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[1] We simulate the dynamic evolution process of fault system geometry considering
interactions between fault segments. We calculate rupture propagation using an
elastodynamic boundary integral equation method (BIEM) in which the trajectory of a
fault tip is dynamically self-chosen. We consider a system of two noncoplanar fault
segments: a preexisting main fault segment (fault 1) and a subsidiary one (fault 2) and,
allowing the tip of fault 2 to deviate from its original plane, trace its trajectory in the step
over region between the two fault segments. Our simulation results show that the final
geometry of fault 2 depends on the initial configuration of the two fault segments. If the
initial overlap of the two fault segments is smaller than the half length of fault 1, fault 2
coalesces with fault 1 when the step over is narrower than about 1/4–1/2 the length of the
latter but is repelled from fault 1 when the step over width is larger than this threshold
value. We also show that the inclination angle of fault 2 is sensitive to the rupture velocity;
the inclination is larger for faster rupture propagation. Our simulation results imply that as
ruptures occur repeatedly, a fault system evolves from an array of relatively small fault
segments into a sequence of larger ones. Our results seem consistent with the field
observations of natural fault system geometries, which are often characterized by a set of
noncoplanar segments interconnected with relatively small jogs at oblique
angles. INDEX TERMS: 3220 Mathematical Geophysics: Nonlinear dynamics; 7209 Seismology:

Earthquake dynamics and mechanics; 7223 Seismology: Seismic hazard assessment and prediction; 7260

Seismology: Theory and modeling; KEYWORDS: rupture dynamics, fault interactions, fault geometry
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1. Introduction

[2] Surface traces of natural fault systems usually show
complicated geometry, composed of many fault segments
bending, bifurcating or separated by step overs [e.g.,
Tchalenko and Berberian, 1975; Sibson, 1986a; Sieh et
al., 1993; Sowers et al., 1994]. It has been pointed out in
previous studies that such nonplanar geometries of fault
systems may affect the dynamic processes of rupture
including the nucleation, propagation and termination [King
and Nábelek, 1985; Sibson, 1986b]. However, it remains
largely unclear how such geometries come to be formed. We
focus on the formation processes of fault bends in the
present article. Fault bends, or jogs, connecting noncoplanar
fault segments at oblique angles, are often observed in step
over regions over a broad range of length scales from 100 m
to 10 km [e.g., Tchalenko and Berberian, 1975; Segall and

Pollard, 1983; Sowers et al., 1994]. It is very important for
seismic hazard assessment whether any given set of two
fault segments coalesce with each other during a rupture
episode, because the final geometry of a fault system
determines not just the dynamic rupture processes but also
the magnitude of the earthquake event.
[3] The 1992 Landers, California, earthquake produced a

surface trace that typically exemplifies such complicated
fault geometry. The fault system, along which the earth-
quake occurred, is composed of several major noncoplanar
fault segments, e.g., the Johnson Valley fault and the
Homestead Valley fault, as well as minor fault segments
connecting them in step over regions, e.g., the Kickapoo
fault (Figure 1). The rupture is considered to have propa-
gated across all three major segments, transferred from one
segment to another [Wald and Heaton, 1994], and a
numerical simulation study has suggested that the presence
of the minor cross segments facilitated the transfer [Aochi
and Fukuyama, 2002]. It is interesting to note that the minor
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fault segments are considered younger than the major ones
[Sieh et al., 1993; Sowers et al., 1994].
[4] Fractures of relatively small scales are often observed

in step over regions lying between macroscopic noncopla-
nar segments of natural fault systems [e.g., Segall and
Pollard, 1983; Granier, 1985; Segall and Simpson, 1986;
Sibson, 1986a; Sowers et al., 1994]. This suggests that the
average fracture strength is lower in such regions than in the
surrounding country rock, even though no macroscopic
weak plane may be found there. It is thus likely that as
shown in Figure 2, the tip of a fault segment extends itself,
at some stage during the recurrence of earthquakes, into
such a weak step over region with no preexisting weak
plane (in the following, we refer to a region with no
preexisting macroscopic weak plane simply as an ‘‘intact’’
region).
[5] There have been a number of simulation studies on

dynamic rupture propagation along faults with nonplanar
geometries [Harris et al., 1991; Harris and Day, 1993,
1999; Aochi et al., 2000; Aochi and Fukuyama, 2002].
However, these studies dealt with the propagation of rupture
along predetermined fault planes, and the formation pro-
cesses of nonplanar fault geometries are still open questions
to be answered.
[6] Even though the formation processes of fault systems

remain unclear, the important role the interactions between
fault segments play in such processes have been pointed out
in different simulation studies. A number of authors have
quasi-statically simulated pure mode I (in-plane tension) or
mixed-mode rupture under a tensile load [e.g., Olson and
Pollard, 1991; Renshaw and Pollard, 1994], and have
successfully reproduced the characteristic geometry of fault
bends linking noncoplanar fault segments. Recently, Seelig
and Gross [1999] extended this to a dynamic modeling of
mode I rupture and showed that a similar geometry was
formed. In both categories of cases, the mechanical fault
interactions, mediated by stress perturbations due to the
presence of the fault segments, played a crucial role, and
noncoplanar fault segments were shown to bend and coa-
lesce with each other. However, earthquake faults are
associated with macroscopic shear ruptures caused by a
regional shear load under high compressive stress, and the
analysis of tensile ruptures cannot be regarded as a suffi-
ciently appropriate model for earthquake ruptures. Simula-
tion studies of mode II (in-plane shear) ruptures under a

shear load have been quite rare in number in comparison
with tension modeling. To our knowledge, only Du and
Aydin [1993, 1995] simulated quasi-static mode II rupture,
and demonstrated a coalescence of fault segments similar to
what was seen in mode I modeling.
[7] Dynamic simulation of the evolution of a mode II

shear fault system subject to interactions between different
fault segments has not been carried out before because of
the mathematical difficulties involved and the limitation of
computer resources. However, different studies have pointed
out the importance of dynamic effects in rupture propaga-
tion processes. In the quasi-static case, and when the rupture
velocity is much smaller than the S wave speed, the shear
traction arising beyond the tip of an isolated fault takes a
maximum value in the direction of the original fault plane
[Freund, 1990; Kame and Yamashita, 1999a, 1999b, 2003;
Poliakov et al., 2002]. In such cases, an isolated model fault
never bends as long as we assume that the fault extends in
the direction that maximizes shear traction beyond the tip.
On the other hand, as shown by Kame and Yamashita
[1999a, 1999b], an isolated model fault begins to bend by
itself under this maximum shear traction criterion when the
rupture velocity becomes close to the S wave speed. This
fact gives an ample proof that quasi-static modeling is not
sufficient to the study of the evolution of fault geometry
associated with dynamic ruptures.
[8] The purpose of the present study is to qualitatively

investigate the effects of the interactions between fault
segments and of dynamic rupture propagation on the
evolution of fault system geometries. We have developed
a computation algorithm based on an elastodynamic bound-
ary integral equation method (BIEM), capable of dealing
with both interactions between fault segments and the
effects of dynamic wave propagation. With this BIEM, we
allow the fault tip path to be self-chosen; we determine the
orientation of fault tip extension by the maximum shear
traction criterion mentioned above. First we discuss the
basic characteristics of the stress field around an isolated
fault. Next we simulate the interactive evolution of a system
of two noncoplanar fault segments (for simplicity, we refer
to fault segments simply as ‘‘faults’’ in the following). We
finally present a point of view on the mode of evolution of
fault system geometry on the basis of the insights obtained
for the isolated fault case.

2. Model

2.1. Method of Numerical Simulation

[9] We employ an elastodynamic and elastostatic bound-
ary integral equation method (BIEM) [e.g., Tada and

Figure 1. Surface trace of the 1992 Landers, California,
earthquake fault; enlarged map of the part where the
Johnson Valley, Kickapoo, and the Homestead Valley faults
meet [see Sieh et al., 1993].

Figure 2. Schematic illustration of the step over regions
between fault segments. The shaded parts denote regions of
low strength due to the presence of microfractures.
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Yamashita, 1997; Tada and Madariaga, 2001] for the
simulation of rupture propagation in a two-dimensional
(2-D) infinite, homogeneous and isotropic medium. We
consider mode II ruptures where opening of the fault is
prohibited. We discretize the fault plane into an array of
linear elements of length Ds and time into a sequence of
intervals of duration Dt, and assume that the slip velocity
takes a constant value everywhere and at every moment
inside any given spatiotemporal discrete element (the as-
sumption of piecewise constant slip velocity). We numeri-
cally evaluate the discrete form of the boundary integral
equations (BIEs):

Tin ¼ � m
2b

Din � m
2b

X
j

m�n�1

DjmK
i;j;n;m
dyn þ m

p
1� p2
� �X

j

SjK
i;j
stat ð1Þ

p � b=a; ð2Þ

where Tin is the shear traction at the ith spatial node and nth
time step, Djm is the slip velocity at the jth spatial node and
mth time step, S j is the prescribed static slip at the jth spatial
node, m is the shear modulus, a and b are the P and S wave
speeds, respectively, and Kdyn

i, j,n,m and Kstat
i, j are the convolu-

tion kernels for the dynamic and static stress fields,
respectively (see Appendix A for full expressions). In the
present study we consider a Poisson solid and set p = 1/

ffiffiffi
3

p
.

[10] The BIEM has an advantage in the analysis of
arbitrarily shaped nonplanar faults, since a nonplanar fault
can easily be approximated by an assembly of small planar
fault elements. Another advantage of the BIEM is that we
do not need to prescribe the geometry of the fault before-
hand; the fault tip path can be modeled as dynamically self-
chosen as time advances. These advantages suit the
purposes of our present study. BIEs generally have hyper-
singularities at the source point, as well as along the wave
fronts in the dynamic case, and they pose difficulties in the
numerical evaluation of integrals. However, the hyper-
singularities have been removed by the technique of inte-
gration by parts [Cochard and Madariaga, 1994; Tada and
Yamashita, 1997] in the BIEs we use in the present study.
[11] We introduce an artificial damping term in the

numerical scheme in order to suppress short-wavelength
oscillations that tend to appear in the slip velocity profile as
model time proceeds [Yamashita and Fukuyama, 1996].
After we have calculated the slip velocity profile Din along
the faults at each time step n, we smooth it spatially by

Din
damp ¼ Din þ c D

i�1;n
damp þ D

iþ1;n
damp � 2Din

damp

� �
: ð3Þ

In the present paper, we set c at 0.5, the same value used by
Yamashita and Fukuyama [1996].

2.2. Criterion for Fault Tip Extension

[12] We employ the hoop shear maximization criterion
[Koller et al., 1992; Kame and Yamashita, 1999a, 1999b]
to determine the angle of fault tip extension. The hoop
shear tt(j) is defined as the magnitude of shear traction
on the plane emanating from the fault tip at a given
inclination angle j (Figure 3), which is measured coun-
terclockwise from the original fault plane. We evaluate

the hoop shear Ds/2 ahead of the fault tip, i.e., the
midpoint of the fault element to be broken next. At each
time step, we evaluate tt(j) at 1 deg intervals over the
whole range of j that does not deviate more than ±90�
from the orientation of the fault tip extension that
occurred last, and we search for the angle jmax that
maximizes tt(j). The fault tip is made to advance by one
element in the direction jmax at a prescribed time step so
that the rupture velocity vr is kept constant at a prescribed
value. We assume no shear friction on the ruptured part
of the fault and consider no slip-weakening process; the
shear traction is totally released at the fault tip at the very
moment when it is broken. Bifurcation of the fault tip is
not considered.
[13] We do not take account of the effects of normal

stress on the orientation of fault tip extension. In fact, the
Coulomb friction law, which states that the shear fric-
tional strength varies linearly with the normal stress, is a
strictly empirical law known for the macroscopic behavior
of a preexisting weak plane under quasi-static loading
[Scholz, 2002, section 1.1.5], and it remains unclear what
effects the normal stress has on the local behavior of a
fault tip where intact rock is being dynamically fractured.
Some authors have incorporated the effects of normal
stress in the fracture criterion in their simulation studies
[e.g., Harris and Day, 1993; Kame et al., 2003], but it
should be borne in mind that their approach was valid in
so far as they dealt with rupture propagation along
preexisting weak planes. In most part of the present
study, we also do not consider the effect of regional
stress, applied at infinity, on the orientation of fault
extension, because the aim of this paper lies in evaluating
the effects of fault interactions qualitatively and in
isolating them from other effects. The effects of the
regional and normal stresses will be further discussed in
section 4.5, and discussion continues in section 5 with
respect to the relative scaling of tensile microcracks in
laboratory experiments.

Figure 3. Definition of the hoop shear traction. The hoop
shear tt(j) is evaluated at the point denoted by an open
circle, located Ds/2 ahead of the fault tip, and the fault tip is
assumed to extend in the direction that maximizes tt(j).
The initial fault plane, which is parallel to the axis of
maximum principal stress Tmax, is inclined at an angle of
Y = 45� to the axis of maximum principal stress Smax.
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[14] As shown in a later section, the angular variation
profile of the hoop shear traction is sensitive to the rupture
velocity vr. In the present study, we keep vr constant
throughout each numerical run, in order to eliminate the
influences the variations in vr can have on the trajectory of
the fault tip.

2.3. Model of Interacting Faults

[15] We consider a set of two noncoplanar faults lying in
an infinite 2-D elastic medium on which a uniform regional
load is applied at infinity, since such a simple fault config-
uration can be regarded as a prototype for more complicated
systems consisting of three or more faults. The two faults
are initially oriented at an angle of Y = 45� counterclock-
wise from the axis of maximum principal stress Smax

(Figure 3), i.e., the orientation of maximum shear Tmax

when the regional stress field alone is considered. Under
this assumption, for a given inclination angle j measured
counterclockwise from the fault plane, the amount of shear
traction drop expected on a fault oriented at that angle is
Ds(j) = smaxcos2j, which means that negative traction
drop is expected to occur outside the range �45� < j < 45�.
We also examine the cases of Y = 35� and 55� in section 4.5
where we discuss the effects of regional stress.
[16] We consider a preexisting main fault (fault 1) and a

subsidiary one (fault 2) that is formed along a prescribed
weak plane off the plane of fault 1 (Figure 4). We fix the
origin of the x1x2 coordinate system at the midpoint of fault 1
and define the x1 axis along the plane of fault 1. For the sake
of simplicity, fault 2 is nucleated at a prescribed location, is
propagated bilaterally, and is allowed to bend at its left tip
when the length of fault 2 has reached 22 discrete elements.
In physical terms, this bending condition corresponds to the
situation in which the fault tip has outgrown the end of a

preexisting weak plane and begins to extend itself into an
intact region.
[17] We consider two models, model S and model D

(Figure 4), with different assumptions concerning fault 1. In
model S, we prescribe a static slip on fault 1 corresponding
to a homogeneous shear traction drop of Ds and a fault
length of L = 22Ds and assume that fault 1 does not break
during the dynamic propagation of fault 2. In model D, on
the other hand, fault 1 is nucleated at a point simultaneously
with the nucleation of fault 2, and is propagated bilaterally
along the prescribed weak plane at the same fixed speed vr
with fault 2. In physical terms, model S corresponds to the
case where fault 1 has already been ruptured in the past, and
deals with the interactions between a stationary main fault
and a dynamically propagating subsidiary fault. Model D
deals with the dynamic interactions between two faults
nucleated simultaneously.
[18] Model D deals with an idealized case, and we do not

necessarily believe that situations precisely like in model D
can actually be found out in nature; it is simply in order to
isolate the effects of fault interactions from other factors and
to reduce the number of model parameters that we made the
somewhat unrealistic assumption that rupture starts simul-
taneously on the two faults in model D. In addition,
dynamic jumping of rupture fronts, sometimes observed
in spontaneous rupture models, can lead to a case where
model D is applicable.
[19] In our modeling, the length of fault 1 is fixed at 22Ds

in model S, while in model D, fault 2 begins to bend when
fault 1 has grown that long. We denote this characteristic
length by 2Lc = 22Ds, as it is an important parameter which
scales the profile of the stress field around the fault system.
In the following, we show our simulation results with all
spatial length scales normalized by Lc.

3. Stress Field Around an Isolated Planar Fault

[20] In this section, we discuss basic characteristics of the
static and dynamic stress field around an isolated planar
fault in an infinite medium. Since fault interactions are
mediated by the stress field perturbations by the presence of
faults, knowledge of the case of an isolated fault gives a
clue to understand the behavior of more than one interacting
faults.

3.1. Static Stress Field Around an Isolated
Planar Fault

[21] We first consider the static stress field around an
isolated planar fault with a homogeneous shear traction drop
Ds over its entire length. The x1x2 coordinate system is
defined in the same way as for fault 1 in the above
mentioned model of two interacting faults. We computed
the stress distribution using the known analytic solutions to
this problem (Appendix B) [e.g., Pollard and Segall, 1987].
The direction qmax of maximum shear traction, measured
counterclockwise from the positive x1 axis, is given, using
the stress components, by

tan 2qmaxð Þ ¼ � 1

2

s11 � s22
s12

: ð4Þ

Figure 5 shows the orientation and magnitude of the
maximum static shear traction Dtmax around an isolated

Figure 4. Initial geometry of our model faults. Thick and
gray lines denote prescribed weak planes.
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fault. As is naturally expected, the orientation of
maximum shear is distributed symmetrically with regard
to two axes of symmetry, namely the fault plane and its
perpendicular bisector. The solid curves in Figures 5a
and 5b represent boundaries across which the orientation
qmax of maximum shear switches inclinations; on the
boundaries, qmax = ±90�, and from equation (4), the
identity

s11 � s22 ¼ 0 ð5Þ

holds there. In the first quadrant in Figure 5a, for example,
the inclination qmax falls in the range 0� < qmax < 90� on the
lower side of the boundary, whereas �90� < qmax < 0� on the
upper side of it.

[22] These boundaries are made up of elliptic-shaped
parts lying close to the center of the fault and linear-shaped
parts extending from there to infinite distance. In the
following, we refer to the former as boundary E and to
the latter as boundary L. As shown in Figure 6, the shape of
boundary E is roughly approximated by the elliptical curve
(x1/1.1)

2 + (x2/0.7)
2 = 1, while boundary L converges to the

asymptote x1 = x2.

3.2. Dynamic Stress Field Around an Isolated
Planar Fault

[23] We next consider the dynamic stress field around an
isolated self-similar planar fault that is propagated bilater-
ally at a constant rupture velocity with a homogeneous shear
traction drop. Analytic solutions are known for the
stress field around such a self-similar fault [Kostrov, 1964;
Kikuchi, 1976; Tada, 1995] (Appendix B).
[24] Figure 7 shows the orientation and magnitude of the

maximum shear traction around a self-similar fault propa-
gating at 0.9 times the S wave speed. Comparison of
Figures 5 and 7 reveals that the dynamic traction profile
possesses qualitatively the same features as its static coun-
terpart, though the shape of the boundaries qmax = ±90�
(solid curves) is somewhat different: boundary E has a
smaller radius of curvature and the joints between bound-
aries E and L lie closer to the fault tips in the dynamic case.
Also, the magnitude of Dtmax on those boundaries is
somewhat larger in the dynamic case.
[25] Figure 7a, 7c, and 7d show the dependence of the

shape of these boundaries on the rupture velocity vr. We can
recognize a gradual change in the shape of the boundaries as
vr varies. We have found that the magnitude of Dtmax on the
boundaries becomes larger as vr increases.

3.3. Effect of a Rapidly Propagating Fault Tip on
the Hoop Shear Traction

[26] Finally, we discuss the angular variation profile of
the hoop shear traction in the neighborhood of a fault tip
that is propagated at a high constant rupture velocity vr.
Figure 8 shows the vr dependence of the hoop shear

Figure 5. (a) Spatial distribution of the orientation of
maximum static shear Dtmax (shown with small line
segments) around an isolated fault with a homogeneous
shear traction drop Ds. (b) Contour map of the magnitude of
Dtmax normalized by Ds. Solid curves denote boundaries
across which the orientation of maximum shear switches
inclinations (boundaries E and L).

Figure 6. Geometry of boundaries E and L (black curves).
Boundary E can be roughly approximated with an elliptical
curve (shown in gray), and boundary L has an asymptotic
line (shown in gray).
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profile. The traction begins to show an ‘‘m’’-shaped
angular profile and the axis of maximum shear deviates
from the original fault plane when vr exceeds a critical
value vc 	 0.77b, as has been pointed out by other authors
[Freund, 1990; Kame and Yamashita, 1999a, 1999b;
Poliakov et al., 2002]. This ‘‘m’’-shaped profile is peculiar
to the dynamic model and does not occur in the quasi-
static case; Kame and Yamashita [1999a, 1999b] showed,
for example, that a rapidly propagating fault can begin to
bend spontaneously because of the deviation of the max-
imum hoop shear axis.
[27] The symmetrical shape of the shear traction profile is

characteristic of the model of an isolated fault; we show in a
later section how the symmetry is broken when more than
one faults interact with each other.

4. Simulation of the Evolution of Fault
Geometry Through Fault Interactions

[28] In this section, we numerically simulate how the
geometry of a system of two faults evolves under mechan-
ical interactions. We demonstrate, in section 4.1 through

4.3, the final geometry of the fault system as well as its
dependence on the initial configuration and the rupture
velocity. In section 4.4, we present an interpretation of the
mode of evolution of fault system geometry in terms of the

Figure 7. (a) Spatial distribution of the orientation of maximum dynamic shear Dtmax around an
isolated self-similar fault with a homogeneous shear traction drop Ds and a rupture propagation velocity
of vr = 0.9b. (b) Contour map of the magnitude of Dtmax, normalized by Ds, for vr = 0.9b. The shape of
boundaries E and L is also shown. (c) and (d) Shape of boundaries E and L for the cases of vr = 0.8b and
0.5b, respectively. The elliptical curve that approximates boundary E is given, in each case, by the
equations (x1/0.92)

2 + (x2/0.68)
2 = 1 (Figure 7b), (x1/0.98)

2 + (x2/0.68)
2 = 1 (Figure 7c), and (x1/1.04)

2 +
(x2/0.70)

2 = 1 (Figure 7d).

Figure 8. Angular variation profiles of the hoop shear
traction at the fault tip: the three curves correspond to the
rupture propagation velocities of vr = 0.8b and 0.5b and to
the static fault case.

B05303 ANDO ET AL.: DYNAMIC EVOLUTION OF A FAULT SYSTEM

6 of 15

B05303



insights obtained in the previous section for the stress
distribution around an isolated fault.

4.1. Evolution of the Fault Geometry in the
Step Over Region

[29] The left columns of Figures 9a and 9b show some
snapshots of fault geometry for models S and D, respec-
tively, with a fixed rupture velocity of vr = 0.8b prescribed.
The right columns show the angular variation profile of
hoop shear in the neighborhood of the left tip of fault 2 in
each corresponding case. As stated above, the left tip of
fault 2 is made to propagate in the orientation jmax of
maximum shear after it has entered the intact region; jmax is
measured counterclockwise from the negative x1 axis.
Crosses denote locations where faults 1 and 2 are nucleated.
[30] The growth process of fault 2 in the step over region

is qualitatively similar for both models S and D. In the
examples shown in Figure 9, fault 2 chooses to bend in the
direction of fault 1 and finally coalesces with it, because of
the asymmetric angular profile of the hoop shear traction
beyond the tip of fault 2 caused by the stress perturbation
due to the presence of fault 1.

4.2. Dependence on the Initial Configuration

[31] We discuss the dependence of the final geometry of
the fault system on the initial fault configuration, which we

parameterize with the coordinates (d1, d2) of the point where
fault 2 begins to bend. d2 represents the step over width,
while Lc � d1 gives the amount of overlap (or underlap) of
the two preexisting weak planes measured along strike.
4.2.1. Case of Model S
[32] Figure 10 shows the final geometry of the fault

system in model S for four different amounts of fault
overlap and for different values of the step over width.
[33] Figures 10a–10c correspond to cases where fault 2

begins to bend before its left tip has traveled beyond the
midpoint of fault 1. We recognize a critical value d2

c for the
step over width: fault 2 coalesces with fault 1 when d2 < d2

c

but is repelled from it when d2 > d2
c. This critical step over

width varies with the fault overlap Lc � d1: d2
c roughly

equals 1.3, 0.5 and 0.7 times Lc for the cases of Figures 10a,
10b, and 10c, respectively.
[34] Figure 10d corresponds to the case where fault 2

begins to bend after its left tip has traveled beyond the
midpoint of fault 1. The pattern of coalescence and repul-
sion is opposite to what we have seen in Figures 10a–10c:
repulsion occurs when d2 < d2

c and coalescence occurs when
d2 > d2

c, with d2
c roughly equaling 0.5Lc.

[35] In all of these cases, slip is found to be occurring
even in the parts where the fault inclination is deviated more
than 45� from the original plane, but the amount of slip is
substantially suppressed. In the modeling of spontaneous

Figure 9. Snapshots of fault evolution in (a) model S and (b) model D. The angular variation profile of
the hoop shear traction at the left tip of fault 2 is given on the right of each panel. The gray lines denote
the preexisting weak planes, while crosses mark the nucleation points of the two faults; in model S, a
cross is drawn at the midpoint of fault 1 which is the origin of coordinates. The fault tips were made to
propagate at a fixed speed of vr = 0.8b.
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rupture propagation under more realistic conditions, fault tip
extension tends to be decelerated or arrested in such parts of
the fault [Kame and Yamashita, 1999a, 1999b].
[36] The dependence of the final geometry of the fault

system on the initial configuration can be summarized in the
following way, as long as the model cases examined here
are concerned: if the overlap of the two weak planes does
not exceed half the length of fault 1, (1) fault 2 coalesces
with fault 1 when the step over is narrower than about 1/4–
1/2 the length of fault 1 (2Lc), while (2) fault 2 is repelled
from fault 1 when the step over width is larger than this
threshold value. If the overlap is larger than half the length
of fault 1, (3) fault 2 is repelled from fault 1 when the step
over is narrower than about 1/4 to 1/2 the length of fault 1,

while (4) fault 2 coalesces with fault 1 when the step over is
wider.
4.2.2. Case of Model D
[37] Figure 11 shows the final geometry of the fault

system in model D. The initial configuration is again
parameterized with (d1, d2). Each of the four panels in
Figure 11 shows the result for the same amounts of along-
strike overlap as in the corresponding panel in Figure 10
(model S).
[38] The pattern of dependence of the final geometry on

the initial configuration is qualitatively similar to that in
model S. However, the values of d2

c are slightly different: d2
c

roughly equals 1.3, 0.4, and 0.7 times Lc for the cases of

Figure 10. Final fault geometry in model S, for different
initial configurations assumed.

Figure 11. Final fault geometry in model D, for different
initial configurations assumed.
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Figures 11a, 11b, and 11c, respectively, and is marginally
smaller than in model S.
[39] We would like to emphasize that the differences in

the final geometry of fault 2 in models S and D are due to
the intrinsic effects of dynamic versus static stresses and
does not directly have to do with quasi-static effects related
with different sizes of fault 1, because the length of fault 1 is
identical for both models at the very moment when fault 2
starts to bend (second frame from the top in Figure 9). It is
true that the two profiles of the hoop shear begin to show
visible differences only in the third frame of Figure 9;
however, it is the barely visible small differences in hoop
shear in the second frame, and not the visible differences in
the third frame, that have caused the qualitative difference
in the final geometry of the fault system. This interpretation
is borne out by the fact that the geometry of the model fault
system has never switched patterns between coalescence
and repulsion once fault 2 has begun to bend at the time of
the second frame (Figures 9–11).

4.3. Dependence on the Rupture Velocity

[40] To investigate the influence of the rupture velocity
on the final fault geometry, we conducted numerical simu-
lation with model S while making fault 2 to grow quasi-
statically, and compared the result with that of the dynamic
case with vr = 0.8b (Figure 10). We employed the elasto-
static BIEs of Tada and Yamashita [1997] in the quasi-static
modeling. We fixed the fault overlap Lc � d1 at 1.0Lc as in
Figure 10b.
[41] Comparison of Figures 10b and 12 reveals a remark-

able difference in the simulation results for the two models:
the inclination of fault 2 in the step over region is much
steeper in the dynamic than in the quasi-static case. This can
be understood in terms of the vr dependence of the angular
distribution of hoop shear (Figure 8): as we have pointed
out, the axis of maximum shear deviates from the original
fault plane when vr exceeds a critical value vc 	 0.77b, as
does the rupture velocity vr = 0.8b assumed in our dynamic
model.
[42] In the quasi-static case, the inclination of fault 2 in

the step over region becomes noticeably small with increas-
ing step over width, but we can still see a slight deviation of
the left tip of fault 2 from the original fault plane. The
pattern of dependence of the final fault geometry, coales-
cence or repulsion, on the initial configuration is much the
same as what we have seen in the dynamic case, and so is
the critical value d2

c for the step over width. On the other

hand, the significant decrease in fault tip inclination with
increasing step over width can be understood in terms of the
decreasing effects of fault interactions, as the static stress
perturbation due to the presence of fault 1 is the largest in
the vicinity of the tips of fault 1 and rapidly decreases with
increasing distance.
[43] We fixed vr at constant values in our modeling, so

that the result may be a little different when spontaneous
propagation of rupture with no prescribed velocity is
considered. In the latter case, the rupture velocity may
begin to decrease with steepening fault tip inclination, as
the magnitude of shear traction drop decreases; one is
tempted to conjecture that this mechanism of negative
feedback may possibly act to prevent the fault from getting
inclined too steeply.

4.4. What Determines the Coalescence or
Mutual Repulsion of Two Faults?

[44] The incremental stress Sincr (x, t) at position x and t
due to the occurrence of slip on faults 1 and 2 can be written
in a general form as

Sincr x; tð Þ ¼
Z
G1

Z
D _u1 x; tð ÞGdyn x; t � t; x; 0ð Þdtdx

þ
Z
G1

Du1 xð ÞGstat x; xð Þdx

þ
Z
G2

Z
D _u2 x; tð ÞGdyn x; t � t; x; 0ð Þdtdx

þ
Z
G2

Du2 xð ÞGstat x; xð Þdx; ð6Þ

where x is the source location on the fault, t is the source
time, D _ui (i = 1, 2) and Dui are the slip velocity and slip on
each fault, respectively, Gdyn and Gstat are the Green’s
functions for the dynamic and static stress components of
the stress field, respectively, and Gi (i = 1, 2) is the whole
length of each fault. The total stress increment is
represented as a superposition of the contributions from
slip velocity D _ui and slip Dui on both faults. For the shear
stress components, the first two and the last two terms of the
right hand side are symmetrically distributed with regard to
the planes of faults 1 and 2, respectively, regardless of the
distribution profiles of D _ui and Dui, as long as the faults are
planar: this property can be understood in terms of the
symmetry of the Green’s functions [Freund, 1990; Tada and
Yamashita, 1997; Tada and Madariaga, 2001]. This means
that only the first two terms, or the stress perturbation by
fault 1, is able to determine which way fault 2 is going to
bend when the condition for bending has been satisfied. The
direction of fault 2 bending is therefore subject to
the orientation of maximum incremental shear due to
the presence of fault 1.
[45] We showed in section 4.2 that there is a critical value

d2
c for the step over width across which the orientation of
fault 2 bending is switched, and that its value depends on
the fault overlap Lc � d1. The meaning of d2

c becomes much
clearer when we associate it with boundaries E and L
mentioned earlier. The axis of maximum incremental shear
due to fault 1 alone is oriented differently across boundaries
E and L relative to the x1 axis, and this causes fault 2 to
bend in opposite directions according to which side of those
boundaries the tip of fault 2 happens to fall on. This

Figure 12. Final fault geometry in model S with fault 2
made to grow quasi-statically.
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explains why, in Figures 10a–10c and 11a–11c, d2
c takes

the smallest value when Lc � d1 = 0 (Figures 10b and 11b):
the boundaries come closest to fault 1 at the corresponding
location along the x1 axis.
[46] We have also noted that the pattern of dependence of

coalescence or repulsion on the step over width is opposite, in
the case of total overlap of the two weak planes (Figures 10d
and 11d), to what we have seen when the overlap is
smaller than half the length of fault 1 (Figures 10a–10c and
11a–11c). The pattern reversal can also be interpreted in
terms of the fact that, across the perpendicular bisector
of fault 1, the axis of maximum incremental shear due to
fault 1 alone switches orientations relative to the x1 axis.
[47] We showed that the values of d2

c are slightly different
for models S and D for the same parameter d1 used. This
can be understood by recalling that boundaries E and L take
different shapes in the static and dynamic cases (Figures 5
and 7).
[48] Du and Aydin [1995] argued, with a modeling of

quasi-static mode II faulting, that mutual repulsion of fault
tips can occur under the influence of regional stress; they
showed that the fault tip tends to extend in the direction of
maximum shear due to the regional stress (Y = 45� in our
notation) when the step over is wider than about half the
length of the individual faults and the effects of fault
interactions are negligible. They thereby concluded that
two noncoplanar faults tend to grow away from each other
if the angle Y between the initial fault planes and the axis
of maximum principal stress is larger than 45� in the case
of left steps and smaller than 45� in the case of right steps.
Our results imply, however, that two noncoplanar faults
can grow to repel each other through mutual interactions
alone when the step over is wider than about half the
length of the individual faults, even if one does not
consider the effects of regional stress. In the present study
we used a criterion for determining the orientation of fault
tip extension that is slightly different from Du and Aydin’s
[1995] criterion, but we have confirmed in an earlier study
[Ando and Yamashita, 2003a] that similar fault configu-
rations result whichever sort of criterion we may use in the
numerical modeling.

4.5. Effects of Regional and Normal Stresses

[49] We illustrate how the inclination of regional stress
axes may come into play in the evolution of fault geometry;

we determine the orientation of fault tip extension
by applying the same criterion to the field of total shear
traction

tt x;Y;j; tð Þ ¼ smax sin 2Yþ 2jð Þ þ tincr x;j; tð Þ; ð7Þ

where Y is the inclination of the initial fault planes
measured counterclockwise from the axis of maximum
principal stress Smax, j is the orientation of tentative fault tip
extension measured counterclockwise from the initial fault
planes (Figure 3), and the second term represents the
incremental shear traction on the plane of tentative fault
extension due to the occurrence of slip on the faults. The
first term reduces to smax cos 2j when Y = 45�. Figure 13
shows the final fault geometries for model S, with the initial
geometry identical to the case d2 = 0.2Lc in Figure 10b. For
Y = 45�, the inclination of fault 2 in the step over region is
smaller in the presence of regional stress than in its absence.
This is because the fault tip tends to be attracted to the
orientation of maximum regional shear traction, which is
parallel to the initial fault plane in this particular case. For
the same reason, fault 1 turns away from fault 2 after
momentarily approaching it when Y = 55�, whereas fault 1
coalesces with fault 2 at a steeper angle than in Figure 10b
whenY = 35�. It should be borne in mind that the fault tip is
prone to extend in the direction of maximum regional shear
traction, whatever the fault interactions and the effects of
higher vr may be, when the shear traction drop on the fault
plane is significantly smaller than smax.
[50] Our model simulation produces strictly symmetric

patterns for left-stepping and right-stepping fault system
models, but asymmetry is expected when we consider the
transfer of rupture onto a preexisting fault as the effects of
normal stress come into play. Harris et al. [1991] and
Harris and Day [1993] argued that rupture is more likely
to be transferred across a dilational jog (step over) than
across a compressional one, because rupture on one fault
acts to increase the dilational normal stress on the other in
the former case and vice versa (Figure 14). When the
models in our present study are concerned, however, the
pattern is expected to be reversed once fault 2 coalesces
with fault 1 at a sufficiently steep angle; when the jog is

Figure 13. Final fault geometry for model D, for a fixed
initial configuration and three different inclinations of the
regional stress axis.

Figure 14. Schematic illustration of a compressional jog
and a dilational jog between our two model faults that
coalesce. The pluses and minuses denote the increase and
decrease, respectively, in volumetric stress caused by the
slip on fault 2 and, consequently, the increase and decrease
in dilational normal stress on the preexisting fault 1. Dashed
circles denote the state of stress perturbation before fault 2
begins to bend, while solid circles denote the state of stress
perturbation after fault 2 has coalesced with fault 1.
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compressional, rupture on the inclined part of fault 2 tends
to increase the dilational normal stress on the part of the
preexisting fault 1 that lies ahead, and vice versa. The
implication is that rupture is more likely to be transferred
across a compressional jog than across a dilational one once
coalescence has happened.

5. Implications for Findings From Field
Observations and Rock Experiments

[51] Fault bends connecting noncoplanar fault segments
at oblique angles are found in a number of surface traces of
strike-slip faults observed in the field [e.g., Tchalenko and
Berberian, 1975; Segall and Pollard, 1983; Sibson, 1986a;
Sowers et al., 1994], and zigzag or sawtooth-shaped
geometry can be regarded as a typical feature of natural
fault systems. In view of our simulation results, such sort
of fault system geometry can be understood as resulting
from dynamic interactions between fault segments associ-
ated with rupture propagation. In fact, in field observations,
the step over between two noncoplanar fault segments
connected with a fault jog is narrower than 1/4 to 1/2 the
length of individual segments in virtually all reported
cases.
[52] The sawtooth-shaped geometries of cracks and faults

observed in nature have a typically self-similar structure
over a wide range of length scales, from that of fracture
surfaces in rock samples [e.g., Moore and Lockner, 1995] to
that of the San Andreas fault [e.g., Bilham and Williams,
1985]. Our simulation results help to understand the origin
of this fractality. As we have shown in section 4.2, the final
geometry of a fault system formed through dynamic inter-
actions is governed by the characteristic length of its
constituent segments. As shown in a number of rock experi-
ments [e.g., Lockner et al., 1992], shear fracture is initiated
from an assemblage of numerous microcracks before grad-
ually developing into a macroscopic feature. As a shear fault
system grows in size through repeated merger of neighbor-
ing cracks or fault segments, the amplitude of its geomet-
rical zigzagging, including the step over widths, increases in
proportion to the characteristic length of the constituent
segments that play principal roles at the given stage of fault
system evolution, resulting in a hierarchical structure of
geometrical irregularities which preserve self-similarity over
all length scales.
[53] In fracture experiments of intact rock, acoustic emis-

sion events generally become localized into a planar zone
through successive loading on a sample [e.g., Lockner et al.,
1992]. This process can also be understood in terms of
our results. Since larger cracks have farther reach of
interactive effects, they tend to conjoin larger numbers
of cracks than do smaller ones. At the same time, the
step over width between two noncoplanar cracks have to
be sufficiently small, relative to the individual crack
lengths, in order for them to coalesce. This explains
why shear rupture tends to be localized into a thin planar
zone.
[54] On the basis of fracture experiments of intact rock

under high confining pressures, some authors [Scholz,
2002; Moore and Lockner, 1995; Lei et al., 2000]
reported that tensile microcracks form at random locations
and in random orientations before planes of localized

shear fracture begin to form. We did not take account
of such tensile microcracks in our modeling, but they are
thought to be much smaller in size than the macroscopic
shear cracks we dealt with in the present study, so that we
can safely assume that the presence of tensile microcracks
do not affect the geometry of the shear fault system. In
rock fracture experiments with shear loading, tensile
cracks tend to grow large when the confining pressure
is low, but shear cracks alone can grow into macroscopic
features under high confining pressures [e.g., Scholz,
2002]. In the latter case, the size of the tensile cracks
is expected to be controlled by the characteristic length
scale of the inhomogeneities in the medium, such as the
grain size [Reches and Lockner, 1994]. In fact, Moore
and Lockner [1995], who carefully studied the micro-
structures of rock samples fractured by shear load under
high confining pressures, found out no tensile cracks that
had grown into scales noticeably larger than the grain size
of the specimen.
[55] Our simulation results thus imply that fault systems

tend to evolve from an assembly of randomly distributed
microcracks, through repeated coalescence of neighboring
cracks and fault segments during dynamic rupture in earth-
quake events, into a large-scale structure of considerable
length, such as the San Andreas fault system, capable of
causing large earthquakes.

6. Conclusion

[56] We have investigated, with a numerical scheme
based on a BIEM, the effects of the interactions between
two noncoplanar faults on the resulting fault geometry. Our
model consists of a preexisting main fault (fault 1) and a
subsidiary one (fault 2) that is formed along a prescribed
weak plane off the plane of fault 1, and fault 2 is made to
choose by itself the most favorable orientation for fault tip
extension after it has outgrown a prescribed length of the
preexisting weak plane.
[57] We have found that fault 2 either coalesces with or is

repelled from fault 1 according to their initial configuration.
There exists a critical value for the step over width across
which the pattern is switched; for instance, under certain
conditions, fault 2 coalesces with fault 1 if the step over is
narrower than about 1/4 to 1/2 the length of fault 1, and
mutual repulsion occurs otherwise. The orientation of fault
bending can be explained in terms of the orientation of
maximum shear due to fault 1 alone (see discussions in
section 4.4).
[58] Fault 2 tended to bend more steeply when the rupture

velocity was higher. This attests to the importance of
considering dynamic effects when dealing with rapidly
propagating rupture, an argument consistent with the impli-
cations of the studies by Kame and Yamashita [1999a,
1999b], Poliakov et al. [2002], and Kame et al. [2003].
[59] Our simulation results are able to explain why

noncoplanar fault segments interconnected with bends at
oblique angles are so often observed in natural fault
systems; adjacent fault segments tend to coalesce and fault
systems tend to lengthen as a result of dynamic interactions
during rupture episodes.
[60] We have carried out our present modeling study

under some simplifying assumptions, as our principal aim
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lies in obtaining qualitative insights into the most basic
characteristics of dynamic fault interactions. The effects of
variable rupture velocity, different varieties of regional
stress, and of more realistic friction laws such as slip
weakening, should be considered for more quantitative
studies in the future. We have reported, elsewhere, some
preliminary results of modeling research in that direction
[Ando and Yamashita, 2003b], and further results shall
appear in subsequent papers.

Appendix A: Convolution Kernels for the
Discrete BIEs

[61] Equation (1) is the discrete form of our basic BIEs
which represent the shear traction Tin at any given spatial
node i and time step n as a spatiotemporal convolution of
the slip velocity profile history Djm and static slip profile S j

with appropriate integration kernels (Green’s functions).
The shear traction at the ith spatial node and nth time step
is represented by

Tin ¼
X
j

n
N

ij
1N

ij
2 s22 X

ij
1 ;X

ij
2 ; tn

� �	
� s11 X

ij
1 ;X

ij
2 ; tn

� �

þ N

ij
2

� �2 � N
ij
1

� �2h i
s12 X

ij
1 ;X

ij
2 ; tn

� �o
; ðA1Þ

where slk is the lk component of stress, due to the slip
history on the jth element alone, measured in the local
coordinate system (X1, X2) with the origin fixed at the jth
node and the X1 axis coinciding with the plane of the
corresponding jth discrete element, (X1

ij, X2
ij) the location

of the ith node, and (N1
ij, N2

ij) the normal vector to the ith
element in this local coordinate system. In the global
coordinate system (x1, x2), the latter two can be written
as

N
ij
1 ¼ n1in

j
2 � ni2n

j
1

N
ij
2 ¼ ni1n

j
1 þ ni2n

j
2

ðA2Þ
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1
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j
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ðA3Þ

where (x1
i , x2

i ) is the location of the ith node and (n1
i , n2

i )
is the normal vector to the corresponding ith element.
[62] In analogy to equation (1), the stress component slk

at the ith spatial node and nth time step, that is due to the
dynamic slip velocity history Djm and static slip Sj on the jth
element alone, can be written, in the above mentioned local
coordinate system centered at the jth node, in the form of a
convolution:

slk X
i j
1 ;X

i j
2 ; tn

� �
¼ � m

2b

X
m�n

DjmK
i; j;n;m
dyn;slk þ

m
p

1� p2
� �

SjK
i;j
stat;slk :

ðA4Þ

If we assume a piecewise constant slip velocity within the
jmth spatiotemporal discrete element that has a size of Ds in

space and Dt in time, the dynamic convolution kernels are
expressed as [Tada and Madariaga, 2001]

K
i; j;n;m
dyn;spq ¼ Kdyn;spq X

i j
1 ;X

i j
2 ; tn; tm

� �
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i j
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r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
; ðA9Þ

where et is a parameter of time collocation such that the nth
time step tn represents a time interval starting at tn � etDt
and ending at tn + (1 � et)Dt; we take parameters aDs/Dt =
0.5 and et = 1 in the present study.
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[63] Likewise, the convolution kernels representing the
stress response to piecewise constant static slip on the jth
element are given by

K
i;j
stat;spq ¼ Kstat;spq X

i j
1 ;X

i j
2

� �
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i j
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2
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2
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: ðA13Þ

Appendix B: Analytic Solutions for the Elastic
Field Around an Isolated Fault

[64] According to Pollard and Segall [1987], the analytic
solution for the static stress perturbation due to an isolated
planar fault of half length L with a homogeneous shear
stress drop Ds is given by

1

2
s11 � s22ð Þ=Ds ¼ r

R
sin y�Yð Þ � L2r

R3
siny cos 3Y; ðB1Þ

1

2
s11 þ s22ð Þ=Ds ¼ r

R
sin y�Yð Þ; ðB2Þ

s12
Ds

¼ r

R
cos y�Yð Þ � 1� L2r

R3
siny sin 3Y; ðB3Þ

s31=Ds ¼ rR�1 sin y�Yð Þ; ðB4Þ

s32=Ds ¼ rR�1 cos y�Yð Þ � 1; ðB5Þ

R ¼
ffiffiffiffiffiffiffiffi
r1r2

p
; ðB6Þ

Y ¼ y1 þ y2

2
ðB7Þ

(see Figure B1 for the definition of r, r1, r2, Y, Y1 and Y2).
[65] The analytic solution for the dynamic stress pertur-

bation due to a self-similar fault with a homogeneous shear
stress drop Ds that is nucleated at the origin of coordinates

at time t = 0 and propagated bilaterally along the x1 axis at a
constant rupture velocity vr is given by [Kostrov, 1964;
Kikuchi, 1976; Tada, 1995]
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�2 � t=rð Þ2

q
sinf r � ctð Þ

c ¼ a; bð Þ;

8<
:

ðB13Þ

x1 ¼ r cosf

x2 ¼ r sinf;
ðB14Þ

Figure B1. Definition of parameters appearing in equa-
tions (B1) to (B7).
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where the normalization factors PII(vr) and PIII(vr) are

PII vrð Þ ¼ v2r

b2 � v2r
Kb � Eb
� �

þ 8b2

v2r
Ea � Eb
� �

þ 4 Kb �
b2

a2
Ka

� �
ðB15Þ

PIII vrð Þ ¼ Eb ðB16Þ

with

Kc � K p=2; kcð Þ;Ec � E p=2; kcð Þ; kc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vr=cð Þ2

q
ðB17Þ

being complete elliptic integrals of the first and second
kinds, respectively.

Appendix C: Dynamic Evolution of Fault
Geometry in Antiplane Shear

[66] In the present study, we have simulated the dy-
namic evolution of the geometry of a system of two
noncoplanar faults in in-plane shear (mode II) and have
found the occurrence of coalescence or mutual repulsion
depending on the initial configuration. What happens,
then, to a system of two noncoplanar faults in antiplane
shear (mode III)?
[67] Figure C1a shows the distribution of the orientation

qmax of the maximum static shear traction around an
isolated fault in antiplane shear. We observe, for example,
that 0� < qmax < 90� holds over the entire area of the first
quadrant, and there is nothing like the boundaries E and L
which we have defined in the in-plane shear case. The
same sort of argument we developed in section 4.4 leads
us to expect that coalescence is likely to happen between
two noncoplanar faults as long as the initial overlap is
smaller than half the length of the individual faults. This
was in fact the case when we conducted numerical
simulations; mutual repulsion never happened under such
conditions.

Appendix D: Effects of Discretization

[68] To test the sensitivity of the simulation results on the
level of discretization, we conducted another set of numer-
ical tests for model S, with the initial geometry identical to
the case d2 = 0.2Lc in Figure 10b, with the spatiotemporal
grid intervals twice refined so that 2Lc = 44Ds (Figure D1).
The trajectory of fault 2 in the step over region became less
rugged than in Figure 10b as a result of the more accurate
evaluation of the local stress field in the close vicinity of the
fault tip; as we have said in section 2.2, we evaluate the
hoop shear at the midpoint of the fault element to be broken
next, and the distance of that point from the tip of the fault
has been halved relative to the characteristic length Lc of the
fault system. Nonetheless, the pattern of dependence of the
final geometry, coalescence or repulsion, on the step over
width d2 remained the same as in Figure 10b.

[69] Acknowledgments. We appreciate reviews by David D. Oglesby,
Eiichi Fukuyama, and an anonymous Associate Editor that contributed to

Figure C1. Spatial distribution of the (a) orientation and
(b) magnitude of the maximum static shear traction Dtmax

around an isolated fault in antiplane shear.

Figure D1. Final fault geometry for model D, with the
spatiotemporal grid intervals twice refined with respect to
the characteristic length of the fault system.
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