, (Eq. (39)) only in the limited range
of the frequency, though it is often used to represent
the sound speed of the liquid—bubble mixture. In
most of the cases with the magmatic systems, 7, !
and 7, ' determine the lower and upper limits of the
frequency range.

(4) Resonance behavior of a bubbly layer of
magma is caused by the impedance contrast between
the layer and the surrounding medium. It is noted

that such resonance can occur on condition that the
resonance frequencies are within the range bounded
by ‘cgl and 15 .

The present study demonstrated that the frequency
dependence of the phase velocity and attenuation of
the pressure waves is considerable in the bubbly
magma. However, it is not always easy to include
such effects in the existing mathematical framework
to calculate the wave field in the elastic medium.
Therefore, we propose the following simple way to
use the present result in constructing a model for the
seismo-acoustic phenomena of volcanoes:

(1) Assume that the bubbly magma is an elastic
medium with the slow sound speed, ¢, and calculate
the wave field.

(2) Calculate the characteristic frequencies for
volatile diffusion (74 ") and bubble expansion (t ')
in the system.

(3) Make sure that the natural phenomenon to
which the model is applied is in the frequency range
of 74 1<(o<rb_ ! where the sound speed of ¢y 1S
applicable.
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Appendix A. Derivation of the equations to
calculate the effective bulk modulus of a bubble

A.1. Equations for pressure and temperature in the
bubble

When the bubble radius changes periodically, dif-
fusion layers of temperature and volatile concentration
are formed around the bubble. It is assumed that
distances between the bubbles are much larger than
the thickness of the layers and we consider a single
bubble in an infinite body of a liquid.
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A mass conservation equation for the gas is:

apg 1 a, ,
a—t+r_2§(r pglig) =0, (A1)

where 7 is the distance from the center of the
bubble, p, is the density, and u, is the radial
velocity of the gas.

We assume that the gas in a bubble is an ideal gas:

Py = pyR,T, (A2)

where R, is the gas constant, and 7'is the temperature.
Energy conservation of the gas in a bubble is
represented as:

a( P +ii rng“g
de \y—1 r2 or y—1
1

ad 19 oT

where /4, is the heat conductivity of the gas.

Considering a wave field in which the wavelength
is much larger than the size of the bubbles, it is
assumed that P, is uniform in the bubble. Then Eq.
(A3) is integrated from »=0 to r as:

1 , oT r.

=—|(y=1Dig— — = A4
Ug 7P, (v ) g o 3'ep (A4)

where the superimposed dot indicates d/dt. Substitut-
ing Eqs. (A2) and (A4) into Eq. (Al), a differential
equation for the temperature is obtained:

0T, T Lo (L0T 7=1 7T,
R — = Kr— — | rF— L
or 2o T2 oy or y Py ¥
(AS)
Jo P — 1
P (A6)

Py IRy

where xr is the thermal diffusivity of the gas and yR,/
(y — 1) is the heat capacity of an ideal gas at a constant
pressure.

Mass flux of the volatile through the bubble wall
(M) is defined as:

pg(”g - R) - _Mgv (A7)

where R is the bubble radius. Substituting Eq. (A7)
into Eq. (A4) at =R, a differential equation for the
pressure is obtained as:

3(y—1)
R

ay Y . Y .
— | - P,R TR, M,
X{Ag<8t>w y—1¢ +y_1 eMg |,

Py =

(A8)
where the subscript w indicate the value at r=R.

A.2. Equations for heat and mass transfer in the
liquid and at the bubble wall

The temperature of the liquid is assumed to be
constant (7,), because the heat conductivity and the
heat capacity of liquid are much larger than those of
the gas. Moreover, the latent heat associate with the
volatile transfer between the gas and liquid phases is
neglected. Then the boundary condition for the tem-
perature at the bubble wall (»=R) is:

T, =T, (A9)

Transfer of the volatile in the liquid is described
by:

00, G, 10 (,0C,
T g B e S (2 8 A10
ot T or Kglrz or (r ar )’ ( )

where u is the radial velocity, and C, and g are the
concentration and the diffusivity of the volatile in the
liquid. The mass flux of the volatile at the bubble
wall is:

. oC,
M, = —£) . All
g PlKgl( or )W ( )
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We assume that gas concentration at the interface
is in equilibrium with the gas phase and determined
by the pressure in the bubble according to the
Henry’s law:

Cow = Ceq(Py)- (A12)

A.3. Linear analysis

We define dimensionless variables, which are
denoted with asterisks:

t=w s, r=R,r«,
R=R,(1 +Rx), Py=2Py(1+Px), (A13)
T=Ty(1+Tx), Cg=Cal(l+Cx),

where the center of the oscillation for each variable is
denoted with subscript o, and o is the angular
frequency of the oscillation. The following dimen-
sionless parameters are defined:

o _ 2R (A14)
KT ’
Kg|
= Al5
g Xr (Al5)
C,
X, =Pl (A16)
pgo
P, 9Ce
h = : Al7
Ceo OP (A17)

The dimensionless variables (Eq. (A13)) are sub-
stituted into Egs. (AS8), (AS) and (A10) and the
equations are linearized with respect to the perturba-
tions. Using relations (A2), (A6), (All) and (Al14)-

(A17), we obtain:
x 9Cx
g% Ors w '

6y 0T« OR+
o7 w 2
(A18)

Ca

P

0T« 2 1 0 0T y—1.
o _ s 9 P A19
0t O 12 Ors ( * 8r*> * » (Al
0Cx 205 1 0 [, 0Cx

e . A20
s O 12 0 (r* ar*> (A20)

The dimensionless boundary conditions at 7« = 1 are:
Tx =0, (A21)
Cx = H\Px. (A22)

We consider a periodic system in which all the
variables are proportional to e~ . The pressure and
the bubble radius, which are independent of 7+, are:

Px=¢ P, (A23)
Re=c¢ ™R (A24)
Equations are solved with the constraint that the

perturbation variables are finite at the center of the
bubble (r+=0), and vanishes far from the bubble

(F*ZOO)Z
sinh (r*(@\/_l)
2 y—1
+ )
hl © —i Y
7%Sin >

exp <_F*®1 /j)
Cx = e *PC =/ (A26)
rsexp (—@ i)

Here, note that /—i/2 = (1 —i)/2.
The coefficients T and C are determined from the
boundary conditions (A21) and (A22) as:

Tx = e P|T

(A25)

y—1
Y

T

: (A27)

C = H,. (A28)
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Substituting solutions (A23)—(A26) into Eq.
(A18), we obtain:

P = -3F(O)R, (A29)
F(0) :;7(92/{;@2 3 -1 -1+

®\/§tanh’l <®\/§>}
@3pt+ 39X, H, (xg 10 7;%’ ) } (A30)

Comparing Egs. (A18) and (1), F(0®) is regarded as
the dimensionless bulk modulus of the bubble:

K,
= F(0). A3l
P, (©) (A31)
Eq. (4) is obtained by transformation of Eq. (A30).

Appendix B. The effective transmission coefficient
of the layers

We consider a wave field depending on time
through e . According to Appendix A in Marchetti
et al. (2004), the transmission coefficient of the layered
medium (Fig. 8) is expressed as follows. The terms
K.+ @/3)u, (e=w, m) in the following equations
correspond to pc” +im(4/3)ee in the other paper. It
is noted that the wave field is assumed as o € in the
other paper. Namely, all the expressions are complex
conjugate with each other in the two papers:

Tu(zy,zy) = qu — 41245, q21 (B1)

qgi1 412

q21 422

D(z;) =

_ipaircair ipaircair

D(z5) =D(z;) =D(z)
1 1

=1 4 , 4
i P\ Kotz | iy [ Kot 31

1 1
. 4 . 4
14 [Pm Km+§tum 14 [Pm Km+§:um

e*ik,u (zar -z ) 0

E(Zg 22 )= o
0 elkw (zg =z )
€7ik'” (zF -z,) 0

E(Z:r ) Zl:) =
0 eik(,, (z‘+ = )

where the complex wave number in the magma is
given by ko = w,/p;/(K, +3n,) with K, and p,
given in Egs. (7) and (8), respectively, and &, is given
in Eq. (36).
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