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1 INTRODUCTION

SUMMARY

We investigate whether a component of the flow in the Earth’s fluid core, namely torsional oscil-
lations, could be detected in gravity field data at the surface and whether it could explain some
of the observed time variations in the elliptical part of the gravity field (/). Torsional oscilla-
tions are azimuthal oscillations of rigid coaxial cylindrical surfaces and have typical periods
of decades. This type of fluid motion supports geostrophic pressure gradients, which produce
deformations of the core—mantle boundary. Because of the density discontinuity between the
core and the mantle, such deformations produce changes in the gravity field that, because of the
flow geometry, are both axisymmetric and symmetric about the equator. Torsional oscillations
are thus expected to produce time variations in the zonal harmonics of even degree in the
gravity field. Similarly, the changes in the rotation rates of the mantle and inner core that occur
to balance the change in angular momentum carried by the torsional oscillations also produce
zonal variations in gravity. We have built a model to calculate the changes in the gravity field
and in the rotation rates of the mantle and inner core produced by torsional oscillations. We
show that the changes in the rotation rate of the inner core produce changes in J, that are a
few orders of magnitude too small to be observed. The amplitudes of the changes in J, from
torsional oscillations are 10 times smaller than the temporal changes that are observed to occur
about a linear secular trend. However, provided the mechanism responsible for these changes
in J is identified and that this contribution is removed from the data, it may be possible in the
future to detect the lowest harmonic degrees of the torsional oscillations in the gravity field
data. We also show that torsional oscillations have contributed to the linear secular change
in J, by about —0.75 x 10~!2 per year in the last 20 years. Finally, the associated change
in the vertical ground motion at the surface of the Earth that is predicted by our mechanism
is of the order of 0.2 mm, which is too small to be detected with the current precision in
measurements.

Key words: core-mantle boundary, Earth’s core, Earth’s rotation, figure of Earth, gravity
field, torsional oscillations.

Because of their rigid nature, it is possible to retrieve the torsional
oscillations from flow maps at the core—mantle boundary (CMB):

Torsional oscillations are the azimuthal oscillations of rigid cylindri-
cal surfaces aligned with the rotation axis (Taylor 1963; Braginsky
1970) (Fig. 1). This type of flow is predicted to occur in the core
as a result of Taylor’s constraint (Taylor 1963), which specifies that,
in steady state, the axial torque exerted by the magnetic force on
any such cylindrical surface must vanish. If at any time this con-
straint is not satisfied on one cylindrical surface, a rigid azimuthal
acceleration of the whole cylindrical surface is instigated in order
to balance the torque. This process excites torsional oscillations,
which have typical periods of a few decades and shorter (Braginsky
1970, 1984).
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one can simply take the part of the axisymmetric azimuthal veloc-
ity that is symmetric about the equator (Jault et al. 1988; Jackson
et al. 1993; Zatman & Bloxham 1997; Hide et al. 2000; Pais &
Hulot 2000). The torsional oscillations computed in this manner
can be tested against an independent data set: since angular mo-
mentum of the whole Earth has to be conserved, the variations in
time of the core angular momentum carried by torsional oscilla-
tions must be consistent with the changes in angular momentum
of the mantle that are observed in terms of variations in its rota-
tion rate (i.e. length-of-day variations). The agreement is especially
good for the last few decades (Jault et al. 1988; Jackson ef al. 1993),
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Figure 1. Torsional oscillations in the core.

which places a high degree of confidence on the retrieved torsional
oscillations.

Since it is the only component of the flow inside the core that we
know with confidence, torsional oscillations are the window through
which we can observe several aspects of the dynamics of the core.
For instance, the restoring force that maintains the oscillations de-
pends on the strength of the magnetic field perpendicular to the
cylindrical surfaces, and therefore by investigating the periodicity
and radial structure of the oscillations it is possible to extract infor-
mation about the magnetic field inside the core (Zatman & Bloxham
1997, 1998). Likewise, the attenuation of the waves contains in-
formation about the nature of the coupling between the core and
the mantle at the CMB (Buffett 1998; Zatman & Bloxham 1999;
Mound & Buffett 2003). In addition, constraints about the dynam-
ics involved in the convective motions in the Earth’s core may be
inferred from the requirement that these dynamics be able to excite
and maintain torsional oscillations (Dumberry & Bloxham 2003).

Recently, it has been shown that, although there remains some
unexplained signal, a large part of the secular variation of the geo-
magnetic field, including the ‘geomagnetic jerks’, can be explained
by a steady flow plus a more refined model of torsional oscillations
(Bloxham et al. 2002). More accurate models of torsional oscil-
lations, in the spirit of this latter study, can then lead to a better
characterization of some of the core processes. The current models
are obtained by inverting the flows at the CMB capable of explaining
the secular variation of the geomagnetic field. Torsional oscillations
may also be constrained to be consistent with length-of-day varia-
tions. In this study, we propose a new way to attempt to observe,
and therefore provide additional constraints on, torsional oscilla-
tions. We investigate whether it is possible to detect them in the
gravity field data at the surface of the Earth.

The large Coriolis force associated with rigid azimuthal flows of
the sort involved in torsional oscillations is balanced by the estab-
lishment of a pressure gradient in the direction perpendicular to the
rotation axis. This geostrophic force balance provides a simple way

Figure 2. A prograde rigid rotation flow in the core (black arrows) gives
rise to a geostrophic pressure that increases (quadratically) with distance
from the rotation axis (£2), from a low at the rotation axis to a high near the
equator on the CMB. The flow and pressure are invariant in the direction
parallel to the rotation axis.

Mantle Mantle
Core Core

Figure 3. Horizontal gradients in pressure at the CMB (left) lead to a radial
deformation of the CMB and the exterior surface (right).

to visualize how torsional oscillations produce variations in the grav-
ity field. Consider for example a prograde rigid rotation of the whole
core, where the rigid azimuthal velocity increases linearly with dis-
tance from the rotation axis (Fig. 2). This requires the establishment
of a low pressure along the rotation axis and a high pressure at the
equator of the CMB, with surfaces of constant pressure coinciding
with surfaces of coaxial cylinders. This geostrophic pressure gradi-
ent from the pole to the equator along the CMB produces latitudinal
variations in surface forces on the CMB and deformations of this
fluid—solid surface. The distortion of the CMB produces variations
in the gravity field because there exists a large density discontinuity
between the core and the mantle. The perturbation in gravity leads
to adjustments in the mechanical equilibrium of the whole planet.
It may then be observed at the surface, although with attenuated
amplitude (Fig. 3). A similar effect is produced at the inner core
boundary (ICB), with radial displacements of this boundary con-
tributing to variations in the global gravity field. However, because
the density discontinuity between the inner core and the fluid core
is smaller, and because it is further away from the surface, we ex-
pect the contribution at the ICB to be less important than that at the
CMB.

An additional effect that needs to be considered is the gravity
field perturbation that results from the changes in the rotation rate
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of the mantle. As we have already mentioned, these are required in
order to balance the changes in the axial angular momentum of the
core carried by torsional oscillations. Changes in the rotation rate
of the mantle modify the equilibrium balance between gravity and
centrifugal forces. Consequently, this changes the elliptical compo-
nent of the gravity field and the oblateness of the Earth. The change
in the gravity field produced by the latter effect is opposite to the
direct effect of the pressure force on the CMB produced by the tor-
sional oscillations. So, for instance, if torsional oscillations produce
a prograde net rotation of the core and tend to make the whole Earth
more oblate, the associated retrograde rotation of the mantle tends
to make the Earth less oblate.

A similar effect arises from changes in the rotation rate of the
inner core. Because of strong electromagnetic coupling at the ICB
(Gubbins 1981), torsional oscillations will cause the inner core to
undergo changes in its rotation rate. In addition, because of axial
gravitational coupling between the mantle and the inner core (Buffett
1996), a change in the rotation rate of one influences the other. As
for the mantle, changes in the rotation rate of the inner core produce
changes in oblateness and in the elliptical gravity field of the whole
Earth.

Torsional oscillations are time-dependent flows, and because of
their geometry we expect them to produce variations in the zonal
harmonics of even degree in the gravity field. Hence, it may possible
to detect time variations in the zonal components of the gravity field
that are caused by the torsional oscillations. If so, the gravity data
may then be used to provide better constraints on models of torsional
oscillations.

An additional motivation for this investigation comes from the
gravity field data themselves. Large subdecadal timescale changes
in the degree 2 zonal harmonic of the gravitational field have re-
cently been reported (Cox & Chao 2002), and these may perhaps
be caused by the dynamical mechanism proposed above. As shown
in Fig. 4, prior to 1998 the variations in the coefficient J,, which
represents a measure of the degree 2 zonal harmonic (e.g. Jeffreys
1970), seem to consist essentially of a slowly decreasing linear drift
of ~—2.8 x 107" yr~!. This linear secular trend is thought to rep-
resent the signature of postglacial rebound: polar land masses are
still uplifting from the removal of the glacier load that covered them
during the last glaciation, resulting in a gradually less oblate Earth
(Yoder et al. 1983; Rubincam 1984; Mitrovica & Peltier 1993), and
hence a decrease in.J,. However, a considerable departure from this
linear trend has occurred between 1998 and 2002. This impulse in
the signal is difficult to reconcile with the slow process of postglacial
rebound for which the timescale of variations is about a thousand
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years. Therefore this suggests the presence of at least one additional
physical mechanism that participates in the temporal changes of J ;.
Moreover, the fact that AJ, is now on its way back to its pre-1998
trend suggests that this additional mechanism may be episodic and
does not produce permanent changes.

The sudden increase in J, requires a mass transport from the po-
lar regions to the equatorial regions, or an increase in the oblateness
of the whole Earth, or a combination of both. In the original report
of the impulse, Cox & Chao (2002) suggested possible mechanisms
involving mass transport in the oceans and the atmosphere, and
glacier-melting near the polar regions, although none of these pos-
sibilities was shown to be entirely satisfactory. More recently, Chao
et al. (2003) have shown that variations in sea-surface height in the
extratropic north and south Pacific ocean basins have a combined
temporal variation that matches remarkably well the time evolution
of the recent sudden changes in J,. However, the amplitude of the
variations predicted from this oceanographic event accounts for only
one-third of the observed anomaly. It has been proposed that the re-
maining part of the signal can be explained by glacier-melting at
subpolar latitudes (Dickey et al. 2002). However, the sea-level rise
that would accompany the ice-melt has not been observed (Chao
et al. 2003), which suggests that the melt water, if any, remained in
the vicinity of its melting location, in which case there is no trans-
port of mass towards the equator and no associated increase in J,.
Another problem with the latter scenario is that it should produce
a sizable anomaly in J3, which is not observed (Chao et al. 2003).
In addition, it is difficult to explain the return of J, to its pre-1998
trend with a glacier-melting mechanism, because it would imply the
reverse scenario: a sudden large accumulation of ice and snow at
high latitude and a consistent sea-level drop, neither of which has
been observed. Since it is more likely that the departures in J, are
caused by a single mechanism, this raises doubts on the validity of
the glacier-melting scenario.

Another possibility suggested by Cox & Chao (2002) involves the
Earth’s fluid core. As they pointed out, a geomagnetic jerk occurred
in 1999 (Mandea et al. 2000), in proximity to the time at which
the departure in J, was recorded. Geomagnetic jerks, as we have
mentioned above, can be explained by torsional oscillations in the
core (Bloxham et al. 2002). This indicates a possible correlation
between the changes in J, and torsional oscillations. Moreover,
geomagnetic jerks have also been observed in 1978 (Gavoret ef al.
1986; Gubbins & Tomlinson 1986) and 1991 (Macmillan 1996), and
near both of these times we observe a somewhat larger departure
of J, from the linear trend. These correlations suggest that jerks
and changes in J, may have a common explanation and call for a

) I I I
1980 1982 1984 1986 1988 1990

1 1 1
1992 1994 1996 1998 2000 2002

year

Figure 4. Variations in time of J, from satellite laser ranging data, once the seasonal contributions are subtracted. The data presented are those obtained after

a filtering by a 1-yr moving window (adapted from Cox & Chao 2002).
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proper investigation of the contribution of torsional oscillations in
the gravity field data.

In order to do this, we have built a model that predicts the vari-
ations in the gravitational potential caused by a given torsional os-
cillation flow model. This model computes the displacements, the
changes in the gravity field and the changes in the stress field in the
entire Earth that are produced by the radial forcing associated with
torsional oscillations and changes in rotation rates of the mantle
and inner core. We find that, by using a torsional oscillation flow
model that is constrained to satisfy the length-of-day data and also
provide the best fit to the geomagnetic jerk signals, the changes in
J that are predicted by our model are not well correlated with the
observed changes, and have a magnitude 10 times too small. This
suggests that the sudden observed changes inJ, cannot be explained
directly by torsional oscillations and that the correlation between the
geomagnetic jerks and the maxima in AJ, may be a coincidence.
However, provided the origin of these large variations is identified
and removed from the data, it may be possible in the future to detect
torsional oscillations in the gravity field data. We note that only the
lowest harmonics of torsional oscillations, # and 3, may produce
changes in gravity large enough to be observed. Our model also
predicts the occurrence of vertical ground motions of the order of
0.2 mm, which is presently too small to be observed, but may be
observable in the near future. The results of our model also suggest
that torsional oscillations have contributed to a secular change inJ,
of about —0.75 x 107'2 per year in the last 20 yr. In addition, our
results indicate that the changes in the rotation rate of the inner core
induced by torsional oscillations or other means produce variations
in J; that are a few orders of magnitude too small to be observed.

Finally, we note that the two main physical concepts dealt with
in the present work have been discussed in previous studies. First,
the idea that changes in the gravity field at the surface could be
caused by pressure changes due to flow in the core which produce
deflections of the CMB has been investigated most recently in the
work of Fang et al. (1996). In their work, the change in geostrophic
pressure at the CMB was deduced from the changes in the CMB
flow between 1965 and 1975. This pressure field was then treated
as a surface mass density perturbation at the CMB and the radial
deflection and changes in the gravity field that resulted solely from
this local perturbation were calculated. They reported changes in
J, of the order of 1.3 x 107!! per year, similar in amplitudes to
the observed changes reported by Cox & Chao (2002) and larger by
about an order of magnitude than the results of the present study.
This large discrepancy is partly due to differences in modelling.
We specify the geostrophic pressure in terms of a surface force
acting on the CMB instead of a surface mass density perturbation. In
addition, we solve for the resulting perturbations in the whole planet,
instead of in the mantle only. The earlier work of Lefftz & Legros
(1992) is also noteworthy, showing that variations in the topography
at the CMB, for instance due to mantle convection, can produce
significant changes in the gravity field. Secondly, the changes in the
elliptical component of the gravity field resulting from variations
in rotation rate of the mantle (and inner core) is also not a novel
idea. Indeed, the discrepancy between the observed and predicted
values of the hydrostatic flattening was erroneously believed for a
long time to be related to the deceleration of the Earth’s rotation
rate (e.g. Munk & MacDonald 1960). More recently, Denis et al.
(1998) have calculated the changes in elliptical gravity field that
result from changes in rotation rate, and the method employed in
the present work is inspired in many ways from this study. We note
that the inclusion of this effect in our calculation is also responsible
for part of the difference from the results of Fang et al. (1996).

2 THEORY

We seek to determine the displacements and changes in the gravity
field and stress field of the whole Earth that result from specified
forcings: torsional oscillations in the fluid core and rotation rate
changes in the mantle and inner core. The dynamics governing small
perturbations in the mechanical equilibrium of a self-gravitating
Earth is a well-studied problem because it lies at the very base of the
theoretical foundation on which normal-mode seismology is built.
In addition, the responses of the Earth to external forcing, such as
tidal forcing, and to surface loading, such as postglacial rebound and
sea-level change, are also based on the same theoretical framework.
We take advantage of this extensive body of literature to construct
our model.

The following assumptions and approximations are used. We
assume that the undeformed Earth is spherically symmetric, self-
gravitating and in hydrostatic equilibrium and consider the pertur-
bations about that state. The spherically symmetric equilibrium im-
plies that we are considering a reference state that is non-rotating.
We also assume that the rotation does not influence the deformations
in the sense that we neglect their associated Coriolis acceleration.
The influence of rotation only enters our system through our pre-
scription of the forcing in the fluid core, the inner core and the mantle
that perturb the undeformed state. We are considering the static re-
sponse due to static forcings and we assume that a static equilibrium
is maintained at all times during the deformations. In other words,
we neglect all inertial accelerations in the momentum balance. We
assume that the fluid core is inviscid and remains in hydrostatic equi-
librium even in the deformed state, and that the mantle and inner
core are perfectly elastic. We neglect the presence of oceans at the
surface.

2.1 The Earth’s external gravitational potential

The gravitational potential at a radius 7 outside an axisymmetric
body of mean spherical radius a can be expressed as a sum of
Legendre Polynomials (e.g. Jeffreys 1970):

be(a,0) =~ (1 -y (;) J,,P,?<cos9)) , (1)

n=2

where M is the mass of the Earth and the coefficients .J, are di-
mensionless numbers that represent the contribution of each zonal
harmonic. In particular, J, is the coefficient of oblateness and rep-
resents the equatorial bulging of the Earth as a result of its own
rotation. We note that J, > 0 represents an increase in oblateness.
At the surface (r = a), the time variations of the J,, are related to
the time-dependent zonal harmonic coefficients of the gravitational
potential ®%(a, 1) by

AJ(1) = - ABY(a. ). )

Here, we are interested solely in the changes in the gravitational
potential of the whole Earth that result from the variations in
geostrophic pressure along the CMB caused by torsional oscilla-
tions in the core and from changes in the mantle and inner core
rotation rates.

2.2 Deformations in the mantle and inner core

Small displacements in the mantle and inner core caused by a load
or an external forcing lead to changes in the stress field and grav-
ity field. In turn, these changes create forces that induce additional
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displacements and additional changes in the stress and gravity field.
The resulting mechanical equilibrium in the deformed state is that
for which the external force is balanced by the sum of the forces in-
duced by the small displacements. In the present context, the forcing
results from torsional oscillations in the fluid core or from changes
in the rotation rate of the mantle and the inner core.

We follow the treatment of Dahlen (1972, 1974), except that we
neglect the Coriolis force, assumed to be small in our problem,
and we also eliminate the inertial terms because we are considering
static perturbations. For a complete treatment of all the perturbation
equations, we refer the reader to Dahlen & Trump (1998).

The mantle and inner core are assumed to be perfectly elastic and
isotropic, although the elastic parameters and the density vary with
depth. Their reference equilibrium configuration is defined in terms
a zeroth-order balance relating the hydrostatic pressure p,(r), the
density p,(r) and the gravitational potential ¢,(r). The undeformed
mantle is assumed to be in hydrostatic equilibrium,

d
0= —=2"Po(r) = po(r)e(r). 3)
,
and the gravitational potential satisfies Poisson’s equation,
2 29
— + == ) o) = 47 Gpo(r). “4)
ar ror

In the above equilibrium state, the gravitational acceleration —g,(r)
e, is defined in terms of the gravitational potential by g,(r) =
%q)o(r), and G is the gravitational constant. We note that this defi-
nition of the gravitational acceleration implies that the gravitational
potential is negative everywhere.

The deformed state of the mantle is expressed in terms of small
perturbations about the above equilibrium. The perturbations are
created by small displacements u(r), which represent displacements
of material particles from their position in the reference Earth (i.e.
Lagrangian displacements). The displacements cause perturbations
in the stress field and the gravitational potential. The static equilib-
rium of the deformed Earth is governed by an ensemble of condi-
tions that comprise the momentum equation, which determines the
mechanical equilibrium,

0=V -T—V(pou-Vey) = po V1 — p1goer + e, ®)
an elastic constitutive relation,
T = IV - u) + p,[Vu+ (Vu)'], (6)
an equation for continuity,

9po

plz—pOV~u—u~erar, (7)

and Poisson’s equation, which determines the changes in the gravity
field,

qubl =47 Gp,. (8)

The above set of four coupled equations is known as the set of
linearized elastic-gravitational equations. The perturbations in the
density p; = pi(u) and the gravitational potential ¢; = ¢(u)
are defined at fixed coordinate points r, i.e. they are defined in a
Eulerian reference frame. The incremental Lagrangian—Cauchy
stress tensor T = T(u) involves the second rank identity tensor I, the
Lamé parameter 1, = A,(7) and the modulus of rigidity 1, = 1t (7).
The latter two define the elastic state of the reference undeformed
Earth. The externally applied body force f. = f.(r) represents here
the centrifugal force of the mantle rotation, which we write in terms
of a centrifugal potential ¢:

fo = —po V.. )
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The forcing from torsional oscillations will enter the perturbations
in the mantle through the boundary conditions at the CMB.

Solutions of the above system are found by expanding u, ¢, and
V - uin terms of surface spherical harmonics as (e.g. Alterman
et al. 1959)

u= i Z (U )Y e + VI (r)V Y,

n=0 m=—n

DI ACHE (10)

n=0 m=—n
V.u= i i Xr (Y,
n=0 m=—n

where V| represents the gradient operator on the unit sphere:

d 1 9
Vi=e— _— . 11
L= T g 9y an
The surface spherical harmonics Y7 are defined as
Y™ =Y"@, )= P"(cosf)e™, (12)

where the functions P)'(cos ) are the associated Legendre polyno-
mials. We use the following normalization over the unit sphere:

4
/ YUY AR = 8. (13)

This choice is convenient because for m = 0 it is equivalent to
the Gauss—Schmidt normalization used in geomagnetism. This will
facilitate the calculation of the perturbations directly in terms of the
conventional definition of the flow coefficients at the CMB.

It is possible to write the complete set of elastic-gravitational
equations in the mantle as a system of six coupled first-order or-
dinary differential equations (ODEs), for which a solution can be
found with a numerical integration (Alterman et al. 1959). The set
of equations is presented in Appendix A. In a compact notation, the
system of ODEs can be written as

d
Ey:A-y-l—f, (14)

with the vector y = [y1, V2, V3, V4, Vs, V6]', in which

n=uy
m 3 m
»2=dox, + 2M05Un
e
a m Vnm Un’”
wi= o (o= 2+
ar r r
ys = @)
9 1
yo= 0]+ @D g 4 4nGpur. (15)
r r

The interpretation of each quantity is as follows: y, and y; are re-
spectively the radial and tangential displacements; y, and y4 are
respectively the radial and tangential stresses; ys is the gravitational
potential; and yg is a gravitational acceleration.

The vector f = [f1, f2, f3, f4, 5. f6]" includes the exter-
nally applied body force. For our present case of a centrifugal force,
the centrifugal potential ¢ is written in terms of a degree 2 zonal
harmonic,

"
¢ = Zza—zYz, (16)
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where a is the radius of the Earth, and where Z, = Q2a?/3 in the
case of a centrifugal force of a body rotating at angular velocity €2,
or alternatively, Z, = 2Q,8Qa?/3 in the case of a centrifugal force
associated with an angular velocity change of §<2. Using the above
decomposition of ¢, in (9) yields a forcing vector f for which the
only non-zero contributions are

9 r? r
fz=,005 Zz; =2,0022;,

,
fi = oo, (17)

and restricted to harmonic degree 2.

The perturbations in the inner core are treated in an equivalent
manner to those in the mantle. The set of elastic-gravitational equa-
tions in the inner core is

in=A~yS+F, (18)
ar

where y* is the solution vector in the inner core and f* is defined
identically to f except that it represents the centrifugal force in the
inner core. As for the mantle, the forcing from torsional oscillations
enters the inner core equations through the boundary conditions at
the ICB.

2.3 Deformations in the fluid core caused
by torsional oscillations

The undeformed static reference state in the core is isotropic and
spherically symmetric. As for the mantle and the inner core, the
equilibrium between the hydrostatic pressure, the density and the
gravitational potential is determined in terms of the hydrostatic bal-
ance (3) and Poisson’s equation (4).

The perturbations in the gravity field in the core that result from
small displacements differ than those in the solid Earth because
tangential stresses vanish everywhere. The appropriate way of cal-
culating the perturbations in the static limit has been the subject of
intense debate in the literature and is known as ‘Longman’s paradox’,
or ‘static core paradox’ (Longman 1963; Jeffreys & Vicente 1966;
Smylie & Mansinha 1971; Pekeris & Accad 1972; Israel et al. 1973;
Dahlen 1974; Chinnery 1975; Crossley & Gubbins 1975; Dahlen
& Fels 1978). The controversy arises as a result of the absence of
rigidity in the core. In the static limit with x, = 0, the above elastic-
gravitational equations have no solutions unless the liquid core is
assumed to be neutrally stratified or deformations are assumed to be
divergence-free, neither case being completely physically realistic.
One way to understand the difficulty is as follows. In the absence
of shear stresses, displacements of fluid particles in the core must
coincide with the deformations of surfaces of constant gravitational
potential. In the mantle, however, displacements result from the
combined effects of changes in gravitational potential and elastic
strain. Yet, the gravitational potential must be continuous across
the CMB. Hence, if the equilibrium shape of the CMB satisfies the
displacements on the mantle side, this surface does not match a
surface of constant gravitational potential. In other words, fluid par-
ticles next to the CMB are no longer on their original gravitational
potential surface, and unless the core is neutrally stratified, they
experience a buoyancy force which prevents a static equilibrium.
Recent discussions on the static-core paradox can be found in the
work of Fang (1998) and Denis et al. (1998). However, in the case
of a spherically symmetric Earth model, as it applies in this study,
if one assumes that displacements are divergence-free, the neutrally

stratified condition necessarily follows and a static solution is possi-
ble, although the displacements of individual fluid particles cannot
be uniquely determined (e.g. Denis et al. 1998). Dahlen (1974),
Chinnery (1975), and Crossley & Gubbins (1975) showed that an
equivalent resolution of the difficulty is obtained by requiring that
the hydrostatic equilibrium in the fluid core is maintained at all times.
In this case, displacements in the core can be determined and still be
represented using a Lagrangian description, but only provided that
they be interpreted as the displacement of equipotential surfaces,
not the displacement of actual fluid particles. Here, we follow their
approach, which is also used in postglacial rebound studies (e.g.
Wu & Peltier 1982), and is valid for problems for which the typical
timescales of the variations are much longer than the gravest of the
normal modes of oscillation of the Earth (Dahlen & Fels 1978).

If hydrostatic equilibrium is maintained even in the deformed
state, the surfaces of constant density, constant fluid pressure and
constant gravitational potential always coincide. The fluid displace-
ments parallel to the equipotential surfaces are undetermined. The
static equilibrium in the core under small (Lagrangian) displace-
ments u(r) of the equipotential surfaces is governed by the linearized
first-order perturbations in the hydrostatic balance,

0=—-Vp —p. Vi — pigeer + e, (19)
the linearized first-order Poisson’s equation,

V¢, = 4nGpy, (20)
and an equation for continuity,

o=, @1

in which we have used the divergence-free condition, V - u = 0. As
for the solid Earth, p; = p;(u), ¢ = ¢(u), and p; = p,(u) are all
Eulerian variables. Here, f. = f.(r) is the radial force from torsional
oscillations acting on the equipotential surfaces. This force is equiv-
alent to the Coriolis force associated with the torsional oscillation
velocity v = v,e,, and is given by f. = —2p,€2 x v, where 2 =
Q,e, is the angular velocity of the Earth’s rotation.

Torsional oscillations are azimuthal flows for which the quantity
PoVye, is independent of z, the coordinate parallel to the rotation
axis. The Coriolis force associated with this type of flow is conser-
vative, because

d
V X (2 x pov) = UV - pov) — Q- Vp,v = —Qoa—pov =0.
z
(22)
We can therefore express it as a gradient of a potential, 2 2 x p,v=

— V p,, where we call p, the geostrophic pressure. The perturbation
in the hydrostatic balance (19) can then be written as

0=—V(pi — pg) — P V1 — p1goer. (23)

By decomposing (23) into its radial and transverse components
and using (21), it follows that

P1 = —pob1 + Py, (24)
u, = —ﬁ. (25)
8o

Egs (21), (24) and (25) represent the coherent displacements of
surfaces of constant density, gravitational potential, and the combi-
nation of the pressure and geostrophic pressure.

By inserting (21) and (25) in (20), we obtain a second-order linear
differential equation for ¢:
vig = TGy, (26)

g or
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This version of Poisson’s equation implies that the perturbations in
the gravitational potential within the core are independent of the
local geostrophic forcing. The geostrophic forcing creates the dis-
turbances in ¢ by displacing the solid—fluid boundaries, and enters
the system through the boundary conditions that will be specified
in Section 2.5. The changes in ¢; within the core are entirely a con-
sequence of the disturbances at the boundaries. Once a solution for
¢ is obtained, the displacement of equipotential surfaces u, and the
perturbations in pressure p; may be subsequently determined from
the known py.

The solutions of this equation can be found by expanding ¢, in
spherical harmonics:

h=3 Y ey @)
n=0 m=—n

Upon substitution of (27), (26) separates into a set of equations in
@7 (r) for each n and m, namely

RRTOL 209" 1 4w G 9p,
noy 277 M_Fn_i " = 0. (28)
or? roor 72 g or

Itis convenient to rewrite (28) in a form similar to the set of equations
that determine the perturbations in the solid Earth. This will later
facilitate the implementation of the boundary conditions and the
solution of the entire problem. We therefore use the same change of
variable,

Vs =@y
o _ W5 _4mGpy o ntl (29
Y6 = %, o s PREC

where the superscript ¢ is used to identify fluid core variables, and
where we have used (25) for the radial displacement yf.

Eq. (28) can be written as a coupled ODE system in terms of y$
and y¢. In matrix form, with y© = [»¢, ¥¢]", we get

d

—y =By, (30)
or
where
4 Gpo _ n+l 1
8o r
B=| sonon o _ e | G
g 7 v %

The above development is equivalent to that presented by Wu &
Peltier (1982). The changes in y* that result from both the torsional
oscillations and the variations in the rotation rate of the mantle
and inner core will enter the above equations through the boundary
conditions at the CMB and ICB.

2.4 Geostrophic pressure

The geostrophic pressure that produces the distortion of the CMB
is completely determined by torsional oscillations. We now wish
to express the spherical harmonic coefficients of the geostrophic
pressure in terms of this flow. As we defined above,

2 x (pov) = =V py. (2)

Torsional oscillations are purely azimuthal flows, v = v,e,, and
therefore

2Q0p0Vp€s = V pg, (33)

where e is the direction perpendicular to the rotation axis. The
geostrophic pressure is a function only of s, the distance from the
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rotation axis. In other words, p, is constant along lines parallel to
the rotation axis. The value of p, at any point in the core may then
be determined by an axial projection of its value at the CMB. This
allows a determination of p,, in terms of a torsional oscillation flow
represented at the CMB. Such a relationship is easily obtained by
taking e, x (33), which gives

2Q,bp, cosOv,e, = e X V| p,, (34)

where b is the radius of the CMB, and V| is defined on a unit sphere.

We first require a representation of the core surface flow v, in
a spherical harmonic decomposition. The general representation of
the tangential velocity at the CMB obtained from the geomagnetic
field secular variation is usually written in terms of a toroidal and
poloidal decomposition (e.g. Bloxham & Jackson 1991),

Vi=vr+Vv =V x(Te,)+ VS, (35)

where S and 7 are respectively the poloidal and toroidal scalars
which are expanded in spherical harmonics. For torsional oscilla-
tions, the only non-zero contributions are from the zonal toroidal
components that are symmetric about the equator. Hence the spher-
ical harmonic decomposition is limited to the coefficients /0 for
n odd,

Vi = vee, = Vi x (Te) =—e, x V|7,
T=>) 1Y) (36)

nodd

We note that, in geomagnetism, the expansion of 7 and S is usually
done in terms of real spherical harmonics instead of our choice
defined in (12). However, the two expansions are identical for the
zonal harmonics. The coefficients 2 in (36) are therefore equivalent
to those given by CMB flow inversion studies. We also note that the
coefficients 7 are defined in this study with respect to a reference
frame rotating at angular velocity €2,.

With (34), we can relate the spherical harmonic coefficients of
the geostrophic pressure at the CMB, W!'(b), defined as

o0 n
peb) =) Y W)Y, €]

n=0 m=—n
to the coefficients of torsional oscillations defined above in (36)
(Gire & Le Mouél 1990). The details of the derivation of this rela-
tionship are presented in Appendix B. The only non-zero coefficients
of the geostrophic pressure are those with both m = 0 and n even.
This is consistent with our expectation that torsional oscillations
produce perturbations that are axisymmetric and symmetric about
the equator. In Appendix B, we demonstrate the more general result
that torsional oscillations are in fact the only component of the flow
that produce changes in the even zonal harmonics of the geostrophic
pressure at the CMB. Here, we simply present the result: for an even
degree n, the coefficients WO(b) are given by

2m—1) , 2(n—}—2)t0 )

WO(B) = —Qubp, (—t e (38)

2n—1) """
Hence, the zonal geostrophic pressure coefficient at a given n de-
pends only on two coefficients of the flow, #_, and £, (Gire &
Le Mouél 1990).

To complete the problem, we also need to compute the coefficients
WO(c) that represent the geostrophic pressure at the ICB (r = c).
Because the only non-zero coefficients are those with m = 0, we can
expand the geostrophic pressure in terms of Legendre polynomials
as

pe(c.0) = Y W(c)PY(cosh), (39

neven
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and relate the coefficients W9(c) to the coefficients W°(b) defined at
the CMB in (38). Because the geostrophic pressure is constant on
cylindrical surfaces aligned with the rotation axis, this is done by
taking the axial projection of the Legendre polynomial expansion at
the CMB onto the interior radius c,

polc. )= \pf;,(b)P;’,(cos (arcsin <% sin@))), (40)

n'even

and expanding this latter expression in terms of Legendre polyno-
mials defined on the interior radius c. Equating (39) and (40) gives
the contribution of the CMB coefficient at degree n’ to the ICB coef-
ficient at degree n. We note that as a result of the axial projection, we
expect that the coefficients W9(c) also contain contributions from
coefficients of higher harmonic degrees n’ of the forcing defined at
the CMB.

The determination of the W(c)s according to the above scheme
is relatively straightforward. However, compared with the CMB de-
formations, the effects on the gravity field at the surface caused
by the distortion of the ICB are much smaller. This is because the
density jump is smaller at the ICB, and more important, because
the perturbations created at the ICB are more attenuated when they
reach the surface than those created at the CMB. We have verified
that the inclusion of the ICB deformation has a negligible effect on
the results of this study. Therefore, for the sake of simplicity, we
have decided to neglect the effects of the geostrophic pressure at the
ICB, and from now on we assume that W/(c) = 0.

2.5 Boundary conditions

The solution of the coupled ODEs for the perturbations in the core
in (30) depends upon two constants of integration. Likewise, the
solution for the perturbations in the mantle in (14) and in the in-
ner core in (18) each require six constants of integration. These
14 degrees of freedom are specified in terms of boundary condi-
tions at the origin, the ICB, the CMB, and the Earth’s surface.

The conditions that the variables of our system have to obey at
these interfaces are as follows. At each discontinuity in density or
elastic parameters, including those at the Earth’s surface, the gravi-
tational potential ¢ and the gravitational flux e, - (V¢ + 47 Gp,u)
must be continuous. At internal boundaries between two solid re-
gions, all displacements and traction forces must be continuous. At
a boundary between a solid and inviscid fluid, tangential displace-
ments may be allowed. The traction force must still be continuous
at a fluid—solid boundary, but since an inviscid fluid cannot sup-
port shear, the tangential traction vanishes at the boundary. At the
Earth’s surface, in the absence of surface load, the traction forces
must vanish.

The above requirements impose that, at radial surfaces in the
mantle and the inner core where there exists a discontinuity in p,,
Lo OF [Lo, all six y;’s are continuous. At the CMB, the appropriate
way of incorporating the above conditions has been discussed by
a number of authors and is related to the static-core paradox (see
earlier references). As mentioned above, the difficulty stems from
the fact that deformations in the core coincide with displacements
of equipotential surfaces, whilst this is generally not the case in the
mantle. Consequently, fluid particles next to the CMB cannot be
on their original equipotential surface and experience a buoyancy
force. Yet, on long timescales, after dissipation of the oscillations
that ensue from this restoring buoyancy force, the density of individ-
ual fluid particles is altered by Newtonian cooling and they can rest
on a different equipotential surface (Dahlen & Fels 1978). In other

words, on long timescales the core behaves as if it were neutrally
stratified. Hence, in our formalism where we are not interested in
the static displacements of individual fluid particles but only in the
equilibrium deformation of the equipotential surfaces, the latter do
not have to match the shape of the CMB. Allowance for this is incor-
porated by introducing an apparent jump in the radial displacement
at the CMB in terms of an arbitrary constant. The complete set of
boundary conditions at the CMB is

nb) = —ySEZ; e

12(b) = Cs5go(b)po(b™) — W)(b),

y3(b) = Cy,

ya(b) = 0,

ys(b) = y5(b),

Y6(b) = y5(b) + 47w Gpo(b™)Cs, (41)

where (b7) indicates a quantity evaluated in the fluid side of the
boundary. The constant Cs represents the apparent jump in radial
displacement, and Cj is the arbitrary tangential displacement at the
base of the mantle. The boundary condition on the radial stress ()
introduces the forcing from the geostrophic pressure in the system.
The radial stress on the fluid side includes the geostrophic pressure
(it is given by 24), which leads to the above condition.

By analogy, a similar set of boundary conditions applies at the
ICB. However, because the method of solution involves an integra-
tion of the perturbation equations from » — 0 towards the external
radius, the boundary conditions at the ICB are manipulated into
a more convenient form. In the fluid core, we are only concerned
about )¢ and y¢, and the propagation of these two variables across
the ICB is given by

¥5(e) = y3(0),

G, | (42)
—— (n3(e) + ¥(0)) ,
go(c) 03 )
where we have used the condition on y, across the ICB. Two addi-
tional conditions must be obeyed by the solution in the inner core
at the ICB:

1@ =0, (43)

. . 4
ye(e) = yg(e) =

2o(A)Po(c)¥} () — ¥3(c) + polc)yi(c) — Wi(c) = 0, (44)

where (c¢*) indicate a quantity evaluated on the fluid side of the ICB,
and where the second of these condition is obtained from combining
the conditions on y; and y,. According to our approximation in the
previous section, we set WY(c) = 0 in the last two sets of equations.
The conditions that ensure that the solution in the inner core
remains finite as » — 0 can be determined by an analytical solution
near the origin. Following Crossley (1975), if we assume that near the
origin dp/dr — 0,then g, — 47 G p,r /3, and an analytical solution
can be obtained by a power-series expansion of the variables. The
solution of the six variables at a small radius € depends on three
independent coefficients, and the solution can be written as

Yi(€) = Ciy + Coy? + Cyy®. (45)

The coefficients C;, C, and C; are three additional constants of
integration and the vectors y¢!, y*> and y* are given in Appendix C.

At the top of the mantle, in the absence of any external load, the
radial stresses, the tangential stresses and the gravitational flux all
vanish, which specifies three additional conditions:

y2(a) = ya(a) = ys(a) = 0. (46)
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We therefore have a total of 19 boundary conditions, which are
specified in terms of five constants. The values of these constants are
those for which all 19 boundary conditions can be simultaneously
satisfied. The determination of the constants removes five degrees
of freedom in the system and allows a unique solution for the whole
problem. The solution can be found by integrating (18) from a small
r, using (45) as a starting solution. The boundary conditions (42) at
the ICB are applied and the solution is propagated in the core with
(30). The set of boundary conditions at the CMB are applied and
the solution is propagated to the surface with (14). The integration
is iterated by varying the five constants until the conditions (43) and
(44) at the ICB and the three boundary conditions at the surface (46)
are all satisfied.

2.6 Love numbers

The contribution of the torsional oscillations to the perturbations
from the reference state is determined by setting Z, = 0in (16). From
a known torsional oscillation flow model, the coefficients W(b) for
the forcing at degree n on the CMB are determined by (38). It is
useful to represent the perturbation in the gravitational potential at
the surface ®%(a) in terms of W’(b) by casting the whole problem
under the formalism of Love numbers (Love 1909). Let us define

0
‘Pn_(b) ’ @7
p

qbg(a) = _kn

where the Love number k£, represents the gravitational potential
perturbation at harmonic degree n at the surface of the Earth that
results from a geostrophic pressure of the same degree at the CMB.
For a normalization of our system of equations with typical scales
for r, g, and p, given respectively by a, g and p, where g is the
acceleration at the surface and p is the mean density of the Earth,
the Love numbers £, are then simply the solution for variable ys at
r = a for WO(h) = 1 and neatly summarize the effects of elastic
deformation of the whole planet.

The perturbation in gravitational potential that results from the
change in rotation rate of the mantle can similarly be expressed in
terms of a Love number representation. For the centrifugal potential
given by (16), we define

(@) = knZ5", (43)

so that &, represents the amplitude of the gravity field perturbation
of degree 2 at the surface that results from a centrifugal potential
in the mantle that has unit amplitude at the surface, i.e. Z (zm) =1.
Likewise, we define

®Y(a) = ki 2. (49)

Hence, k;. represents the amplitude of the gravity field perturbation
of degree 2 at the surface that results from a centrifugal potential
in the inner core with Z (Zic) = 1. We note that Z(zw) is set to zero to
calculate &, (and vice versa), and that in both cases the torsional
oscillations forcing is set to zero.

We define similar Love numbers to characterize the radial dis-
placements at the surface D%(a):

wo(h

Dia) = h, 2P,

Z(m)

DY(a) = —hp—2—,
g

7

DY(a) = —hi. 2 (50)

g
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3 RESULTS

The solutions depend on the reference Earth model upon which the
perturbations are imposed. We use here the Earth model PREM
(Dziewonski & Anderson 1981) which specifies a radially symmet-
ric Earth with a reference density p,(7) (from which a gravitational
acceleration g,(r) and gravitational potential ¢,(r) are determined),
and elastic parameters A,(r) and u () for every radial surface. The
outermost region in PREM represents an overriding ocean. For now,
we simply neglect the additional dynamical effects of oceans and ex-
tend the parameters of the previous region (crust) to this outermost
radius. In Table 1 we list the values of all other relevant parameters
used in our calculations.

3.1 Solutions of the perturbation problem

The degree 2 zonal harmonic perturbation of y; and ys as a function
of radius that result from a centrifugal potential with Z (zm) = 1 inthe
mantle and zero forcing in the fluid core and inner core are presented
in Fig. 5 (thick line). For a comparison, we have also plotted the solu-
tions obtained for a centrifugal force acting everywhere in the Earth
(thin line). We note that each variable has been normalized so that
the solution at the surface equals the Love numbers &, and /4,,, and
we find k,, = 0.2345 and £, = 0.4769. To get the dimensional value
of ys, one needs to multiply the values in Fig. 5 by the dimensional
amplitude of the forcing potential. The dimensional value of y; is
obtained by multiplying the result by the forcing potential divided
by g.

The solution of y; and y5 as a function of radius that results from a
centrifugal potential with Z (Z'C) = 1 in the inner core and zero forcing
in the fluid core and mantle is presented in Fig. 6. The solutions at the
surface determine k. and /;, and we find k. = 1.47 x 10 % and 4. =
1.29 x 107°. Compared with the previous solution, the amplitudes
of y; and y5 are much smaller. The change in the elliptical gravity
field and radial displacement at the surface is 5 orders of magnitude
larger for a change in mantle rotation rate than for an equivalent
change in inner core rotation rate. This difference is in part because
for an equivalent change in rotation rate, the forcing at the surface
is roughly 25 times larger than at the ICB. The remaining part of the
discrepancy is mostly a consequence of the smaller density jump at
the ICB and the attenuation of the perturbation as it propagates to
the surface.

We now solve for the perturbations that result from the forcing
of torsional oscillations in the core. We set Zi™ = Z\ = 0, and
compute the perturbations at degree » in the whole Earth that re-
sult from a torsional oscillation flow that produces a unit amplitude
geostrophic pressure of the same degree at the CMB, i.e. W°(b) =
1. In Fig. 7, we present the solution of the perturbation in radial

Table 1. Parameters used in the calculations.

Parameter Value

G =6.67 x 1071 m? kg~! s72
M =597 x 10* kg

Qo =729 x 1075 57!

Im =712 x 1037 kg m?
I.=0.92 x 10°7 kg m?
a=6371 x 10°m

b =3.480 x 10°m
c=12215x 10°m
g=GM/a®> =9.82ms™?
p=5515kgm™>

Gravitational constant

Mass of the Earth

Earth’s rotation rate

Moment of inertia of the mantle
Moment of inertia of the core
Radius of Earth

Radius of the core

Radius of the inner core
Acceleration at the surface
Mean density
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Figure 5. Solution of the zonal spherical harmonic coefficient of degree 2 of
the radial displacement y, and of the perturbation in gravitational potential
s as a function of radius for a centrifugal force acting on the mantle only
(thick line), and for a centrifugal force acting on the whole Earth (thin line).
Solutions are dimensionless. We recall that y; represents the displacements
of' material surfaces in the inner core (0 < < 0.1917) and the mantle (0.5462
<r < 1) butis defined as the displacements of equipotential surfaces in the
fluid core (0.1917 < r < 0.5462).
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Figure 6. As Fig. 5, but for a centrifugal force that acts only on the inner
core.

displacement and gravitational potential for n = 2. The solutions at
the surface give, respectively, the Love numbers &, and 4,. We find
k, =0.1116 and h, = 0.2302.

The dimensional value of ys, when the forcing is from the
geostrophic pressure, is obtained by multiplying the results by the
dimensional applied geostrophic pressure divided by p. Similarly,
the dimensional value of y; is obtained by multiplying the results
by the dimensional applied geostrophic pressure divided by pg. An
estimate of the amplitude of the vertical displacement and change
in gravity at the surface of the Earth produced by our model is eas-
ily obtained from Fig. 7. The geostrophic pressure scales as W ~
0020bvy,, and a typical amplitude of the change in torsional os-
cillation velocity is about a kilometre per year (v, ~ 3 x 107> m
s~1). Hence, the normalized radial displacements in the core shown
in Fig. 7, y; ~ 0.1, correspond to dimensional displacements of
(1/10)0,2,bv,/ pg, which gives ~ 0.15 mm. The vertical displace-
ments of the CMB and the Earth’s external surface are ~0.5 mm
and ~0.35 mm respectively. The gravitational potential change at
the Earth’s surface corresponds to an equivalent change in geoid
height of &, 0, 2,0V, /pg, Which gives ~0.15 mm.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

radius

Figure 7. Solution of y; and ys (dimensionless) as a function of radius for
a geostrophic pressure at the CMB of \I/g(b) =1 (thick line) and \Ilg(b) =1
(thin line).

Table 2. Love numbers.

km  =2345x 107! hy,  =4.769 x 107!
kie =147x107° hie =129x107°
k> =1.116 x 107! ho =2302 x 107!
ks =1.156x 1072 hy =5.135x 102
ke =1957 x 1073 hg =1366x 1072
kg =4171 x 107* g =4.013 x 1073

The solution obtained at degree n = 4 is also shown in Fig. 7.
The results are similar to those obtained with » = 2 but with smaller
amplitudes. The values of the Love numbers for n = 4 are k4 =
0.01156 and 44 = 0.05135. The Love numbers for a few of the
larger harmonics are presented in Table 2.

3.2 Time variations in the zonal
harmonics of the gravity field

With the Love numbers calculated above, the perturbations in even
degree n of the gravitational potential at the surface can be readily
obtained for a given model of torsional oscillations. Since the flow
is time-dependent, the variations in time at the surface are then ob-
tained from the instantaneous torsional oscillation flow at each time
step. Using (2), (47), (48) and (49), the variations in the coefficients
Jy, for n > 2, are then given by
a Wb, 1)
A, () = —k, G 7

and the variations in J, are given by

(5D

0
AL(t) = G“—M (—kz%b’t) + kn ZS (1) + kiczg‘“(z)> . (52

Let us first consider the role of a change in inner core rotation
rate in the variations inJ,. We found ;. to be 5 orders of magnitude
smaller than k,,. In other words, the changes in rotation rate of the
inner core have to be 5 orders of magnitude larger than the changes in
rotation rate of the mantle for the former to play a role as important
as the latter in the variations in J,. We can estimate directly the
variations in J, caused by changes in inner core rotation rate §€2;
by using 20 = 2Q,8RQi.a%/3 in (52):

Ady = 5o hid Qe (53)
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Using the values in Table 1, and k;. = 1.47 x 107°, this implies
that AJ, &~ §Q;. x 107° s. Hence, in order to produce changes in
J, of the scale of the ‘1998 anomaly’ (10~1°), we need a change in
rotation rate of the inner core of the order of 1075 s=!, or ~ 1/7 of
the actual rotation rate of the Earth. So, for instance, considering
a 1071% per year change in .J, for 3 yr, the required rotation rate
change of the inner core would have rotated it by 180° with respect
to the mantle!

Such a high rotation rate of the inner core is unrealistic because
it is 2 orders of magnitude larger than the largest estimates inferred
from seismology (Song & Richards 1996; Su et al. 1996), and 3
orders of magnitude larger than more conservative estimates (Laske
& Masters 1999; Souriau & Poupinet 2000). Physically, it is also
very unlikely because the inner core is tightly coupled electromag-
netically to the fluid core (Gubbins 1981) and gravitationally to the
mantle (Buffett 1996). Zatman (2003) estimated the change in rota-
tion rate of the inner core by assuming perfect coupling at the ICB
with the rigid cylindrical flows inside the tangent cylinder. He ob-
tained changes of order 0.3° yr~!, or §Q;. ~ 1.6 x 107'% s~!. While
it is questionable whether the assumption of perfect coupling at the
ICB is valid and whether the flow inside the tangent cylinder can be
well recovered in the data, this value is nevertheless a good approx-
imation of the amplitude of §<2;.. Indeed, this is also the predicted
amplitude of §2;. if a large part of the length-of-day variations result
from free oscillations between the mantle, inner core and torsional
oscillations (Mound & Buffett 2003). Such a change in rotation rate
of the inner core would produce changes in.J, of the order of 10713,
clearly too small to be observable. Since the above considerations
suggest that the inner core has a negligible role in the changes in
J,, and since we do not have reliable observations of the variations
of inner core rotation rate at decade periods, for convenience we
neglect its contribution in (52).

The remaining terms in (52) can be conveniently reorganized.
As we pointed out in the Introduction, our confidence in torsional
oscillations stems from the good agreement between the observed
changes in the length of day (A7) and those predicted from the
changes in core angular momentum that they carry. It turns out that
the geostrophic pressure can be expressed directly in terms of A7,
as we demonstrate below. Similarly, the centrifugal potential in the
mantle is also directly proportional to A7'. This allows us to rewrite
(52) and express the changes in J, as a function of changes in the
length of day alone.

Let us first consider how torsional oscillations are related to A7
In what follows, we make the assumption that changes in the axial
angular momentum in the core L (f) and the mantle L.,(¢) are due
solely to variations in their respective rotation rates. In other words,
the axial moments of inertia of the core /. and the mantle /,, remain
constant. (We note that the variations in axial angular momentum
produced by the secondary effect of changes in the moments of
inertia due to changes in the rotation rate are of the order of a factor
300 smaller.) Measured in a reference frame fixed to the mantle, the
change in angular momentum in the core is carried by only two of
the torsional oscillation flow components (Jault & Le Mouél 1991;
Jackson et al. 1993):

1, 12
LM(t) = i (t(m)? + 7%‘“)2) . (54)

The coefficients /™9 and #™9 are also measured with respect to
the mantle fixed frame and are the coefficients obtained from the
inversion of the geomagnetic data. Their relationship to the flow
coefficients t]‘? defined here with respect to a frame rotating at angular
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velocity €2, is given by

= t(‘“>? + b8Qum(1),

0 _ ;m)0
=07

for j > 1, (55)

where §Q2,,(¢) is the change in mantle rotation rate with respect to
Q,. In the reference frame rotating with angular velocity €2,, the
total core angular momentum is then

Le(t) = LI (1) 4 1.5Qm(7)

1, 12
= ZC (t““)? + bSQn(t) + 7%“‘)2)

I 12
=5 (t{) + 7t£> . (56)

Conservation of angular momentum between the core and mantle
implies that L () = —L,(t) = —1 n6Qm(?), and by using §Q2,, =
—ATQ2/27, from (56) we obtain a relationship between the tor-
sional oscillation flow components and the changes in the length of
day, namely

12 In Q2D
(:?+ —z§> O AT. (57)

7 =I_C271

The zonal harmonic degree 2 of the geostrophic forcing at the CMB
in (38) contains the same ratio of 9 to #3,

\110(1;)——z b)Q2b ( 10 12,0 58
2 = 3/’0()0 t1+7t3~ (58)

In other words, the zonal geostrophic pressure of harmonic degree 2
is directly proportional to the changes in length of day, and we can
express WI(b, 1) directly in terms of AT by using (57). We note that
this relationship should not be confused with the part of the pressure
field that produces changes in length of day through topographic
torques on the non-axisymmetric features at the CMB surface (Hide
1969, 1977; Jault & Le Mouél 1989).

Finally, the centrifugal potential in the mantle is related to the
change in rotation rate of the mantle by Z (2'") =2Q,6Qma’/3, and
we can write the changes in J, in (52) as

a3 b po(b) Iy
AD(t) = 5= AT (; > I_ck2 - km> . (59)

‘We use a torsional oscillation flow model that is constrained to be
consistent with the changes in the length of day. Our flow model
is also constrained to give the best fit to the geomagnetic jerks
(Bloxham et al. 2002), although this requirement does not affect
the results presented below since only the variations in the length of
day enter the changes in J,. We show in Fig. 8 the first few coeffi-
cients of the torsional oscillation flow. Note that we have subtracted
the mean steady component of each coefficient since we are inter-
ested in the changes with respect to a steady background. We show
in Fig. 9 the data for length-of-day variations from the International
Earth Rotation Service (IERS) and from which we have subtracted a
secular change of 1.4 ms per century. We also show in the same fig-
ure the predicted changes from our torsional oscillation flow model.
Our flow model serves as a smoothing and interpolating function
for the observed changes in the length of day, and in all subsequent
calculations the solid curve is used for AT.

One can extract from Fig. 9 the amplitude of W9(5, #) produced by
torsional oscillations by combining (57) and (58). The geostrophic
pressure equivalent to a change in the length of day of 1 ms is roughly
40 Pa or 0.4 millibar.
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Figure 8. Coefficients of the torsional oscillation model as a function of
time: t‘l) (thick solid line); 1(3’ (thick dashed line); 1(5’ (thin solid line); tg (thin
dashed line).
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Figure 9. Variations in the length of day in milliseconds about an average
value for the time period considered. The open circles are the data from
the IERS, from which we have subtracted a trend of 1.4 milliseconds per
century. The solid line is the prediction from the torsional oscillation flow
model from eq. (57).

In Fig. 10 we show the changes in ./, predicted by (59). The model
predicts extrema in AJ, near the largest changes in the length of day,
which is also when geomagnetic jerks are observed. This is because
these are the times when the differential cylindrical velocities are
the largest (Bloxham e al. 2002). The contribution from the change
in rotation rate of the mantle is opposite to the contribution of the
torsional oscillations, as expected, and is about a factor 2 smaller.
The largest amplitude of the total variations in J, is roughly 2 x
107! for the last two decades. The largest rates of change in this
time interval are roughly J, ~ 2 x 10~'2 yr~!. The total variations
inJ, from our model are compared with the observed variations in
J, about the secular linear trend for the last 20 yr in Fig. 11. Our
model produces amplitudes that are too small by a factor of about
10 to explain the observed variations and by a factor of 30 to explain
the larger variations that started near 1998. Moreover, the predicted
changes in J, are not well correlated with the observations. This
suggests that torsional oscillations in the core do not account for
the subdecadal changes in J,. Similarly, although we do not show
it here, the changes in J4 predicted by (51) are also a factor 10
too small and not well correlated with the observed changes in J4
reported in Cox & Chao (2002).

As we see in Fig. 10, torsional oscillations also cause changes on
longer timescales of about 30 yr. Since 1980, the overall variation in

-0.15 4
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Figure 10. Variations in J; as a function of time predicted by our model
(thick solid line), and its individual contributions from the &, term (thin solid
line) and the &y, term (thin dashed line) of eq. (59).
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Figure 11. Comparison between the observed AJ; signal from which the
secular linear trend has been removed (solid line) and variations in J, pre-
dicted by our model from eq. (59) (dashed line).

J, predicted from our torsional oscillation model is about —1.5 x
10!, This gives a mean rate of secular linear decrease of J, ~
—0.75x 1072 yr~!. This is about 40 times smaller than the observed
linear trend of —2.8 x 10~!" yr=! | which is believed to represent
the signature of postglacial rebound (Yoder et al. 1983; Rubincam
1984; Mitrovica & Peltier 1993). However, this contribution from
the torsional oscillations to the secular trend is of the same order
as the effect produced by artificial reservoir water impoundment
(Chao 1995), and more important than the effects produced by mass
redistribution from earthquakes (Chao et al. 1995), subducting slabs
in the mantle (Alfonsi & Spada 1998), and from the secular spin
down and associated ‘rounding’ of the Earth due to gravitational
tidal breaking with the Moon (e.g. Stacey 1992, p. 96).

The rates of change in .J, predicted by our model, 1072 to 2 x
107'2 yr~!, are about an order of magnitude smaller than the value
of 1.3 x 107! yr~! reported by Fang et al. (1996). A difference of
a factor 2 is due to the counter effect from the change in centrifugal
potential of the mantle, which was not included in their model. Part
of the remaining discrepancy is due to a difference in modelling.
Fang et al. (1996) only solved the system of elastic-gravitational
equations in the mantle with appropriate boundary conditions at the
CMB and at the Earth’s surface, and did not explicitly solve Pois-
son’s equation in the core as we have done (Ming Fang, personal
communication). In their model, the radial stress at the base of the
mantle was prescribed to be exactly the applied geostrophic pressure
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Figure 12. Variations in the zonal harmonic coefficients of degree 2 (solid
line) and 4 (dashed line) of the vertical ground motion at the surface as a
function of time.

(i.e. y2(b) = —W" in 41). We believe that this is incorrect as it does
not take into account the adjustment in the radial stress that arises
from the perturbation in the mechanical equilibrium. In fact, using
their boundary condition on the radial stress in our model, we found
that the value of &, increased from 0.116 to 0.190, a difference of
almost a factor of 2. The remaining discrepancy between the result
of this study and the study by Fang ef al. (1996), a factor of 2 or
3, may be an additional consequence of solving Poisson’s equation
explicitly in the core. It may also be simply due to differences in
the flow model. We note that the fact that they have used a general
flow model as opposed to one strictly comprising torsional oscil-
lations should produce no difference in J,, as we demonstrate in
Appendix B that only the torsional oscillation components of the
flow produce zonal geostrophic pressure variations. However, a rel-
atively small difference in the coefficients 72 and 2 of the flow model
may easily produce a significant difference in the final result. This
is because the changes in core angular momentum (which produce
changes in length of day) result from small differences between the
opposite individual contributions of # and ) (see Fig. 8). Therefore,
the remaining discrepancy between our result and that of Fang et al.
(1996) may simply be a consequence of small differences in these
two coefficients of the flow model.

Finally, we present in Fig. 12 the changes in the zonal harmonic
coefficients of the radial displacement at the surface of the Earth,
D,(t), for degrees n = 2 and n = 4. They are obtained from the
Love numbers defined in (50):

0
Do) = (hzw - hmz;“”o)) :
g 1Y

Wb, 1)

(60)
D,(t) = h, forn > 2,
where we have again neglected the contribution from the change in
inner core rotation rate. The changes in D, (¢) are of the order of
0.2 mm over the last few decades.

4 DISCUSSION AND CONCLUSION

The results of our study suggest that torsional oscillations in the
core, in the simple way that they produce variable pressure at the
CMB as we have described, cannot account for the observed changes
in J, about the linear secular decreasing trend. The contribution
to the linear secular trend itself that may be attributed to torsional
oscillations is of the order of a few per cent. The correlation between
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geomagnetic jerks and the maxima in the changes in J,, which
was part of the motivation for this study, may, then, be merely a
coincidence.

It is not impossible that torsional oscillations remain the underly-
ing cause of the changes in J, about the linear trend if there exists
an amplification mechanism. For instance, circulation in the oceans
may amplify a 5-yr zonal degree 2 signal by a factor of 10, just
as the tidal sea-level amplitudes near coast lines are greatly ampli-
fied (e.g. Gill 1982). However, because the prediction of our model
and the observed signal are not well correlated, the amplification
mechanism would have to be highly non-linear.

Even if the mechanism described in this study seems not to be
responsible for the large sudden changes observed in J,, the de-
tection of torsional oscillations in the gravity data may be possible
in the near future. If the source of the changes in J, is identified
and subtracted from the signal, it may be possible to isolate a back-
ground global change in the degree 2 zonal harmonic. The results
presented in this study suggest that the changes in J, from the tor-
sional oscillations are of the order of 10~!" per decade, which is at
the level of the present noise level in the gravity data (Cox & Chao
2002). However, the current GRACE satellite mission will provide
data with a precision improvement of an order of magnitude (Kim
& Tapley 2002; Chao 2003), and hence may allow the signal of the
torsional oscillations to be observed in the changes in.J,. We stress,
however, that the recovery of the torsional oscillation signal may
not be possible if the time-varying parts of other effects that have
similar amplitude cannot be eliminated from the data. Alternatively,
the results of our model could be used to subtract the contribution
from the torsional oscillations in the core in the time-varying part of
the gravity field in order to isolate the changes due to other effects.

It may also be possible in the future to observe the vertical ground
motion associated with torsional oscillations using global GPS data
(e.g. Herring 1999). Our model predicts changes in vertical ground
displacement at the surface of the order of 0.2 mm (Fig. 12). This is
unfortunately below the current precision in measurements, which
is a few millimetres. Perhaps with future improvements in the data,
ground motion displacements could be used to observe torsional
oscillations, although with the same caveats as for the gravity data.
We note that the meridional displacements that our model predicts
are an order of magnitude smaller than the vertical displacements
and that there is little hope that they could be detected in the data.

The detection of torsional oscillations may be possible only in
the lowest even harmonic degrees of the gravity field. As our re-
sults suggest, the gravity signal of torsional oscillations will be
far below the level of detection for harmonic degrees larger than
4. Even for degree 4, it is unclear whether the torsional oscilla-
tions signal could be observed, even if one could remove the larger
variations arising from other effects. Hence, the components of the
torsional oscillation flow that may be observed with the gravity
and ground motion data are probably restricted to # and 3. Ob-
serving these two components alone could, however, provide an
invaluable check of consistency for the modelling of core angular
momentum.

Because of the possibility that future gravity data might provide
sufficient accuracy for identifying the low harmonic signal from
torsional oscillations, we may want to include additional refinements
in our model. One improvement is to add a surface ocean. The solid
surface only adjusts partly to the imposed gravitational potential
because of its elastic rigidity. The surface of the ocean, on the other
hand, would deform exactly to the imposed potential. Hence, an
additional radial mass displacement would occur and contribute to
an additional change in potential. It is difficult to predict exactly
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the change in gravitational potential that would arise without doing
the actual calculations. We note, however, that the density of water
in the ocean is three times smaller than that of the crust and only
represents a tiny fraction of the Earth’s radius. Therefore, the oceans
would probably not contribute to large changes in the gravitational
potential. By incorporating a surface ocean in our model, however,
we should be able to predict the time variations in the even harmonic
degrees of the sea level around the globe. These could be then be
compared with altimetry data.

One possible additional refinement to our model is the incorpo-
ration of viscous dissipation in the mantle and inner core. We are
currently defining the mantle and inner core to be perfectly elastic,
but if we allow for anelastic effects, the amplitude of the pertur-
bations may be altered and delayed. Using a realistic viscoelas-
tic theology for the mantle and inner core with a viscosity pro-
file akin to that used in postglacial rebound studies (Peltier 1974;
Wu & Peltier 1982) would probably not alter our results signifi-
cantly. This is because the forcing of torsional oscillations acts at
decadal periods, which is much shorter than the typical timescale
of a thousand years on which the viscous relaxation is observed
to occur. However, if there exists a layer with a smaller viscosity
at the bottom of the mantle, then perhaps the anelastic effects on
the gravity signal from the torsional oscillations may be important,
if not in amplitude then in delaying the observed signal. Such a
low-viscosity layer at the base of the mantle is hinted at by seis-
mological observations of ultra-low-velocity zones (Wen & Helm-
berger 1998; Garnero et al. 1998). Therefore, the mechanism that
we have presented in this study may in the future provide a useful
tool for testing geodynamically the nature of these seismological
observations.
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APPENDIX A: ELASTIC-GRAVITATIONAL EQUATIONS IN THE SOLID EARTH

The static elastic-gravitational equations in the mantle in terms of the six variables defined in (15) have to obey the differential equations
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We note that the equations above are identical to those in Takeushi & Saito (1972) for zero frequency, except that ys and ys have opposite
signs as a consequence of a different sign convention adopted in the present study. The equations in the inner core are identical.

APPENDIX B: CALCULATION OF GEOSTROPHIC PRESSURE FROM CORE
SURFACE FLOWS

In this Appendix, we present the details of the calculation relating the even-degree zonal harmonics of the pressure at the CMB to torsional
oscillations. We demonstrate that, for a general flow at the CMB, torsional oscillations are in fact the only component of the flow that participate
in the axisymmetric pressure that is symmetric about the equator.

Near the CMB, the horizontal component of the flow is related to pressure through the geostrophic balance (Hills 1979; Le Mougl 1984):

20,82 X vy = =V p,. (B1)
Taking e, x (B1) and using e, x e, X v, = —cos @ vy, we have
2Q0bp, cosOvy = e, x Vp,, (B2)

where b is the radius of the core and V, is defined in (11). The geostrophic pressure is expanded in spherical harmonics according to (37), and
we want to relate the coefficients of the latter in terms of core surface flows. It is convenient to expand vy, in a poloidal-toroidal decomposition,
namely

Vh:V1$+V1 x(Te,):VIS—e, X VlT, (83)

where S and 7 are respectively the poloidal and toroidal scalars. The latter are expanded in spherical harmonics as

s:i S s (B4)
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We note that the custom in geomagnetism is to use a decomposition in terms of real spherical harmonics. However, it is convenient here to
expand the flow coefficients as above so as to be consistent with our expansion of pressure.

In order to relate the flow coefficients 57" and ¢ to the coefficients of pressure W”'(b), we use the vector spherical harmonics B = B! (0,
@) and C) = CJ/ (0, @), which are related to the spherical harmonic scalar Y} = Y,"(6, ¢) by

9 1 9
B"=V,Y"=¢ —Y"+e, — —Y", B6
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Using these definitions, we can write (B2) as

n

29Q,bp, cos@i Z (s BY — 1 C) = i > wrecy. (B8)
n=0m

n'=0m'=—n’ =—n

The coefficients W”'(b) are obtained by projecting the above equation on the basis C* and integrating over the surface of the unit sphere.
Using the orthogonality rules on the spherical harmonics and the normalization defined in (13), we obtain, for each n and m,

2Qbpy 21 +1 &K & , , , ,
W"(b) = = o' [ Cmr B cosOd— 7 | €7 C cosfdQ) . B9
" (0) 4 n(n—i—l)zz,(%/s.z ! v o8 n/sz ! e ) B9
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The role of each flow coefficient in the pressure depends on an integral of spherical harmonics over a sphere. To solve these integrals,
one possibility is to use the fact that cos® = PY%(cos@) = Y. We then have integrals of triple products of spherical harmonics, which are
non-zero for a set of conditions on the indices (see for instance Bullard & Gellman 1954 or Dahlen & Trump 1998). For the even-degree zonal
coefficients of the geostrophic pressure, W%(b) with n= even, the selection rules are such that the poloidal integral (the sZ’,’ term) vanishes for
all indices. The toroidal integral (the t:’,/ term) is non-zero only for m’ = 0, and the only components of the flow that contribute are the ¢, with
n' = odd.
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However, a perhaps more transparent way to demonstrate this, and also to solve these integrals, is instead simply to expand the above
integrals using the definitions in (B6-B7). The poloidal integral is

’ aYyr oy ayr 9y \ cosé
/ C’*.B" cos0 dQ = / n w Y ) ost g,
¢ o\ 90 d¢ dp 00 ) sind

= [ () as. (B10)
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Further algebraic efforts are needed in order to solve the integral for a general set of indices. However, for the zonal coefficients of pressure
(m = 0), 3Y°/3d¢ = 0 and the integral vanishes for all values of n, n’ and m’. Hence, the poloidal flow components do not contribute to the
axisymmetric pressure at the CMB. This simply illustrates the well-known fact the axisymmetric part of tangential geostrophy can only be
explained in terms of toroidal flows.

The toroidal integral, for m = 0, is

Yo oy
/(86: 3; )cos@dQ
Q
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/(89" 81; )costQ. (B11)
Q

The right-hand side can be further decomposed as

/ C" . C" cosO d
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we can write (B12) as

. / ;. 9P /

/c‘; - C cos 0 dQ:/ Y2 sing —= dQ+n(n+l)/ Y cosO P dQ. (B14)
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The above integrals can be transformed into simple orthogonality integrals of spherical harmonics with the use of the following recurrence
relations for the associated Legendre polynomials,

ap)  n(n+1) , nn+1)

ino = ——p B15
Y il T pgq (BIS)
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Eq. (B14) then becomes
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For a given harmonic degree 7, the only non-zero integrals are therefore those with m” = 0, and »’ equal to either (n — 1) or (n + 1). Hence,
only the axisymmetric components of the toroidal flow participate in the zonal geostrophic pressure, and for each zonal harmonic degree
of the latter, only two of the zonal toroidal flow coefficients contribute. Moreover, for a geostrophic pressure symmetric about the equator
(n = even), only the flow coefficients with odd harmonic degree participate. In other words, the only flow components that participate in the
even-degree zonal harmonics of the pressure are torsional oscillations. The final expression for the zonal harmonic degree 7 of the geostrophic
pressure at the CMB is obtained by substituting (B17) into (B9):
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APPENDIX C: ANALYTICAL SOLUTION OF THE ELASTIC-GRAVITATIONAL
EQUATIONS NEAR THE ORIGIN

The solution in the inner core near the centre of the Earth is detailed in the study of Crossley (1975). At a small radius » = €, the solution can

be written in terms of three independent solutions. A convenient way to write the complete solution is in terms of three vectors, y¢!, y<> and
3

y<, as

yi(€) = Cry + Coy? + Cy<, (C1)
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where
el 2n—1) 3y !
A — =1 2(n—1 =2 - "72, — "ol ,
y [6 (n — Dpoe p M€ it
e" T
2=10,0,0,0,——, "',
y [ 1€
v = [a16n+17azen’a36n+l’en’a56n+27a6€n+l]—r’ (C2)
with
P2 Po 3 n
=22 _ C l———— |+ C—— |,

= T G ( ”””( 2n+1)+ 22n+1)

1
o = —noz + —,

(o
ay = —q103 + qa,

(ot 3 + 0+ D)
s = — (—(n o n(n o),
5T 20n +3) ‘ ’
a = 3ya; + (2n 4 3)as, (C3)
and
4

Yy = ?Gpo

p1 =202 + Do + 2n(n* + 2n — D,

Ao
p2 =nn+5)+2nn+ 3)M—,

o

1 = 2n(n + 2)ho + 2n(n + Do,
A

g =2+ 1)+ (n+3)=2. (C4)
Mo

In the above equations, p,, A, and i, correspond to the reference-state values evaluated at » = €. We note that the small differences between

the analytical solution presented above and that of Crossley (1975) are a result of the different definitions of % and y; used in the present
study.
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