Вестник Уральского отделения

2004

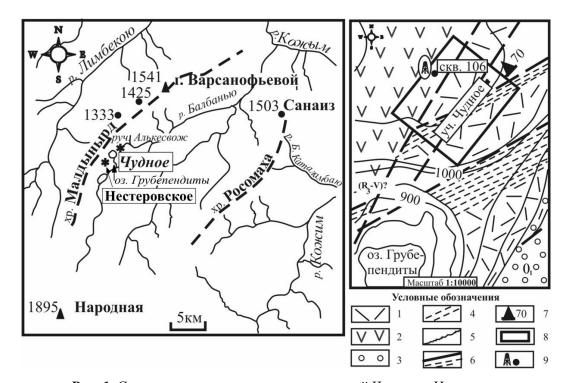
УДК 549.618.2

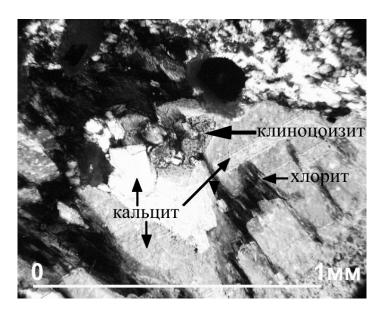
ЧУДНОЕ И НЕСТЕРОВСКОЕ (ПРИПОЛЯРНЫЙ УРАЛ)

Е.И. Сорока, Ю.В. Ерохин, Л.В. Леонова

Институт геологии и геохимии УрО РАН

Церийсодержащий клиноцоизит, внешне подобный алланиту, встречается в породах и рудах золото-палладиевых проявлений Чудное и Нестеровское (хр. Малдынырд, Приполярный Урал) (рис. 1). Кристаллы церийсодержащего клиноцоизита (рис. 2) обнаружены в карбонатных обособлениях и пропластках в породах основного состава из скважины 106, пробуренной на северо-западной границе золото-палладиевого проявления Чудное (рис. 1).




Рис. 1. Схема расположения золотопроявлений Чудное и Нестеровское.

Скважиной примерно до глубины 45 м вскрыты породы темно-зеленого цвета преимущественно амфибол-хлоритового состава с разнообразными по форме светлыми желтовато-зеленоватыми включениями, а местами с карбонатными обособлениями и прожилками или зонами. Обычно породы описываются как измененные долериты саблегорской свиты рифея-венда [4, 5]. По данным рентгенофазового анализа минеральный состав полученных образцов керна определен как хлорит - 50%; амфибол -

Вестник Уральского отделения

2004

25%; эпидот - 10%; альбит - 10%; кварц - 5%; слюда – менее 1%; карбонат – менее 1% (оператор Т.Я. Гуляева, ИГГ УрО РАН). Качественно состав практически не изменяется до глубины 45 м. Меняются количественные соотношения минералов. С глубиной увеличивается количество кварца, слюды, карбоната и уменьшается количество амфибола и эпидота. Рудные минералы представлены магнетитом и гематитом, в меньшем количестве титаномагнетитом и ильменитом. Количество магнетита и гематита на отдельных интервалах составляет 1-2%. Акцессорные минералы представлены титанитом, церийсодержащим клиноцоизитом и апатитом. Практически во всех образцах обнаружены проблематичные объекты, которые представляют собой замещенные остатки палеобиоты [6].

Рис. 2. Церийсодержащий клиноцоизит в карбонатных скоплениях в базальте.

Карбонатные обособления и зоны (пропластки) встречаются примерно с глубины 9 м и изучены до глубины 35 м. Пропластки имеют мощность от миллиметров до 1 см. Обособления часто имеют форму миндалин и размеры от миллиметра до 0,5 см и бывают представлены не только карбонатом, но также кварцем, альбитом и хлоритом. В «миндалинах» и пропластках также были обнаружены проблематичные объекты, выполненные темным в проходящем и белым в отраженном свете пелитоморфным карбонатом, что характерно для органических, в частности, водорослевых, остатков. Частично они могут быть замещены кварцем и хлоритом, иногда альбитом [6].

Карбонат зон и обособлений неоднороден, представлен преимущественно кальцитом, содержащим Fe, Mn. Оторочка кальцитовой зоны часто представлена хлоритом и кварцем, иногда альбитом. Хлорит по данным микрозондового анализа

№ 3

Вестник Уральского отделения

2004

относится к клинохлору и шамозиту (аналитик В.А. Муфтахов, JCXA-733, энергодисперсионный спектрометр «Link», ИМин УрО РАН, г. Миасс).

Церийсодержащий клиноцоизит встречается в краевых частях карбонатных зон и обособлений и представлен темно-коричневыми таблитчатыми и призматическими кристаллами (рис. 2). Имеет слабый плеохроизм от светло-бурого до зеленовато-бурого. Размеры обычно составляют десятые доли миллиметра. Состав минерала приведен в таблице (ан. 7, 8), образец с глубины 20-22 м. Содержание Ce₂O₃ в минерале колеблется от 4 до 6 мас.%, общее количество легких лантаноидов достигает 12 мас.%.

Алланит, подобный церийсодержащему клиноцоизиту из пород основного состава (скв. 106), описан в рудах золото-палладиевого проявления Чудного, которые локализованы в породах кислого состава [7, 8]. Кислые породы относятся к вулканитам Малдинской риолитовой субинтрузии [3, 4]. Рудные тела представлены штокверковыми зонами с прожилковой минерализацией северо-восточного простирания с углами падения на северо-запад [7]. Встречаются прожилки кварцевые, кварц-альбитовые, кварц-альбит-серицитовые, кварц-альбит-карбонатные, кварц-гематитовые и фукситовые. Взаимоотношения прожилков различные. Рудоносными являются, в основном, слюдяные прожилки. Акцессорные минералы риолитов представлены в основном алланитом, цирконом, титанитом, монацитом, рутилом, апатитом, гематитом и магнетитом [8].

В рудных зонах риолитов золото-палладиевого проявления Чудное было выделено четыре генерации алланита, состав которых приведен в таблице по данным [8].

Алланит I типа подразделяется на два подтипа, которые, по-видимому, не связаны с золотым оруденением. Алланит подтипа Iа встречается в виде отдельных зерен, и является акцессорным минералом вмещающих риолитов. Алланит подтипа Iб считается более поздней генерацией алланита I, выполняющей секущие прожилки в измененном риолите. Содержание Се₂О₃ в этом алланите снижается до 4,5% [8].

Алланит II типа выполняет осевые зоны фукситовых прожилков и образует амебообразные агрегаты в слюдяной массе. Установлено, что именно этот алланит связан с аномально высокими содержаниями пылевидного золота, также сосредоточенного в слюдяной массе. Состав приведен в таблице (ан. 1, 2) по данным [8].

Алланит III типа представлен радиально-лучистыми агрегатами до 1,5 см в поперечнике. Локализуется в фукситовых и, преимущественно, в кварц-альбит-серицитовых и кварц-альбит-карбонатных прожилках. Иногда алланит III выполняет периферийные участки алланита II. Состав приведен в таблице (ан. 3, 4) по данным [8].

Алланит IV типа считается наиболее поздним, образованным после выноса легких

<u>№</u> 3

Вестник Уральского отделения

т....

2004

Таблица Церийсодержащие клиноцоизиты из пород золотопроявлений Чудное и Нестеровское

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SiO ₂						6	/	8	9	10	11	12
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		32.10	34.96		2 - 12	2506	2420	22.02	22 42	22.50	25.05	24.62	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_1O_2							32.83	33.43	33.59	35.87		
Ct2O3 - <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td>			-					-	-		-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		11.53	15.70	17.29	18.40	21.14	22.30	18.13	21.33			19.09	17.38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ce_2O_3											9.88	11.14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nd_2O_3	2.32	1.84	2.29				3.09	0.86			-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pr_2O_3	-	-	-		1.22	0.43	-	-	1.34	0.69	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sm_2O_3	-	-	-	0.45	0.69	0.47	-	-	0.79	0.91	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Eu_2O_3	-	-	-	-	-	-	-	-	1.02	0.46	1.69	-
	Gd_2O_3	-	-	-	1.15	0.57	0.42	-	-	ı	-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ho ₂ O ₃	-	-	-	-	ı	ı	-	ı	0.53	ı	ı	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Er_2O_3	-	-	-	0.71	0.71	0.63	-	1	0.36	-	-	-
Fe ₂ O ₃ 13.19 14.21 12.55 9.94 10.42 12.36 16.09 13.82 12.94 13.49 13.00 13.83 MgO - - - - - - 0.41 - - 0.05 MnO 0.34 0.08 0.10 1.06 1.34 0.29 0.44 0.31 - - 0.40 0.71 CaO 11.22 15.36 16.90 12.45 13.86 18.97 16.28 19.23 13.10 15.57 16.13 14.14 Cymma 87.59 90.62 99.46 101.40 100.27 99.27 95.52 94.05 99.85 97.36 99.91 100.01 Формульные единицы на 8 катионов Si 3.42 3.31 3.35 3.22 3.09 2.91 2.97 2.90 3.11 3.14 3.02 2.94 Ti - - - - - - -	Tm_2O_3	-	-	-	-	0.35	0.10	-	-	-	-	-	-
MgO - - - - - - 0.41 - - 0.40 0.71 MnO 0.34 0.08 0.10 1.06 1.34 0.29 0.44 0.31 - - 0.40 0.71 CaO 11.22 15.36 16.90 12.45 13.86 18.97 16.28 19.23 13.10 15.57 16.13 14.14 Сумма 87.59 90.62 99.46 101.40 100.27 99.27 95.52 94.05 99.85 97.36 99.91 100.01 Формульные единицы на 8 катионов Si 3.42 3.31 3.35 3.22 3.09 2.91 2.97 2.90 3.11 3.14 3.02 2.94 Ti - - - 0.05 0.01 0.03 - - - - 0.02 0.10 Al 1.45 1.75 1.78 1.97 2.20 2.23 1.93	Y_2O_3	-	-	-	0.18	0.58	0.29	-	-	-	-	-	-
MgO - - - - - - 0.41 - - 0.05 MnO 0.34 0.08 0.10 1.06 1.34 0.29 0.44 0.31 - - 0.40 0.71 CaO 11.22 15.36 16.90 12.45 13.86 18.97 16.28 19.23 13.10 15.57 16.13 14.14 Сумма 87.59 90.62 99.46 101.40 100.27 99.27 95.52 94.05 99.85 97.36 99.91 100.01 Формульные единицы на 8 катионов Si 3.42 3.31 3.35 3.22 3.09 2.91 2.97 2.90 3.11 3.14 3.02 2.94 Ti - - - 0.05 0.01 0.03 - - - - 0.02 0.10 Al 1.45 1.75 1.78 1.97 2.20 2.23 1.93 2.18	Fe ₂ O ₃	13.19	14.21	12.55	9.94	10.42	12.36	16.09	13.82	12.94	13.49	13.00	13.83
CaO 11.22 15.36 16.90 12.45 13.86 18.97 16.28 19.23 13.10 15.57 16.13 14.14 Сумма 87.59 90.62 99.46 101.40 100.27 99.27 95.52 94.05 99.85 97.36 99.91 100.01 Формульные единицы на 8 катионов Si 3.42 3.31 3.35 3.22 3.09 2.91 2.90 3.11 3.14 3.02 2.94 Ti - - - 0.05 0.01 0.03 - - - 0.02 0.10 Al 1.45 1.75 1.78 1.97 2.20 2.23 1.93 2.18 1.74 2.03 1.96 1.83 Cr - - - - - - 0.28 0.10 La 0.19 0.13 0.10 0.15 0.11 0.08 0.08 0.04 0.13 0.06 0.15 <t< td=""><td>MgO</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.41</td><td>-</td><td>-</td><td></td><td>0.05</td></t<>	MgO	-	-	-	-	-	-	-	0.41	-	-		0.05
Сумма 87.59 90.62 99.46 101.40 100.27 99.27 95.52 94.05 99.85 97.36 99.91 100.01 Формульные единицы на 8 катионов Si 3.42 3.31 3.35 3.22 3.09 2.91 2.97 2.90 3.11 3.14 3.02 2.94 Ti - - - 0.05 0.01 0.03 - - - - 0.02 0.10 Al 1.45 1.75 1.78 1.97 2.20 2.23 1.93 2.18 1.74 2.03 1.96 1.83 Cr - - - - - - 0.28 0.10 La 0.19 0.13 0.10 0.15 0.11 0.08 0.08 0.04 0.13 0.06 0.15 0.16 Ce 0.47 0.17 0.29 0.36 0.23 0.12 0.21 0.11 0.33 0.16	MnO	0.34	0.08	0.10	1.06	1.34	0.29	0.44	0.31	-	-	0.40	0.71
Формульные единицы на 8 катионов Si 3.42 3.31 3.35 3.22 3.09 2.91 2.97 2.90 3.11 3.14 3.02 2.94 Ti - - - 0.05 0.01 0.03 - - - - 0.02 0.10 Al 1.45 1.75 1.78 1.97 2.20 2.23 1.93 2.18 1.74 2.03 1.96 1.83 Cr - - - - - - 0.28 0.10 La 0.19 0.13 0.10 0.15 0.11 0.08 0.08 0.04 0.13 0.06 0.15 0.16 Ce 0.47 0.17 0.29 0.36 0.23 0.12 0.21 0.11 0.33 0.16 0.31 0.36 Nd 0.09 0.06 0.07 0.14 0.13 0.03 0.10 0.03 0.08 0.07	CaO	11.22	15.36	16.90	12.45	13.86	18.97	16.28	19.23	13.10	15.57	16.13	14.14
Si 3.42 3.31 3.35 3.22 3.09 2.91 2.97 2.90 3.11 3.14 3.02 2.94 Ti - - - 0.05 0.01 0.03 - - - 0.02 0.10 Al 1.45 1.75 1.78 1.97 2.20 2.23 1.93 2.18 1.74 2.03 1.96 1.83 Cr - - - - - - 0.28 0.10 La 0.19 0.13 0.10 0.15 0.11 0.08 0.08 0.04 0.13 0.06 0.15 0.16 Ce 0.47 0.17 0.29 0.36 0.23 0.12 0.21 0.11 0.33 0.16 0.31 0.36 Nd 0.09 0.06 0.07 0.14 0.13 0.03 0.10 0.03 0.08 0.07 Pr - - - 0.02	Сумма	87.59	90.62	99.46	101.40	100.27	99.27	95.52	94.05	99.85	97.36	99.91	100.01
Ti - - 0.05 0.01 0.03 - - - - 0.02 0.10 Al 1.45 1.75 1.78 1.97 2.20 2.23 1.93 2.18 1.74 2.03 1.96 1.83 Cr - - - - - - - 0.28 0.10 La 0.19 0.13 0.10 0.15 0.11 0.08 0.08 0.04 0.13 0.06 0.15 0.16 Ce 0.47 0.17 0.29 0.36 0.23 0.12 0.21 0.11 0.33 0.16 0.31 0.36 Nd 0.09 0.06 0.07 0.14 0.13 0.03 0.10 0.03 0.08 0.07 Pr - - - 0.05 0.04 0.02 - - 0.04 0.02 Sm - - - - - - <t< td=""><td colspan="13">Формульные единицы на 8 катионов</td></t<>	Формульные единицы на 8 катионов												
Al 1.45 1.75 1.78 1.97 2.20 2.23 1.93 2.18 1.74 2.03 1.96 1.83 Cr - - - - - - - 0.28 0.10 La 0.19 0.13 0.10 0.15 0.11 0.08 0.08 0.04 0.13 0.06 0.15 0.16 Ce 0.47 0.17 0.29 0.36 0.23 0.12 0.21 0.11 0.33 0.16 0.31 0.36 Nd 0.09 0.06 0.07 0.14 0.13 0.03 0.10 0.03 0.08 0.07 Pr - - - 0.05 0.04 0.02 - - 0.04 0.02 Sm - - - 0.02 0.02 - - 0.03 0.03 Eu - - - - - - - - -	Si	3.42	3.31	3.35	3.22	3.09	2.91	2.97	2.90	3.11	3.14	3.02	2.94
Cr - - - - - 0.28 0.10 La 0.19 0.13 0.10 0.15 0.11 0.08 0.08 0.04 0.13 0.06 0.15 0.16 Ce 0.47 0.17 0.29 0.36 0.23 0.12 0.21 0.11 0.33 0.16 0.31 0.36 Nd 0.09 0.06 0.07 0.14 0.13 0.03 0.10 0.03 0.08 0.07 Pr - - - 0.05 0.04 0.02 - - 0.04 0.02 Sm - - - 0.02 0.02 0.02 - - 0.03 0.03 Eu - <	Ti	-	-	-	0.05	0.01	0.03	-	-	-	-	0.02	0.10
La 0.19 0.13 0.10 0.15 0.11 0.08 0.08 0.04 0.13 0.06 0.15 0.16 Ce 0.47 0.17 0.29 0.36 0.23 0.12 0.21 0.11 0.33 0.16 0.31 0.36 Nd 0.09 0.06 0.07 0.14 0.13 0.03 0.10 0.03 0.08 0.07 Pr - - - 0.05 0.04 0.02 - - 0.04 0.02 Sm - - - 0.02 0.02 0.02 - - 0.03 0.03 Eu - - - - - - 0.03 0.02 - <t< td=""><td>Al</td><td>1.45</td><td>1.75</td><td>1.78</td><td>1.97</td><td>2.20</td><td>2.23</td><td>1.93</td><td>2.18</td><td>1.74</td><td>2.03</td><td>1.96</td><td>1.83</td></t<>	Al	1.45	1.75	1.78	1.97	2.20	2.23	1.93	2.18	1.74	2.03	1.96	1.83
Ce 0.47 0.17 0.29 0.36 0.23 0.12 0.21 0.11 0.33 0.16 0.31 0.36 Nd 0.09 0.06 0.07 0.14 0.13 0.03 0.10 0.03 0.08 0.07 Pr - - - 0.05 0.04 0.02 - - 0.04 0.02 Sm - - - 0.02 0.02 0.02 - - 0.03 0.03 Eu - - - - - - 0.03 0.02 - - 0.03 0.02 Gd -	Cr	-	-	-	-	-	-	-	-	0.28	0.10		
Ce 0.47 0.17 0.29 0.36 0.23 0.12 0.21 0.11 0.33 0.16 0.31 0.36 Nd 0.09 0.06 0.07 0.14 0.13 0.03 0.10 0.03 0.08 0.07 Pr - - - 0.05 0.04 0.02 - - 0.04 0.02 Sm - - - 0.02 0.02 0.02 - - 0.03 0.03 Eu - - - - - - 0.03 0.02 Gd -	La	0.19	0.13	0.10	0.15	0.11	0.08	0.08	0.04	0.13	0.06	0.15	0.16
Nd 0.09 0.06 0.07 0.14 0.13 0.03 0.10 0.03 0.08 0.07 Pr - - - 0.05 0.04 0.02 - - 0.04 0.02 Sm - - - 0.02 0.02 0.02 - - 0.03 0.03 Eu - - - - - - 0.03 0.02 Gd - - - 0.03 0.01 0.01 - - - Ho - - - - - 0.02 - - Tm - - - 0.01 0.01 - - - - -	Ce	0.47	0.17	0.29	0.36	0.23	0.12	0.21	0.11	0.33	0.16	0.31	0.36
Pr - - 0.05 0.04 0.02 - - 0.04 0.02 Sm - - 0.02 0.02 0.02 - - 0.03 0.03 Eu - - - - - - 0.03 0.02 Gd - - - - - - - - - Ho -	Nd	0.09	0.06	0.07		0.13	0.03	0.10	0.03	0.08	0.07		
Sm - - 0.02 0.02 0.02 - - 0.03 0.03 Eu - - - - - - 0.03 0.02 Gd - - - 0.03 0.01 0.01 - - - Ho - - - - - - 0.02 - Er - - 0.02 0.02 0.02 - 0.01 - Tm - - - 0.01 0.01 - - - -		-	-				0.02		-	0.04	0.02		
Eu - - - - - 0.03 0.02 Gd - - 0.03 0.01 0.01 - - - - Ho - - - - - - - 0.02 - Er - - - 0.02 0.02 - - 0.01 - Tm - - - 0.01 0.01 - - - -		-	-	-				-	-		0.03		
Gd - - 0.03 0.01 0.01 - - - - Ho - - - - - - 0.02 - Er - - - 0.02 0.02 - - 0.01 - Tm - - - 0.01 0.01 - - - -		-	-	-	-	-	-	-	-				
Ho - - - - - 0.02 - - 0.02 - - 0.01 - - - 0.01 -		-	_	-	0.03	0.01	0.01	_	-	-	-		
Er 0.02 0.02 0.02 0.01 - Tm 0.01 0.01		-	-	-				_	-	0.02	-		
Tm 0.01 0.01								-			-		
1 1 - 1 - 1 - 1 - 1 0.01 0.02 0.01 - 1 - 1 - 1 - 1 - 1	Y	-	-	-	0.01	0.02	0.01	-	-	-	-		
Fe ³⁺ 1.06 1.01 0.83 0.68 0.69 0.79 1.10 0.90 0.90 0.89 0.95 1.03												0.95	1.03
Mg 0.05													
Mn 0.03 0.01 0.01 0.08 0.10 0.02 0.03 0.02 0.03 0.05												0.03	0.05
	Ca	1.28	1.56	1.58	1.21	1.31	1.72	1.58	1.79	1.30	1.46	1.51	1.35

Примечание: анализы 7,8 выполнены аналитиком В.Н. Филиппов, JSM-6400, энергодисперсионный спектрометр «Link» (ИГ Коми НЦ УрО РАН, г.Сыктывкар)

- 1, 2 алланит II осевых зон фукситовых прожилков (Чудное) по данным по данным [8];
- 3, 4 алланит III радиально-лучистых агрегатов (Чудное) по данным [8];
- 5, 6 алланит IV(Чудное), наиболее поздний по данным [8];
- 7, 8 клиноцоизит из карбонатных зон пород основного состава скважины 106 (Чудное)
- 9, 10 алланит из рудного горизонта алькесвожской толщи (Нестеровское, кар Грубепендиты) [9];
- 11, 12 акцессорный алланит из малдинских риолитов [3].

Вестник Уральского отделения

2004

РЗЭ вместе с титанитом. Состав алланита приведен в таблице (ан. 5, 6) по данным [8].

На золотопроявлении Нестеровском алланит обнаружен в измененных основных породах и в терригенных породах алькесвожской толщи [2]. Проявление Нестеровское находится в Малдинской рудной зоне в 1,5-2 км на юго-запад от рудопроявления Чудного (рис. 1). Оно охватывает площадь северо-западной стенки кара Грубепендиты и плато над ним. Золотоносные терригенные отложения алькесвожской толщи верхнего кембриянижнего ордовика залегают на вулканитах кислого и основного состава саблегорской свиты рифея-венда [2]. В зонах тектонических нарушений хорошо выражены участки фукситизации и осветления пород, с которыми связаны некоторые рудные зоны. Алланит был выделен в виде темно-коричневых, иногда разрушенных, призматических кристаллов темно-коричневого и зеленовато-коричневого цвета размером 0,1-0,2 мм. Встречаются и радиально-лучистые агрегаты. В таблице представлены два анализа алланита из рудного горизонта алькесвожской толщи из обнажения на кромке кара Грубепендиты по данным [9].

Путем пересчета анализов установлено, что все приведенные в таблице алланиты являются церийсодержащими клиноцоизитами. Причем клиноцоизиту из карбонатных обособлений основных пород скважины 106 (ан. 7, 8), наиболее соответствует алланит IV (ан. 5, 6), который считается образованным в результате вторичных изменений всех прочих алланитов, встречающихся в рудных зонах риолитов [8].

Для сравнения в таблице приведены анализы акцессорных алланитов из малдинских риолитов по данным [3]. Их пересчет не показывает существенных различий с алланитами рудных зон проявлений Чудное и Нестеровское. Они также могут быть отнесены к церийсодержащим клиноцоизитам.

Можно предположить, что все церийсодержащие клиноцоизиты, приведенные в таблице, являются продуктами единого гидротермального процесса наложенного на породы, развитые в приводораздельной части хр.Малдынырд. Вообще же, образование клиноцоизита характерно для метасоматически и метаморфически измененных контактов обогащенных кальцием осадочных пород, а также для кислых магматических пород, контаминированных известково-силикатным материалом [1].

Литература

1. *Дир У.И., Хауи Р.А., Зусман Дж*. Породообразующие минералы. М.: Мир, 1965. Т. 1. 366 с.

2004

Вестник Уральского отделения

- 2. *Ефанова Л.И., Повонская Н.В., Швецова И.В.* Золотоносность и типоморфные ососбенности минералов алькесвожской толщи на участке Нестеровском // Геология европейского севера России. Труды Ин-та геологии Коми НЦ УрО РАН, 1999. Сб. 4. Вып. 103. С. 102-125.
- 3. *Мизин В.И., Соболева А.А.* Акцессорные минералы Малдинской риолитовой субинтрузии // Магматиты и метаморфиты Севера Урала. Труды Ин-та геологии Коми НЦ УрО РАН. 1991. Вып. 74. С. 39-43.
- 4. Озеров В.С. Метаморфизованные россыпи золота Приполярного Урала // Руды и металлы. 1996. № 4. С. 28-37.
- 5. *Соболева А.А.* Базиты контрастной базальт-риолитовой ассоциации хребта Малдынырд // Геология европейского севера России. Труды Ин-та геологии Коми НЦ УрО РАН, 1999. Сб. 4. Вып. 103. С. 48-57.
- 6. Сорока Е.И., Леонова Л.В., Рахов Е.В., Рябинин В.Ф. Проблематика в породах базальтоидного облика на площади золото-палладиевого проявления Чудное (Приполярный Урал) // Ежегодник-2002. Екатеринбург: ИГГ УрО РАН, 2003. С. 141-146.
- 7. *Тарбаев М.Б., Кузнецов С.К., Моралев Г.В. и др.* Новый золото-палладиевый тип минерализации в Кожимском районе Приполярного Урала (Россия) // Геология рудных месторождений. 1996. Т. 38. № 1. С. 15-30.
- 8. *Шумилов И.Х., Остащенко Б.А.* Минералого-технологические особенности Au-Pd-TR оруденения на Приполярном Урале. Ин-т геол.Коми НЦ УрО РАН, Сыктывкар: Геопринт, 2000. 104 с.
- 9. *Юдович Я.Э., Ефанова Л.И., Швецова И.В., Козырева И.В., Котельникова Е.А.* Зона межформационного контакта в каре оз. Грубепендиты. Сыктывкар: Геопринт, 1998. 95 с.