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Summary

The stability problem of a rock slope containing a wedge resting on two intersecting disconti-
nuities is of great interest in rock slope engineering. It is a statistically indeterminate problem with
two extra unknowns according to the force (stress) equilibrium analysis. The widely used limit
equilibrium methods in practice assume that the directions of the shear forces acting on the two
discontinuities are parallel to their line of intersection. The validity of this assumption, however,
has not been verified theoretically. This paper presents a general limit equilibrium method that
determines the directions of the shear forces by using Pan’s ‘‘Maximum principle’’ and an upper
bound method that applies the classic upper bound theorem of limit analysis to avoid making extra
assumptions. The formulations of the two methods are derived. A non-symmetric wedge and a
symmetric wedge are analyzed using the two derived methods. To further explore the influence on
stability due to the direction of the shear force acting on the two discontinuities, three-dimensional
finite-element analyses are also conducted. The results are compared and discussed.

Keywords: Wedge, dilatancy, stability, factor of safety, upper bound, finite element method.

List of Symbols

A1, A2 areas of plane
c, c1, c2 cohesions of the soil
ce1, ce2 mobilized cohesions
_DD energy dissipation along shear band
Eslip elasticity modulus of the material for the slip zone
Ewedge elasticity modulus of the wedge body



1. Introduction

Stability analysis of a rock slope containing a wedge resting on two interesting disconti-

nuities is of great interest in rock slope engineering. A spatial force equilibrium analysis

shows that the problem of wedge stability is statistically indeterminate with two extra

unknowns (Wang and Yin, 2002). To render this problem resolvable, traditional limit

equilibrium methods assume that the directions of the shear forces applied on the two

intersecting discontinuities are parallel to the line of intersection of these two disconti-

nuities (Hoek et al., 1973; Goodman, 1995). However, the validity of this assumption has

not been verified. By considering dilatancy properties of discontinuities during shearing

and using the limit equilibrium approach, Wang and Yin (2002) found that the directions

of the shear forces acting on these two intersecting discontinuities incline a certain angle

to the line of intersection when the dilation angles associated with the discontinuities

vary. This means that the results of stability analysis of the wedge problem depend on the

assumptions regarding the directions of the shear forces acting along the discontinuities.

F factor of safety
G weight of the wedge
n the number of nodes on a plane
n1, n2 unity norm vectors
n1x, n1y, n1z the components of n1 in (x, y, z) coordinate system
n2x, n2y, n2z the components of n2 in (x, y, z) coordinate system
P resultant force of pore water pressure
P1, P2 uplift forces
rxi, ryi, rzi the components of reaction R of node i in x, y and z directions
R, R1, R2 reactions acted on the plane
R1n, R1s the components of R1

R2n, R2s the components of R2

S1 shear force
S11, S22 forces parallel to the line of intersection
T external surface load
Tr the resultant of forces G, T, P1 and P2

Trs, Trn the components of Tr along and perpendicular to the line of intersection
T� external surface load over the velocity field V�
vx, vy, vz the components of velocity jump V in (x, y, z) coordinate system
V velocity jump
jVj the magnitude of V
V� velocity field
�, �1, �2 angles between the intersection line and the direction of force Tr
�1, �2 inclination angles of S1 and S2 to the intersection line
�slip unit weight of the material for the slip zone
�wedge unit weight of the wedge body
�wedge Poisson’s ratio of the wedge body
�1, �2 the inclinations of R1 and R2 with respect to the direction of Trn
��ij , _""�ij stress and strain rate within plastic zone ��
��� , _""�

�� stress and strain rate over slip surface ��.
�, �1, �2 friction angles of the soil
�e1, �e2 mobilized friction angles
 e dilation angle of the soil
�, �1, �2 yielding ratios
�ðV � niÞ scalar product of vectors V and ni, i¼ 1,2
�� slip surface
�� plastic zone
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Focusing on slope stability analysis, Pan (1980) suggested that for a specified slip

surface, the stresses within the failing rock volume as well as on the slip surface will

be readjusted to mobilize the maximum resistance against failure. This idea might

provide a way for determining the directions of the shear forces that mobilize the

maximum resistance. In addition, by establishing a work-energy-balance equation, the

widely used upper-bound method of limit analysis in geotechnical engineering (Chen,

1975; Michalowski, 1995) allows one to find the factor of safety by solving this

equation. Application of the upper bound method, therefore, could provide another

way of solving the wedge problem without making assumptions regarding the shear

forces directions. With the advances in computer technology, the finite element (FE)

method has become a powerful tool for numerical solution of a wide range of geo-

technical engineering problems (Desai et al., 1984), and a three-dimensional (3-D)

finite element analysis may throughout explore the wedge problem.

The objectives of the paper are: (a) to derive a general formulation for the wedge

stability analysis based on the limit equilibrium approach without any additional

assumption; (b) to derive a particular equation of a general limit equilibrium method

based on Pan’s ‘‘Maximum Principle’’; (c) to derive the formulation of an upper bound

method for the wedge stability analysis; (d) to analyze the problem of wedge stability by

using a 3-D FE model; and (e) to explore the influence of the directions of the shear forces

acting on the discontinuities on the factor of safety by using the finite element method.

2. General Equations for Calculation of the Factor of Safety

In the following stability analyses of the wedge problems, the two intersecting dis-

continuities, on which a wedge rests, are assumed to be through-going and planar. The

left discontinuity is called plane A while the right one is called plane B (Fig. 1). The

wedge is subjected to an external surface load T, weight of the wedge G, uplift force

P1 acting on plane A and uplift force P2 acting on plane B. For convenience, the

resultant of forces G, T, P1 and P2 is defined as a force Tr.

 

Fig. 1. An isometric view of a slope containing a wedge and forces applied on it
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The plane passing through Tr and the line of intersection of planes A and B is defined

as plane C. If the direction of Tr is downwards and lies between planes A and B, the

wedge would slide along these two intersecting discontinuities, which is the case to be

analyzed in this paper. However, when the direction of Tr is downwards and not between

planes A and B, the wedge would fail along one of these two discontinuities. It is a typical

slope stability problem with one slip surface, which is not considered in this paper.

When considering a potential sliding of the wedge along the line of intersection of

two interesting discontinuities, a unique decomposition of force Tr on plane C into a

component Trs along the line of intersection and a component Trn perpendicular to the

line of intersection can be written as follows (Fig. 2a):

Trs ¼ Tr � cos�; ð1Þ

Fig. 2. Forces applied on the wedge and their decompositions. a) plane passing through force Tr and the line
of intersection of planes A and B; b) plane normal to the line of intersection of planes A and B; c) aerial

view of planes A and B
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Trn ¼ Tr � sin�; ð2Þ
where � is the angle between the line of intersection of planes A and B and the

direction of force Tr.
Since it is not necessary to require reactions of planes A and B to Trn to be normal

to these two planes, the resolution of Trn into two components acting on planes A and

B is indefinite. The reactions R1 and R2 of planes A and B to force Trn have infinite

sets of combinations as shown in Fig. 2b. They respectively incline at �1 and �2 with

respect to the direction of force Trn. The angles �1 and �2 may have indefinite sets. The

case that reactions R1 and R2 are normal to planes A and B is a special one and is

commonly adopted in traditional limit equilibrium methods (Hoek et al., 1973).

A force-triangle analysis of R1, R2 and Trn yields

R1 ¼ sin �2

sin ð�1 þ �2Þ
� Trn ¼

sin �2

sin ð�1 þ �2Þ
� sin� � Tr; ð3Þ

R2 ¼ sin �1

sin ð�1 þ �2Þ
� Trn ¼

sin �1

sin ð�1 þ �2Þ
� sin� � Tr; ð4Þ

in which R1 and R2 incline at angles �1 and �2 with respect to normals to planes A and

B respectively (Fig. 2b). By focusing on forces acting on plane A, R1 is resolved into

two components R1n and R1s on a plane perpendicular to the line of intersection of

planes A and B. As illustrated in Fig. 2(b), R1n is normal to plane A and R1s is along

the line of intersection of plane A and a plane perpendicular to the line of intersection

of planes A and B. Thus,

R1n ¼ R1 � cos�1; ð5Þ

R1s ¼ R1 � sin�1: ð6Þ
Since all forces on the plane perpendicular to the line of intersection of planes

A and B are in equilibrium, force equilibrium analysis shows that a force S11 that

is parallel to the line of intersection of planes A and B should exist to resist force

Trs (Fig. 2c). The resultant force of S11 and R1s constitutes a shear force S1 acting

on plane A, which is related to force R1n by the Mohr-Coulomb failure criterion

(Fig. 2c)

S2
1 ¼ S2

11 þ R2
1s ¼ ðR1n � tan �e1 þ ce1 � A1Þ2; ð7Þ

where ce1 and �e1 are the mobilized cohesion and angle of internal friction associated

with plane A, respectively. A1 is the area of plane A. ce1 and �e1 are related to the

factor of safety F by F ¼ tan�1

tan�e1
¼ c1

ce1
, in which c1 and �1 are the cohesion and angle of

internal friction associated with plane A, respectively. Force S1 inclines at an angle �1

to the line of intersection of planes A and B (Fig. 2c). Substitution of Eqs. (3), (5) and

(6) into Eq. (7) and rearranging yields

S11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 2�2

sin 2ð�1þ�2Þ � sin 2� � T2
r � ½cos 2�1 tan 2�e1 � sin 2�1�þ

þ2ce1 � A1 � tan�e1 � sin �2

sin ð�1þ�2Þ � sin� � cos�1 � Tr þ c2
e1 � A2

1

vuut : ð8Þ
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Similarly, a force S22 on plane B that is parallel to the line of intersection of planes A

and B to resist Trs is

S22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 2�1

sin 2ð�1þ�2Þ � sin 2� � T2
r � ½cos 2�2tan 2�e2 � sin 2�2� þ

þ2ce2 � A2 � tan�e2 � sin �1

sin ð�1þ�2Þ � sin� � cos�2 � Tr þ c2
e2 � A2

2

vuut ð9Þ

where ce2 and �e2 are moblized cohesion and angle of internal friction associated with

plane B, respectively. A2 is the area of plane B.

Establishing the force equilibrium equation along the line of intersection of planes

A and B yields

S11 þ S22 ¼ Trs: ð10Þ

Substituting Eqs. (1), (8) and (9) into Eq. (10) and after rearranging gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 2�2

sin 2ð�1þ�2Þ � tan 2� � ðcos 2�1tan 2�e1 � sin 2�1Þþ

þ2ce1 � A1 � tan�e1 � sin �2

sin ð�1þ�2Þ � cos�1 � tan�
cos� � Tr þ

c2
e1
�A2

1

cos 2� �T2
r

vuuut

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 2�1

sin 2ð�1þ�2Þ � tan 2� � ðcos 2�2tan 2�e2 � sin 2�2Þþ

þ2ce2 � A2 � tan�e2 � sin �1

sin ð�1þ�2Þ � cos�2 � tan�
cos� � Tr þ

c2
e2
�A2

2

cos 2� � T2
r

¼ 1:

vuuut

ð11Þ

Note that when the wedge geometry, the external loading condition and strength

parameters associated with the two discontinuities are specified, there are three

unknowns F, �1 and �2 involved in Eq. (11). One equation with three unknowns

obviously indicates that the wedge stability is a statistically indeterminate problem

and the factor of safety cannot be determined by Eq. (11) without introducing any

extra assumption (such as directions of shear forces).

3. Traditional Limit Equilibrium Method (TLE)

In traditional limit equilibrium methods it is generally assumed that shear forces S1

and S2 acting on planes A and B are parallel to the line of intersection of the two

planes. It means that forces R1s and R2s diminish and reactions of discontinuities to

force Trn are in directions of normals to planes A and B (�1¼�2¼ 0). After rearrang-

ing Eq. (11), the factor of safety F for the TLE method is rewritten as

F ¼ tan a

sin ð�1 þ �2Þ
ðsin �2tan�1 þ sin �1tan�2Þ þ

ðc1A1 þ c2A2Þ
Trcos�

: ð12Þ

Since forces R1s and R2s are in directions of normals to planes A and B, when the

external force Tr is known, angles �1 and �2 are uniquely determined and the factor of

safety F can be obtained explicitly using Eq. (12).
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4. General Limit Equilibrium (GLE) Method

When directions of shear forces acting on planes A and B are not assumed to be

parallel to the line of intersection of these two planes, it is crucial to provide two extra

equations to make the wedge problem statically determinate. Two postulates for slope

stability analysis proposed by Pan (1980) allow one to solve this problem. They are:

(a) Among many possible slip surfaces, the real one offers the minimum resistance

against failure, which is called ‘‘Principle of Minimum’’; (b) For a specified slip

surface, the stress within the failing mass as well as on the slip surface will be read-

justed to mobilize the maximum resistance against failure, which is called ‘‘Principle

of Maximum’’.

These two postulates propose a general and abstractive way of performing slope

stability analyses. They are applicable to all slope stability problems. The slip surface

may be two-dimensional (2-D), three-dimensional (3-D), planar and curved. Note that

a wedge supported by two intersecting discontinuities is a typical 3-D problem with a

pre-known hinge-like slip surface. It means that Pan’s ‘‘Principle of Maximum’’ can

be applied directly to the wedge problem rather than using Pan’s ‘‘Principle of

Minimum’’, and only the maximum resistance against potential failure should be

determined.

Following the force equilibrium analysis in Section 2, the forces on the plane

that is perpendicular to the line of intersection of planes A and B are in equilibrium

regardless of what decomposition of force Trn is used. Only force Trs leads to a

potential failure along the line of intersection, hence, a resistance contributed by

shear forces S11 and S22 should be mobilized against the potential failure (Fig. 2c).

Eqs. (8) and (9) show that S11 and S22 are related to force Trn by the two angles �1

and �2.

An optimization method can be applied to search for the maximum resistance of

S11þ S22 against force Trn that leads to a potential failure among all possible combi-

nations of �1 and �2. It should be mentioned herein that ce and �e are replaced by c and

� when calculating the magnitude of S11þ S22. Once the maximum resistance

S11þ S22 has been obtained, �1, �2, �1 and �2 are determined accordingly (Fig. 2c).

The factor of safety F can be obtained by using Eq. (11).

In the process of searching for the maximum mobilized resistance S11þ S22, com-

binations of �1 and �2 must guarantee not to violate the following physical conditions

R1s 4R1n � tan�1 þ c1 � A1; ð13Þ

R2s 4R2n � tan�2 þ c2 � A2: ð14Þ

Substitution of Eqs. (3), (5) and (6) into Eq. (13) yields

sin�1 � cos�1 � tan�1

c1 � A1 � sin ð�1 þ �2Þ
sin �2 � sin� � Tr

: ð15Þ

Similarly,

sin�2 � cos�2 � tan�2 4
c2 � A2 � sin ð�1 þ �2Þ

sin �1 � sin� � Tr
: ð16Þ
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In addition, reactions R1 and R2 must be directed upward in order not to violate the

condition of force equilibrium (Fig. 2b), that is,

04 �1;þ�2 4 180�: ð17Þ

The method, which uses Pan’s ‘‘Principle of Maximum’’ and optimization tech-

niques to search for the maximum resistance and the corresponding F based on limit

equilibrium approach, is called herein general limit equilibrium (GLE) method.

5. Upper Bound (UB) Method

The upper bound theorem of limit analysis in classic plasticity is widely applied in

geotechnical engineering due to its simplicity and no need to perform the complicated

stress or force analysis (Chen, 1975). The upper bound theorem for slope stability

analysis is stated as follows for a kinematically admissible strain rate within a plastic

zone �� of a potential sliding mass and a velocity field V� of the same sliding mass

along a slip surface ��, the external surface load T� calculated fromð
��
��ij _""�ij d�� þ

ð
��
��� _""

�
��d�

� ¼ GV� þ T�V� ð18Þ

will be either greater than or equal to the real surface load T. In Eq. (18) the first term

is the rate of work done by stress ��ij over strain rate _""�ij , dissipated within ��. The

second term is the rate of work done by the traction ��� over ��. The right side terms

in Eq. (18) represent the rate of external work done by weight of sliding mass G and

the surface load T� over the velocity field V� (Donald and Chen, 1997).

It should be mentioned herein that the resultant force P of pore water pressure u

applied on discontinuities is considered to be an external force and does not appear in

the energy equation in Eq. (18). If there is a pore water pressure, the effective cohesion

and friction angle shall be used. To include the pore water pressure force, the energy

balance equation is then changed toð
��
��ij _""�ij d�� þ

ð
��
��� _""�

��d�
� ¼ WV� þ T�V� þ PV�: ð19Þ

Note that the wedge body is considered as a potential failure mass while the two

discontinuities as the slip surface. The wedge body is generally assumed to move as

a rigid body along its two intersecting discontinuities. No internal energy is, there-

fore, dissipated within the wedge body and the first terms of Eqs. (18) and (19)

diminish. If the discontinuities are viewed as a shear band with no thickness, the

second terms of Eqs. (18) and (19) can be simplified to the energy dissipation _DD
along a shear band (Fig. 3). By applying the associated flow rule and the Mohr-

Coulomb failure criterion, _DD along a shear band with unit length per volume is

defined as (Chen, 1975)

_DD ¼ c � cos� � V ð20Þ

where c and � are cohesion and friction angle associated with the shear band, V is a

velocity jump inclined of � with respect to the shear surface (Fig. 3).
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For stability analysis of a slope containing a wedge resting on two interesting

discontinuities, the application of the upper bound theorem involves two steps:

Step 1: Determining the velocity of wedge.

Figure 4 illustrates a typical movement of a wedge with a velocity V, inclining

at a mobilized friction angle �e1 with respect to plane A and at a mobilized

friction angle �e2 to plane B. The components of the velocity V in the (x, y, z)

coordinate system are denoted by (vx, vy vz). Similarly, the unit vector n1 normal to

plane A is denoted by (n1x, n1y, n1z) while the unit vector n2 normal to plane B is

denoted by (n2x, n2y, n2z). The fact that the wedge velocity V inclines at an angle

�e1 to plane A indicates that the angle between V and n1 will be 	=2��e1, which

yields

�ðV � n1Þ ¼ cos ð	=2 � �e1Þ ¼ sin�e1: ð21Þ

Similarly

�ðV � n2Þ ¼ cos ð	=2 � �e2Þ ¼ sin�e2; ð22Þ

Fig. 3. A mode of shear deformation in a shear band

Fig. 4. An schematic illustration of the movement of a wedge
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where �ðV � niÞ is the scalar product of vectors V and ni and is determined by

�ðV � niÞ ¼
vx � nix þ vy � niy þ vz � nizffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
x þ v2

y þ v2
z

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
ix þ n2

iy þ n2
iz

q ði ¼ 1; 2Þ: ð23Þ

Note that since only two equations (Eqs. (21) and (22)) are available for the three

unknown components (vx, vy, vz) of V, one additional equation must be introduced. In

addition, considering that it has no influence on the construction of energy balance

equation and the solution for the factor of safety, the magnitude of V is generally

assumed to be unity

jVj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
x þ v2

y þ v2
z

q
¼ 1: ð24Þ

Thus, the three unknown components vx, vy and vz can be determined by solving a

system of non-linear equations (21), (22) and (24) for given values of �e1 and

�e2.There are two sets of vx, vy and vz that can be obtained due to Eq. (24). The right

one should be able to guarantee that the potential sliding of wedge is downward and

outward rather than upward and inward relative to readers (Fig. 4).

Step 2: Establishing the energy balance equation and finding the factor of safety.

The external forces acting on the wedge, which do the external work rate, include

weight of the wedge G, surface resultant force T and water force P1 and P2 acting on

planes A and B (Fig. 1). Thus, the work rate in the direction of velocity V done by the

above forces can be expressed as a sum of their scalar products

W ¼ jGj � jVj þ jTj � jVj þ jP1j � jVj þ jP2j � jVj ð25Þ

The total energy dissipated on the discontinuities (planes A and B) due to V isX
_DD ¼ ce1 � A1 � jVj � cos�e1 þ ce2 � A2 � jVj � cos�e2: ð26Þ

The factor of safety F, included in the mobilized cohesion and friction angle in

Eq. (26), can be determined by equating the work rate done by external forces (Eq. 25)

to the total energy dissipation on discontinuities (Eq. 26)

ce1 � A1 � jVj � cos�e1 þ ce2 � A2 � jVj � cos�e2

¼ jGj � jVj þ jTj � jVj þ jP1j � jVj þ jP2j � jVj ð27Þ

Note that the factor of safety F involved in Eq. (27) should be determined by using

an iterative procedure (Donald and Chen, 1997). Once F has been determined, the

direction of V is known according to the mobilized strength parameters. The direc-

tions of shear forces acting on planes A and B are in the projections of V on these

two planes respectively, but opposite to these projections. Then, the angle � between

the shear forces acting on planes A and B and their line of intersection can be

determined following the procedure presented for the GLE method. In addition,

application of the upper bound theorem indicates that the solution obtained by the

above procedure is an upper bound, or in other words, a solution that offers the

maximum resistance.

136 Y.-J. Wang et al.



6. Comparison of TLE, GLE, UB and DD Methods

Two rock wedge example problems are analyzed by using the TLE, GLE, UB methods

and the method which account for the dilatancy of discontinuous planes (called DD

method in this paper) proposed by Wang and Yin (2002). The values of the factor of

safety obtained by using the four methods are compared. The relationships and differ-

ences of the four methods are explored.

Example 1: The first example is a symmetrical rock wedge (Wang and Yin, 2002).

Plane A dips at 60� in a dip direction of 120� while plane B dips at 60� in a dip

direction of 240�. The wedge is 10.2 m high. Strength parameters on plane A are the

same as those on plane B. Herein, two sets of strength parameters are used. One is

c¼ 10 kPa and �¼ 30�, while the other c¼ 0 kPa and �¼ 30�. Note that for this

specific example, the weight G is the only external load applied to the wedge. Strength

parameters and geometry conditions are symmetrical about the vertical plane passing

the line of intersection of planes A and B, therefore, shear forces on planes A and B

should incline at the same angle � to the line of intersection.

Values of the factor of safety F and angle � for the two sets of strength parameters

determined by the TLE, GLE, UB and DD methods are given in Table 1. Variations of

the factor of safety determined by the TLE, GLE and UB methods with cohesion and

friction angle are also presented in Fig. 5.

Table 1. Values of F and � obtained by the TLE, GLE, UB and DD methods for Example 1

Method c¼ 0 kPa, �¼ 30� c¼ 10 kPa, �¼ 30�

F � (�) F � (�)

TLE 0.869 0.0 1.228 0.0
GLE 1.136 40.2 1.430 30.7
UB 1.136 – 1.430 –
DD( e ¼ 0) 0.869 0.0 1.228 0.0
DD( e ¼ �e) 1.136 40.2 1.430 30.7

Fig. 5. Variations of the factor of safety determined by the TLE, GLE and UB methods with cohesion and
friction angle
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Table 1 and Fig. 5 show that both the TLE method and DD method with zero

dilation angle give the same minimum value of the factor of safety while the GLE

method, UB method and DD method with the maximum mobilized dilation coefficient

give the maximum value of the factor of safety. Furthermore, shear forces on slip

surfaces determined by the GLE and UB methods incline at a certain angle to the line

of intersection of planes A and B. Figure 5 also shows that when the friction angle is

zero, all methods give the same value of the factor of safety for the same value of

cohesion. For a given value of cohesion, however, the difference in the values of the

factor of safety determined by the TLE and GLE (and UB or DD) methods increases

with the friction angle. When the friction angle reaches the maximum of 30� in this

study, the difference in the factor of safety reaches the maximum, and the relative

difference is up to 22%.

Example 2: The second example is a non-symmetrical wedge problem that is

frequently quoted in the literature (Hoek and Bray, 1977). The geometry and material

properties for this example are reported in Wang and Yin (2002).

Values of the factor of safety and angles between shear forces on slip surfaces and

the line of intersection of planes A and B determined by the TLE, GLE, UB and DD

methods are summarized in Table 2. Since the TLE method assumes that shear forces

on planes A and B incline at an angle of zero to the line of intersection of planes A and

B, the minimum value of the factor of safety, 1.846, is obtained. The GLE method,

however, presents the maximum value of the factor of safety, 1.929, while the shear

forces on planes A and B incline at 19.4� and 14.7� to the line of intersection,

respectively. The UB method gives the same value of factor of safety as the GLE

method. When varying the dilatancy properties of planes A and B, the DD method

gives the same minimum value as the TLE method at zero dilatancy angle, and the

same maximum value of factor of safety and �1, �2 as that obtained by using the GLE

and UB methods at the full dilatancy angles.

7. Finite Element Analysis

To further investigate the influence of the direction of shear forces acting on two

intersecting discontinuities on the factor of safety, three-dimensional (3-D) finite-ele-

ment (FE) analyses for the two examples discussed in Section 6 are performed by

using the commercial code ABAQUS (1995). In the 3-D FE analysis, the wedge is

modeled into three parts: a wedge body that rests on two intersecting discontinuities, a

zone of discontinuity that consists of the two interesting discontinuities and a wedge

base (or rock body) below the discontinuity zone.

Table 2. Values of F and � obtained by TLE, GLE, UB and DD methods for Example 2

Method Factor of safety F �1 (�) �2 (�)

TLE 1.846 0.0 0.0
GLE 1.929 19.5 14.7
UB 1.929 – –
DD( ¼ 0) 1.846 0.0 0.0
DD( ¼ �e) 1.929 19.4 14.7
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The wedge body is discretized into a number of layers of three-dimensional (3-D)

solid elements which exhibit a linearly elastic isotropic behaviour. The discontinuous

zone is simulated by two layers of 3-D solid elements that are plate-like and follow the

linear Drucker-Prager failure criterion. The wedge base underneath the discontinuity

zone is simulated by fixed supports.

Based on the preceding understanding of the wedge problem, a potential sliding

will occur along the two discontinuities (discontinuities have lower strength than a

wedge body and a wedge base). The 3-D FE analysis of the wedge problem focuses on

investigating the state of stress and deformation characteristics of the discontinuity

zone. An external load (gravity or a surface load) is gradually applied through the 3-D

solid elements of the wedge. The total reactions of fixed supports to the discontinuity

zone (slip surface) associated with a set of cohesion and friction angle of the dis-

continuity zone can be obtained when the stress state of the discontinuity zone reaches

a Mohr-Coulomb state or a fully plastic state (the detailed procedures will be pre-

sented in the following). Determination of the factor of safety is transferred to obtain a

set of mobilized cohesion and friction angle values that make the state of stress in the

discontinuity zone in a Mohr-Coulomb state.

7.1 Finite Element Analysis of Example 1

7.1.1 3-D FE Modelling

Since the geometry and strength parameters of the wedge in example 1 are symme-

trical, only the right-hand half of the wedge (tetrahedron DABC as shown in Fig. 6a) is

taken and analyzed. A 3-D finite element model for the symmetrical problem is

explained in details as follows:

a) To easily discretize the tetrahedron DABC into 3-D solid elements and to number

nodes and elements, a very small part of tetrahedron DA1B1C1 (for clarity, sides

DA1, DB1, and DC1 which have been enlarged in Fig. 6a) is removed. The sides

DA1, DB1, and DC1 are generally taken as 1=100 of the length of the sides DA,

 

Fig. 6a. Schematic discretization of the symmetrical wedge in Example 1
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DB, and DC, respectively. Therefore, the removal of tetrahedron DA1B1C1 has no

significant influence on the FE results.

b) The discontinuity zone is generally thin and is represented by prism A2B2C2–ABC.

The length of AA2, BB2, and CC2 are taken to be 1=100 of sides DA, DB, and DC,

respectively. Prism A2B2C2–ABC for the discontinuty zone is divided into two layers

(the two-layer discretization being fixed in this study) by a middle plane ApBpCp that

is formed by connecting the midpoints of the sides AA2, BB2 and CC2.

c) The wedge body, which is represented by prism A1B1C1–A2B2C2, is divided into

n-layers of prisms by n-1 planes (e.g. planes A3B3C3 and A4B4C4). The number n

is determined by a study of the mesh convergence. Every layer (e.g. prism

A3B3C3–A4B4C4) is further discretized into a series of 3-D 6-node linear triangular

prisms and 8-node linear brick elements as shown in Fig. 6b.

d) The number of nodes and elements composing each layer for the wedge body and

the discontinuity zone are the same. The only difference is the dimension of

elements. The wedge base is simulated by fixed supports to the bottom side of

the slip zone.

It should be mentioned that the nodes in the symmetrical plane C1CAA1 (in y–z

plane) are fixed in the x-direction, but free to move in the y–z plane. The nodes on the

bottom of the wedge body mesh are connected to the nodes of the top layer of the

discontinuity zone in plane A2B2C2.

7.1.2 A Study of the Mesh Convergence

For the symmetrical wedge problem shown in Fig. 6a, two different discretization

models of prism A1B1C1–A2B2C2 into 9-layers (coarse) and 14-layers (fine) with a

different number of elements for each layer are studied and compared.

An isotropic linear elastic model with Young’s modulus Ewedge¼ 25 MPa, and

Poisson’s ratio �wedge ¼ 0.17 is used to model the wedge material. A linear Drucker-

Fig. 6b. Illustration of elements in one layer
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Prager elasto-plastic model with cohesion c¼ 10 kPa and a friction angle�¼ 30� is used

to model the slip zone. For the elastic properties the following is assumed: Eslip¼
10 MPa, and �slip¼ 0.15. In the mesh convergence study for the symmetrical wedge

problem, only the associated flow rule is considered. The unit weights of the materials for

the wedge body and the slip zone are the same, that is, �wedge¼ �slip ¼ 26.46 kN=m3.

When the gravity of the wedge is gradually applied to the three-dimensional finite

element mesh, reactions of all nodes on plane ABC are obtained by using finite element

analysis. The resultant reaction R of all nodes on the plane ABC of the slip zone

supporting the wedge is a sum of reactions of each node on plane ABC, and is given by

R ¼ ½Rx;Ry;Rz�T; ð28Þ

where

Rx ¼
Xn
i¼1

rxi; Ry ¼
Xn
i¼1

ryi; Rz ¼
Xn
i¼1

rzi; ð29Þ

where rxi, ryi, and rzi are the components of reaction of node i in x, y and z directions. n

is the number of nodes on plane ABC.

Table 3 summarizes the components of reaction R2 in x, y and z directions for

different discretization models. Columns 2 and 3 in Table 3 are the number of layers

representing the wedge and number of nodes on each plane, respectively. Column 4 is

the number of all elements in the 3-D FE model. Columns 5, 6, and 7 are the com-

ponents of total reaction R in x, y and z directions.

Since the wedge problem is symmetrical in geometry and loading, the magnitude

of the reaction R in z-direction (opposite to the gravity) should be equal to 2350.2 kN,

i.e., half weight of the wedge. This is demonstrated by the values shown in column 7,

Table 3. In addition, since the wedge is symmetrical about plane C1CAA1 as shown in

Fig. 6a, Ry is zero as given in column 6, Table 3.

Variations of Rx with different 3-D FE meshes show that the number of layers in

the wedge body has little influence on the magnitude of Rx. However, the magnitude of

Rx considerably depends on the number of nodes in each plane. It is found from Table 1

that the discretization model No. 9 with 9 layers and 676 nodes in each plane gives a

Table 3. Values of Rx, Ry and Rz for different 3-D discretization models for Example 1 (c¼ 10 kPa, �¼ 30�)

Model Number Number of node Number of Rx Ry Rz

no. of layers on one plane total elements (kN) (kN) (kN)

1 9 36 270 �1471.43 0.0 2350.1
2 9 64 504 �1475.47 0.0 2350.2
3 9 121 990 �1480.02 0.0 2350.2
4 9 169 1404 �1482.08 0.0 2350.2
5 9 256 2160 �1484.48 0.0 2350.2
6 9 400 3420 �1486.82 0.0 2350.2
7 14 400 5320 �1490.48 0.0 2350.2
8 19 400 7220 �1490.71 0.0 2350.2
9 9 676 5850 �1492.09 0.0 2350.2

10 14 676 9110 �1492.77 0.0 2350.2
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reasonably accurate value of Rx¼�1492.09 kN. Therefore, a discretization with 9

layers and 676 nodes is utilized in the following FE analyses of this symmetrical

wedge problem. Figure 7 shows an undeformed 3-D finite element mesh for the right-

hand half of this symmetrical example.

7.1.3 Determination of the Factor of Safety

In this study, a linear Drucker-Prager elasto-plastic model is used as an approximation

to the Mohr-Coulomb model. For a set of values of cohesion and friction angle, the

state of stress on the slip surface (the discontinuity zone) is likely to be fully elastic,

fully plastic, partially elastic and plastic, or no existing. Therefore, whether or not the

state of stress on the slip surface reaches the Mohr-Coulomb failure state is dependent

upon the combination of cohesion and friction angle associated with these slip sur-

faces when external loadings are given.

When a set of cohesion and friction angle values is specified to perform 3-D FE

analysis, a state of stress on discontinuity zone can be obtained. If the tangential and

normal components of R satisfy the Mohr-Coulomb failure criterion, the state of stress

is considered to be in a Mohr-Coulomb state and the set of cohesion and friction angle

values are referred to as a set of Mohr-Coulomb-state cohesion and friction angle val-

ues accordingly. Note that the Mohr-Coulomb-state cohesion and friction angle values

will not be reduced by the factor of safety, therefore, a Mohr-Coulomb state is also

called the state for F¼ 1.

For the symmetrical problem in Fig. 6a when the reaction R of plane ABC (a slip

plane) is decomposed into its normal and tangential components Rn and S, a yielding

coefficient is defined as

� ¼ jRnjtan�þ cA

jSj ; ð30Þ

Fig. 7. Undeformed 3-D FE mesh for the symmetrical wedge in Example
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where c and � are the cohesion and the friction angle associated with the Mohr-

Coulomb failure criterion. A is the area of the slip surface. For the yielding ratio

�¼ 1, the stresses computed on the slip surfaces are in a Mohr-Coulomb failure state.

The case �> 1 means that the state of stress on the slip surfaces has not reached the

Mohr-Coulomb failure state. If �< 1, the state of stress is beyond the Mohr-Coulomb

failure state.

In FE analyses of the wedge problem, the factor of safety F is still defined as

F ¼ tan�
tan�e

¼ c
ce

; therefore, mobilized cohesion and friction angle ce and �e that involve

the factor of safety are input into Eq. (30) to compute the yielding ratio �. Since it is

difficult to directly determine which set of mobilized cohesion and friction angle that

make �¼ 1, the factor of safety needs to be determined by a trial-and-error procedure,

as follows:

(a) to choose an initial estimate of F that is less than that obtained by the TLE

method;

(b) to calculate values of ce ¼ c
F

and �e ¼ tan �1ðtan�
F
Þ. An FE analysis is followed to

determine values of Rz and �;

(c) to stop the FE analysis when Rz is less than half weight of the wedge (2350.2 KN)

or �< 1; otherwise, to gradually increase the value of the factor of safety and go to

Step (b);

(d) to plot the variation of � with F, and to find the value of F at �¼ 1.

For c¼ 10 kPa and �¼ 30�, a plot of � versus F shows that the factor of safety

decreases with the yielding coefficient (Fig. 8). When the value of � is 1.0, the factor

of safety F is 1.43, while the tangential component S (shear force on the slip surface)

inclines at an angle of 29.9� with respect to the line of intersection of the two inter-

esting discontinuities (Table 4).

7.1.4 Comparison of FE Method with TLE and GLE Methods

As previously discussed, a comparison of the TLE, GLE, UB and DD methods shows

that: (a) both the TLE and DD methods for  ¼ 0 (or zero dilation angle) (Wang and

Yin, 2002) give the same minimum factor of safety; (b) the GLE, UB and DD methods

Fig. 8. Variation of the factor of safety with yielding coefficient
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for  ¼� (or for a full dilation angle) (Wang and Yin, 2002) give nearly the same

maximum value of the factor of safety. Therefore, only a comparison of the 3-D FE

method with the TLE and GLE methods for this symmetrical problem is presented

here.

Consistent with the definition in 3-D FE analysis, the Mohr-Coulomb-state cohe-

sion and friction angle are also defined for the TLE and GLE methods. The Mohr-

Coulomb-state cohesion and friction angle for the TLE and GLE methods are the

cohesion and friction angle that are not altered by the factor of safety (that is, using

F¼ 1.0) and make the stress state in the discontinuity zone in a fully plastic state

(limit state). A comparison of the Mohr-Coulomb-state friction angle and cohesion de-

termined by the TLE, GLE and FE methods shows that values of the Mohr-Coulomb-

state friction angle and cohesion obtained by using the FE method are basically

identical to those given by the GLE method (Fig. 9 and Table 5). However, values

of the Mohr-Coulomb-state cohesion and friction angle obtained by using the TLE

method are greater than those given by the FE or GLE method. Figure 9 also shows

that for the same value of cohesion, the TLE method needs a larger friction angle for

the wedge to be stable (or for arriving at the Mohr-Coulomb failure state) than friction

angles using the FE and GLE methods.

To further explore the difference in the Mohr-Coulomb failure state determined by

the TLE, GLE, and FE methods, the magnitudes of Rn and S and the angle � between

the direction of S (shear force) and the line of intersection for the three methods are

Table 4. Values of Rx, Ry, Rz, jRnj, � and � for different values of factor of safety for Example 1 (c¼ 10 kPa,
�¼ 30�)

F Rx (kN) Ry (kN) Rz (kN) jRnj (kN) jRsj (kN) � � (�)

1.2 �2040.0 0.0 2350.2 2594.326 1718.87 1.025 0.2
1.3 �2430.0 0.0 2350.2 2900.4 1736.6 1.015 8.2
1.4 �3092.02 0.0 2350.2 3420.0 1840.6 1.006 20.9
1.5 �2880.05 0.0 1926.0 – – – –
1.45 �2821.33 0.0 2090.2 – – – –
1.44 �3488.77 0.0 2283.6 – – – –
1.43 �3573.85 0.0 2350.2 3798.2 1967.2 1.000 29.9

Fig. 9. Values of Mohr-Coulomb-state cohesion and friction angles determined by the TLE, GLE and FE
methods

144 Y.-J. Wang et al.



compared (Table 6). For clarification, only the value of Mohr-Coulomb-state cohesion is

listed in Table 6, whereas the value of the corresponding Mohr-Coulomb-state friction

angle is reported in Table 5. It can be shown from Table 6 that for any combination of

cohesion and friction angle the TLE method gives the same value ofRn and S and that the

shear force S inclines at a zero angle to the line of intersection. Both the FE and GLE

methods give magnitudes of Rn and S that are greater than those determined by the TLE

method. The shear force acting on the slip surface also inclines at angle � greater than

zero to the line of intersection. Values ofRn andS and� determined by the FE method are

almost the same as those determined by the GLE method.

As discussed above, the TLE method implies that the dilation angle is zero. But

the FE method in the paper uses the associated flow rule with a dilation angle  equal

to the friction angle �. The GLE, UB and DD methods (for  e¼�e) (Wang and Yin,

2002) all imply the use of a full dilation angle  e¼�e. With this background, it is

easier to understand the differences between the results obtained by using the TLE

method and those obtained by using both the FE and GLE methods as shown in

Tables 5 and 6. For the same value of cohesion, the FE and GLE methods, which

apply the associated flow rule, give lower values of Mohr-Coulomb-state friction angle

than the TLE method with zero dilation angle (Table 5), since the dilatancy of dis-

continuities has been mobilized for resisting the potential failure.

Except for the comparison of Mohr-Coulomb-state cohesion and friction angle, the

factor of safety of the symmetric wedge was calculated by using the TLE, GLE, and

FE methods for the same cohesion c¼ 10 kPa and different values of friction angle

(�¼ 0, 10�, 20�, and 30� respectively) (Table 7). The FE method gives basically the

Table 5. Mohr-Coulomb-state cohesions and friction angles determined by the TLE, FE and GLE methods

Cohesion c
(kPa)

Friction angle � (�)

TLE method FE method GLE method

0.5 33.13 26.7 26.64
5 28.59 23.5 23.50

10 23.05 19.56 19.54
15 17.02 15.0 14.95
20 10.57 9.7 9.69
27.82 0.0 0.0 0.0

Table 6. The normal and tangential components of reaction of the discontinuity zone for Example 1

c (kPa) TLE method FE method GLE method

jRnj jRsj �(�) jRnj jRsj �(�) jRnj jRsj �(�)
(kN) (kN) (kN) (kN) (kN) (kN)

0.5 2586.7 1718.8 0.0 4301.6 2119.3 37.6 4375.6 2225.0 39.4
5 2586.7 1718.8 0.0 3941.7 2024.7 31.9 4022.0 2059.0 33.4

10 2586.7 1718.8 0.0 3584.4 1890.0 24.6 3683 1925.0 26.7
15 2586.7 1718.8 0.0 3275.4 1802.9 17.6 3369.0 1827.0 19.7
20 2586.7 1718.8 0.0 2982.0 1747.0 10.3 3068.0 1760.2 12.5
27.82 2586.7 1718.8 0.0 2544.9 1719.2 1.0 2586.0 1719.2 0.0
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same value of the factor of safety as the GLE method. However, factors of safety

determined by the FE and GLE methods are greater than those obtained by the TLE

method. When �¼ 0, the three methods present the same value of the factor of safety

for any value of cohesion.

7.2 Finite Element Analysis of Example 2

7.2.1 3-D FE Modelling

The Example 2 of a non-symmetrical wedge problem was also re-analyzed by using

FE modelling. As for the symmetrical wedge problem, a three-dimensional finite

element model (see Fig. 10) was set up as follows:

a) The 3-D FE model includes a wedge body (tetrahedron A2B2C2E2) and a discon-

tinuity zone (prisms A2B2C2–ABC and A2C2E2–ACE). The wedge is split by plane

DAC. A very small tetrahedron A1B1C1E1 is cut off for easy FE mesh generation.

Table 7. Values of the factor of safety determined by the TLE, GLE and FE methods for Example 1

c¼ 10 kPa � (�) Factor of safety F

TLE method GLE method FE method (�¼ )

0 0.360 0.360 0.360
10 0.625 0.664 0.660
20 0.907 1.017 1.010
30 1.229 1.430 1.430

Fig. 10. Schematic discretization of the non-symmetrical wedge in Example 2
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The lengths of sides DA1, DB1, DC1, and DE1 are taken to be 1=100 of lengths of

sides DA, DB, DC and DE, respectively. It should be noted that point D is at the

midpoint of line BE.

b) By using the study of the mesh convergence for the symmetrical wedge problem,

prisms A1B1C1–A2B2C2 and A1C1E1–A2C2E2, which simulate the wedge body,

are respectively divided into 12 layers along the sides A1A2, B1B2, C1C2, E1E2 by

11 planes of equal length. Each plane is discretized with 540 nodes. Every layer is

further discretized into a series of 3-D 6-node linear triangular prisms and 8-node

linear brick elements as shown in Fig. 6b.

The slip zones are represented by very thin plate-like prisms A2B2C2–ABC and

A2C2E2–ACE. Each prism is further divided into two thin layers; each layer is dis-

cretized as for the wedge body.

Figure 11 illustrates an undeformed 3-D FE mesh for the non-symmetrical wedge

problem. In the FE modeling, the wedge body is considered to be fully elastic and

follows the generalized Hooke’s Law with modulus of elasticity, Ewedge¼ 12 GPa and

Poisson’s ratio, �wedge ¼ 0.17. The slip zones are simulated by using the linear

Drucker-Prager elasto-plastic model. The elastic part of the model is governed by

the generalized Hooke’s Law with Eslip ¼ 4.8 GPa and Poisson’s ratio, �slip¼ 0.15. In

analysis, the wedge base support (plane ACE – the flatter slip plane and plane ABC –

the steeper slip plane) is simplified as fixed nodes. Further, reactions of these fixed

nodes are considered to be resultant reactions of the wedge base to the slip surfaces.

7.2.2 Determination of the Factor of Safety F

The non-symmetrical wedge problem involves two slip planes -plane ACD – the flatter

slip plane and plane ABC – the steeper slip plane. The fixed node reactions need to be

determined. The procedure for determining the factor of safety is similar to that for the

symmetrical example. However, the value of the factor of safety that makes both the

two yielding ratios associated with the flatter slip plane (�1) and steeper slip plane (�2)

is equal to 1.0. Variations of F with �1 and �2 (as shown in in Fig. 12) show that �1 of

Fig. 11. Undeformed 3-D FE mesh for the non-symmetrical wedge in Example 2
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the flatter slip surface firstly reaches the Mohr-Coulomb failure state at F¼ 1.53,

above which the yielding ratio is maintained at a value of 0.99 (approximately 1.0).

The yielding ratio, �2, of the steeper slip surface is 1.0 when F¼ 1.93. Theoretically, if

the Mohr-Coulomb criterion is used in the finite element analysis, the yielding ratio �1

of the flatter slip surface would be 1.0. Since the generalized Drucker-Prager failure

criterion is used as an approximation to the Mohr-Coulomb criterion, the value of

�1¼ 0.99, which is very close to 1.0, is considered to be acceptable.

7.2.3 Comparison of FE Method with TLE and GLE Methods

A comparison of F-values, angles (�1, �2), normal forces (jR1nj and jR2nj), tangential

forces (jS1jand jS2j) obtained by using the FE, TLE and GLE methods (see Table 8)

shows that, again for this non-symmetrical example, the TLE method gives the mini-

mum value of factor of safety (F¼ 1.846), and zero angles �1 and �2, while the GLE

method gives the maximum value of factor of safety (F¼ 1.929), which is about the

same as F¼ 1.930 obtained by the FE method with the associated flow rule. The

values of �1 and �2 determined by the FE method are slightly smaller than those

obtained by the GLE method. This means that the shear forces acting on the discon-

tinuity zone are not in the direction of the line of intersection of planes A and B.

7. Conclusions

By exploring ways of determining the direction of the shear force acting on two

intersecting discontinuities on which a wedge rests, a general limit equilibrium

Fig. 12. Variations of yielding coefficient with the factor of safety for the non-symmetrical wedge problem

Table 8. Comparison of analysis results obtained by the TLE, GLE and FE methods for Example 2

Method F jR1nj jR1sj �1 jR2nj jR2sj �2

(�105 kN) (�105 kN) (�) (�105 kN) (�105 kN) (�)

TLE 1.846 1.31 0.37 0.0 0.80 0.46 0.0
GLE 1.929 1.46 0.43 19.4 0.96 0.50 14.7
FE 1.930 1.40 0.38 15.1 0.92 0.49 8.5
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method and an upper bound method were derived and presented for stability analysis

of the rock wedge problem. These two methods along with the TLE and DD methods

were used to analyze two example problems. To further investigate the wedge prob-

lem, 3-D FE analyses of the two example problems were also performed and com-

parisons with the preceding four methods were made.

The solution of the wedge stability problem is dependent on the assumptions regard-

ing the direction of the shear force acting on the two discontinuities. Since the direction

of the shear force is assumed to be parallel to the line of intersection of the two dis-

continuities, the TLE method gives the minimum value of the factor of safety. Since the

GLE method searches for the maximum mobilized resistance against failure along the

line of intersection and the UB method is based on the associated flow rule, the two

methods present the same maximum value of the factor of safety. The two methods

indicate that the direction of the shear force inclines at an angle to the line of intersection.

This finding is also confirmed by the 3-D FE analyses and the DD method.

The cohesion and friction angle associated with the two discontinuities contri-

bute to the value of the factor of safety differently. For a given value of cohesion,

the difference between the minimum value (determined by the TLE method or the

DD method for  ¼ 0) and the maximum value (determined by the GLE method

and the FE method) of the factor of safety increases with the friction angle. How-

ever, for the same value of friction angle, this difference decreases as the value of

cohesion increases. When the friction angle is zero, all the methods presented in

this paper give the same value of the factor of safety regardless of the value of

cohesion.
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