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Abstract

Regional seismicity is known to demonstrate scale-invariant properties in different ways. Some typical examples are fractal spatial

distributions of hypocenters, Gutenberg–Richter magnitude statistics, fractal clustering of earthquake onset times, power-law decay

of aftershock sequences, as well as scale-invariant geometry of fault systems. In some regions, the observed scale-free effects are likely

to be connected to a cooperative behavior of interacting tectonic plates and can be described in terms of the self-organized criticality

(SOC) concept. In this work, we investigate a new SOC model incorporating short-term fractal dynamics of seismic instabilities and

slowly evolving matrix of cracks (faults) reflecting long-term history of preceding events. The model is based on a non-Abelian

directed sandpile algorithm proposed recently by Hughes and Paczuski [Phys. Rev. Lett. 88 (5), 054302-1], and displays a self-

organizing fractal network of occupied grid sites similar to the structure of stress fields in seismic active regions. Depending on the

geometry of local stress distribution, some places on the model grid have higher probability of major events compared to the others.

This dependence makes it possible to consider a time-dependent structure of the background earth crust geometry as a sensitive

seismic risk indicator. We also propose a simple framework for modeling ultra-low frequency (ULF) electromagnetic emissions

associated with abrupt changes in the large-scale geometry of the stress distribution before characteristic seismic events.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of self-organized criticality (SOC) (Bak

et al., 1987, 1988) provides a promising framework for

modeling and interpreting scale-invariant patterns in

nature (Takayasu, 1990). Various SOC models have

been successfully applied for describing Gutenberg–

Richter earthquake magnitude statistics and explaining
its universal features (Turcotte, 1999). Most of the

developed SOC models of distributed seismicity are

concentrated on the dynamics of scale-free avalanches

(discrete energy release events) considered as a model for

earthquakes. However, although the avalanches involve

many spatial degrees of freedom, they do not normally

lead to an emergence of large-scale spatial correlations

over periods of time longer than a lifetime of a single
avalanche. As a result, SOC models turned out to be

unable to explain fractal clustering of earthquake hypo-
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centers and their relation to the evolution of fault sys-

tems which seem to play an important part in real

seismic systems (Pavlides et al., 1999). Several attempts

have been made to introduce pre-defined (quenched)

fault matrixes in SOC simulations, but until recently,

none of the developed models could mimic the dynam-

ical coupling that exists between slowly evolving fault

structures and seismic instabilities.
The first SOC model that successfully incorporated

scale-free avalanche activity with a fault matrix

dynamics has been presented in Hughes and Paczuski

(2002). The key component of this model is the absence

of the Abelian symmetry (Dhar, 1999). If the Abelian

symmetry is violated, the avalanches begin to rearrange

modal landscape in such a way that spatial distribution

of close to instability threshold grid sites becomes
strongly non-uniform, which creates a complex fractal

network of preferred paths for propagation of future

avalanches. In contrast to previous SOC models, the

emerging spatial pattern is not static; it evolves slowly in

accordance with the avalanche dynamics keeping the

entire system in the vicinity of global critical point
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manifesting itself in power-law avalanche distributions

over energy, size and lifetime.

In the present work, we investigate the non-trivial

spatial structure of the Hughes and Paczuski model,

and propose a simple framework for modeling ultra-

low frequency (ULF) electromagnetic emission signals

associated with abrupt changes in the large-scale
geometry of stress distribution before characteristic

seismic events.
2. Model description

The model is defined on a two-dimensional grid (Fig.

1). Each grid site is prescribed the integer-valued coor-
dinates x ¼ 0; . . . ;Nx � 1 and y ¼ 0; . . . ;Ny � 1, as well

as the state variable zðx; yÞ arbitrarily called energy. The

amount of energy stored in a given element determines

its ability to interact with other elements. In our study,

we used a real-valued modification of the Hughes and

Paczuski (HP) sandpile algorithm (Hughes and Paczu-

ski, 2002) with z 2 R. When at any site the variable z
exceeds constant instability threshold (z > zc) it ‘‘top-
ples’’ transferring certain amount of its energy to

downstream nearest neighbors:

ztþ1ðx; yÞ ¼ ztðx; yÞ � dz;

ztþ1ðxþ 1; y þ 1Þ ¼ ztðxþ 1; y þ 1Þ þ pdz;

ztþ1ðx; y þ 1Þ ¼ ztðx; y þ 1Þ þ ð1� pÞdz;
ð1Þ

in which t is discrete time and p 2 ½0; 1� is a uniformly
distributed random variable updated each time the

interaction rules (1) are applied. After receiving a por-

tion of energy from the excited element, one or two of its

downstream nearest neighbors can also go unstable

producing a growing avalanche of activity that propa-

gates along the y-direction. The avalanche stops when its
front reaches ‘‘cold’’ grid sites whose z values are low
Fig. 1. A sketch illustrating the interaction rules in 2-D HP sandpile

model (Hughes and Paczuski, 2002). Active grid sites (z > zc) marked
with large open circles interact with downstream nearest neighbors

which can produce further activity provided their energy before the

interaction exceeds the level zc � dz (dashed circles).
enough to absorb the energy from the unstable elements

without producing new activity, or when it reaches the

open bottom boundary at y ¼ Ny � 1. The left and right

edges of the grid are subject to the periodic boundary

condition zð0; yÞ 	 zðNx � 1; yÞ.
The model is driven by adding a small amount h of

energy to randomly chosen sites on the top row (y ¼ 0)
until the condition z > zc is fulfilled and an instability is

initiated in some site. During the subsequent avalanche

propagation, the driving is suspended which provides

infinite separation between the driving and the ava-

lanche time scales necessary for SOC in sandpile-type

models (Vespignani and Zapperi, 1998). In our calcu-

lations we used the following set of the model para-

meters: Nx ¼ Ny ¼ 400, h ¼ 1, zc ¼ 1. Parameter dz, the
energy transferred by an unstable grid site, was chosen

as described in the next section.

After a transient period, the model reaches the SOC

state at which the probability distributions of ava-

lanches over size s and lifetime t are given by

pðsÞ ¼ s�ss f ðs=scÞ;
pðtÞ ¼ t�st gðt=tcÞ;

ð2Þ

where f and g are appropriate scaling functions con-

trolling the cutoff behavior of the distributions, sc and tc
are finite-size scaling parameters, and ss and st are the
avalanche scaling exponents.

In general, the scale-free avalanche statistics (2) does

not necessarily imply any significant correlations be-

tween spatially separated grid sites over time scales

exceeding avalanche lifetimes. Typically, stochastic

sandpile models never exhibit such correlations which

means that spatial distribution of grid energy zðx; yÞ
between the avalanches is effectively random. In this

context, the HP model presents a new opportunity to

study the emergence of non-trivial large-scale structures

appearing self-consistently in the SOC state.
3. Abelian versus non-Abelian dynamics of the HP model

The key parameter in the HP model that controls

large-scale correlations in zðx; yÞ is dz, the fraction of

energy that is redistributed in local interactions (1).

Keeping the value of dz constant and independent of z
makes the sandpile algorithm Abelian (Dhar, 1999) and

eliminates any spatial structures. On the contrary, set-

ting dz to the current value of energy ztðx; yÞ at each

point makes the algorithm non-Abelian and, as shown
by Hughes and Paczuski (2002), leads to the emergence

of complex spatial patterns.

Fig. 2 illustrates the difference between the behavior

of the HP model in the Abelian and non-Abelian re-

gimes. As one can see, spatial distribution of energy

stored by subcritical grid sites with z6 zc differs dra-

matically in these regimes. In the Abelian case, the



Fig. 2. Typical spatial patterns of occupied grid sites (left) and avalanche-size probability distributions (right) in the Abelian (a) and non-Abelian (b)

versions of the HP model.

V. Uritsky et al. / Physics and Chemistry of the Earth 29 (2004) 473–480 475
model has effectively no correlations in space; in the

non-Abelian case, it shows distinct multiscale structures
constituting a branching network of interconnected

elements. Despite this dramatic difference, avalanche

size probability distributions are nearly identical and

follow power-law relations signaling that the model

reaches the SOC state in both regimes, and that the

dynamics of excited grid elements on the time scale of

individual instabilities are strongly correlated in both

cases.
To study the emergence of non-trivial large-scale

correlations in the non-Abelian HP model, we have

evaluated the entropy characterizing spatial disorder of

subcritical grid sites as a function of spatial scale. The

simulation grid was divided into square boxes of linear

size l, for which mean values �z of energy were calculated
at every time step (i.e. after every avalanche). The degree

of disorder associated with non-uniform energy distri-
bution can then be characterized by the information

entropy

SðlÞ ¼ �
Z 1

0

plð�zÞ log2 plð�zÞd�z ðbitsÞ; ð3Þ

where plð�zÞ is the probability distribution of �z at the

spatial scale l. Assuming that �z is a Gaussian variable,

which seems to be the case when the boxes include large

enough number of elements, formula (3) is approxi-

mated by
SðlÞ � 1

2
log2ð2per2

l Þ; ð4Þ

where rl is the standard deviation of �z values in different
boxes of the same size l. In the Abelian model with z
randomly distributed over spatial locations, rl is pro-

portional to l�d=2, where d is the grid dimension, and

therefore SðlÞ should scale as

S / � d
2
log2ðlÞ ¼ � d

2 log10 2
log10ðlÞ: ð5Þ

Physically, it means that for large l, spatial fluctua-
tions of energy are ‘‘averaged out’’ and become neg-

ligibly small. In the non-Abelian HP model possessing

large-range spatial correlations the SðlÞ should decay

much slower because the increase in size of counting

boxes does not guarantee in this case that spatial

behavior of the coarse-grained energy field becomes
more uniform.

The comparison between the scaling of entropy in the

discussed regimes is shown in Fig. 3a. As one can see, S
decreases with the box size l much faster in the Abelian

case. On a semi-logarithmic plot, this dependence con-

tains a straight-line segment with the slope predicted by

Eq. (5). In the non-Abelian case, the entropy decays

considerably slower, so that for large l it exceeds the
entropy of the Abelian model by several orders of

magnitude. The emergence of large-scale structures in



Fig. 3. (a) Entropy S characterizing spatial distribution of subcritical elements in Abelian and non-Abelian HP models (Nx ¼ Ny ¼ 400) as a function

of linear box size l. (b) Dynamics of the complexity E accompanying evolution of the models towards stationary SOC state.
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the non-Abelian HP sandpile is a direct result of its self-

organization towards the SOC state. To illustrate this

effect, we have studied the evolution of this sandpile

starting from random initial conditions with z distrib-
uted uniformly over x and y and having the same aver-
age density as in the final SOC state.

The scaling of entropy in the initial state was nearly

the same as in the final stationary state of the Abelian

HP model. However, as the non-Abelian model ap-

proaches SOC, the large-scale structure in the spatial

distribution of energy begins to appear leading to

accumulation of ‘‘excess’’ entropy at large l. This pro-
cess can be conveniently described by the evolution of
the complexity measure

EðtÞ ¼
Z lmax

lmin

Sðl; tÞdl ð6Þ

representing the total amount of entropy within the

range of the available spatial scales. Our simulations

show a steady increase in the complexity as the non-

Abelian model passes through its initial transient regime

(Fig. 3b) and reaches SOC. In the SOC state, its com-

plexity becomes nearly constant and exceeds complexity

in the Abelian case.
4. Avalanche size and complexity of the fault structure

In what follows, we consider non-Abelian HP sandpile

as a toy model of fractal fault system. Indeed, the scale-

invariant spatial structure of interconnected subcritical

regions in this model is formed by its preceding avalanche
activity, similar to fractal fault systems being formed by

earthquakes. Avalanches change the fractal network of

sub-critical grid sites slowly, just as earthquakes modify

the fault configuration slowly. In both cases, on a time

scale of several events it may appear that the underlying

spatial pattern is static, but in fact it is dynamic and re-

flects the prehistory of preceding instability events. In the

steady state of the HP model, the fractal fault structure
seems to be necessary for SOC avalanches to occur. Due
to the power law decay of the probability of avalanches

(2), the model can produce system-wide instabilities

corresponding to large seismic events.

It should be noted that in real seismic systems, there

are other factors than the earthquakes that form the
structure of tectonic faults. The influence of such factors

can drive the system out of exact SOC state distorting

scale-invariant correlations and reducing or increasing

the probability of system-wide events. Theoretically, this

effect implies a possibility of predicting catastrophic

earthquakes based on an analysis of fractal fault struc-

ture. In particular, one can expect that the average size

of avalanches should decrease when the scale-invariant
network of faults formed during the evolution of the

system towards the SOC state is affected by random

perturbations. To study numerically this dependence, we

have evaluated average size S of avalanches produced by
several sample grid configurations zðx; yÞ in steady SOC

state. Each configuration has been saved to the com-

puter memory after which energy values of the k percent
of randomly chosen pairs of grid sites have been swap-
ped so that the long-range spatial correlations have been

partly destroyed, and the E value of the randomized grid

has been obtained. To determine S, a unit energy has

been added in succession to each of Nx elements of the

top row (y ¼ 0), and the sizes of the resulting avalanches

have been recorded, with the initial grid configuration

having been recovered from the memory after every

avalanche. S has then been estimated by averaging over
all the Nx events observed for this configuration.

Fig. 4 displays a relation between the spatial com-

plexity E and the average avalanche size S obtained by

this procedure for a typical steady state of the non-

Abelian SP model. Most typically, E gradually decreases

with k until about 60% of model elements are affected by

random shuffling. The observed dependence is condi-

tioned by the gradual loss of large-scale correlations
between the states of grid elements due to the random-

ization. As Fig. 4 shows, the avalanche size S grows

dramatically as the spatial complexity increases. Com-

paring S values in the pure SOC state with the highest



Fig. 4. Dependence of the average avalanche size on the complexity of

the distribution of subcritical grid sites in a steady state of the non-

Abelian HP model.
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complexity and in the deeply randomized state (E ¼
�1200), we have found that S differs by more than two

orders of magnitude in these states. The largest value of

S presented in this plot corresponds to k ¼ 0 and is

associated with the largest risk of system-wide instabil-
ities. At lower E values, the average avalanche size be-

comes smaller, and so does the risk of system-wide

catastrophic events.

The observed dependence strongly suggests that the

average size of avalanches that can occur on a specific

grid configuration can be predicted based on its spatial

complexity. The estimated S value can then be used as a

measure of system’s response to week external pertur-
bations (Vespignani and Zapperi, 1998). Assuming that

the stress in the earth crust is accumulated at a slow

steady rate, this method provides an opportunity of

estimating seismic hazard level based on the complexity

evaluation of a multiscale fault structure in the area of

study.
5. Modeling conductivity fluctuations

The evolving spatial fractal fault structure discussed

above can generate temporal signals that carry infor-

mation on its configuration. This possibility is based on

the fact that in the non-Abelian HP model, the proba-

bility of large events seems to depend on the distribution

of energy at different spatial scales. The elements whose
z values are close to the instability threshold tend to

compose irregular branching ‘‘chains’’ able to channel

activity throughout the grid and thus defining most

probable paths for future avalanches. If an avalanche

starts at a long chain of interconnected subcritical sites it

has more chances to become a system-wide character-

istic event compared to an avalanche initiated at a

shorter chain.
By assuming that different energy levels of grid ele-

ments correspond to different values of electric conduc-

tivity, one can try to characterize the status of the fault

system based on electric field measurements and estimate

the associated seismic risk. We have constructed time

series of electric conductivity of the model postulating

that stable (z ¼ 0) and subcritical (0 < z6 zc) grid sited
symbolize respectively two different phases in the earth

crust, e.g. solid rocks and fluids filling up cracks in the

rocks (Tsunogai and Wakita, 1995). For the sake of

simplicity, the conductivity of stable sites was set to zero

and the conductivity of subcritical sites was set to 1.

Consequently, the average concentration of the con-

ducting phase in the spatial domain X of interest is

CðtÞ ¼ hhð1� ztðx; yÞÞix;y2X ð7Þ

in which h ix;y2X denotes averaging over all the positions

within X and h is the Heaviside step function defined as

hðnP 0Þ ¼ 1, hðn < 0Þ ¼ 0. The bulk (effective) con-
ductivity of a disordered mixture conducting material ––

dielectric just above the percolation threshold C0 is

known to scale as ðC � C0Þl with the critical exponent

l > 1 (Bunde and Havlin, 1996). For correct estimation

of the bulk conductivity based on this relation one needs

to know the specific values of the parameters l and C0

which in case of the HP model should be sensitive to

higher-order large-scale correlations in spatial distribu-
tion of z. Instead of investigating this dependence, we

have evaluated the percolation conductivity rp from

direct numerical simulations that allowed us to deter-

mine the connectivity of conducting grid sites in the

studied region as a function of time. We assumed that

the electric field is parallel to x-direction of the grid and

is created by a constant external potential drop applied

to the domain X. Under this condition, the electric
current through X depends on the existence of a per-

colation cluster P � X of subcritical grid sites connect-

ing left and right boundaries of X. For the periods of

time when such a cluster does exist the percolation

conductivity can be calculated as follows:

rpðtÞ ¼
X
x2X

X
y2X

½Qðx; yÞ
 0

@ � hð1� ztðx; yÞÞ�
!�1

1
A

�1

;

Qðx; yÞ ¼
1 ðx; yÞ 2 P;

0 ðx; yÞ 62 P:

	
ð8Þ

For any other periods rp 	 0. Formula (8) can be con-

sidered as an upper estimate for the total conductivity of

the percolation cluster P in which we neglect possible

‘‘dead-ends’’ and other topological structures not able to

convey the electric current. This approximation turns

out to be acceptable when the vertical size of the studied
region is relatively small as it was in our simulation.



Fig. 5. Time derivative dC=dt of concentration fluctuations in the

spatial domain x ¼ 50; . . . ; 150; y ¼ 200; . . . ; 400 averaged over lifetime

of each avalanche, versus avalanche size.
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The electric connectivity controlling rp plays an

important part in fractal disordered materials (Bahr,

1997) and so can influence the generation of pre-seismic

ULF electromagnetic signals. To model this effect, we

have studied time series of concentration and conduc-

tivity fluctuations as defined by Eqs. (7) and (8), as well

as the time series dC=dt and drp=dt of temporal deriv-
atives of these signals. The derivatives turned out to be
Fig. 6. Examples of temporal fluctuations (left) and the corresponding DFA

fluctuations estimated within the spatial domain x ¼ 0; . . . ; 200; y ¼ 20; . . . ; 4
closely connected with the size of SOC avalanches

reflecting the fact that the larger is the avalanche, the

more pronounced is the change that it may cause in the

spatial distribution of subcritical grid sites. This suggests

that, by predicting time evolution of conductivity

increments, one can estimate the maximum size of

avalanches expected at future time instants (Fig. 5). To
explore the possibility of such prediction, we have

applied the detrended fluctuation analysis (DFA) tech-

nique (Stanley, 2003) allowing to identify weak cor-

relations in scale-free stochastic processes. The DFA

technique consists in the calculation of the mean-square

deviation F of the time-integrated signal from its local

linear regression fits over time intervals with different

length s, and estimating the power law exponent in the
relation F � sa that is detected in the range of s where

the studied signal is fractal. The power-law exponent a
equals 1.5 when the signal is a Brownian-like process

with uncorrelated time increments, and becomes greater

or smaller than 1.5 if its time increments are positively or

negatively correlated.

The analysis has shown that the concentration fluc-

tuations have a broad-band fractal structure with the
DFA exponent a ¼ 1:5 (Fig. 6a). This a value rules out

the possibility of using the dependence between the time

derivative dC=dt and the avalanche sizes for forecasting

model’s dynamics. In contrast, the DFA signature of the

percolation conductivity is more complex and displays a
functions (right) of concentration (a) and percolation conductivity (b)

0.
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values that are significantly smaller or greater than 1.5

depending on the range of time scales of interest (Fig.

6b). For time scales shorter than the crossover time

sc ’ 102, the DFA exponent is 1.25 ± 0.01, whereas for

longer s it takes on the value 1.62 ± 0.02. This scaling

behavior indicates that the values of the time derivative

of the percolation conductivity are correlated negatively
at time scales s < sc but correlated positively at s > sc.
In both s ranges, one can make certain statistical pre-

dictions regarding the sign and the value of drp=dt based
on an analysis of preceding dynamics of this parameter,

and on this basis estimate the probability of large ava-

lanches expected in future.
6. Concluding remarks

We have briefly discussed the possibility of using the

non-Abelian sandpile model due to Hughes and Pac-

zuski (2002) for studying coupling effects between seis-
mic activity and the multiscale spatial structure of faults.

The principal advantage of the HP algorithm is its long-

range spatial correlations that are not present in stan-

dard sandpile models of earthquakes. We have proposed

an appropriate complexity measure allowing to quantify

the emergence of non-trivial large-scale fault patterns in

the SOC state of the model. The complexity seems to

control the sensitivity of the model to small perturba-
tions as well as the average size of avalanches, which

provides an opportunity of building a predictive scheme
Fig. 7. Time evolution of signals CðtÞ=dt and drp=dt in the domain x ¼ 0; . . .
moderate (M ¼ 4) Racha aftershock of 3 June 1991 (marked as EQ) with the o

epicenter (Kopytenko et al., 1994) (c).
for strong seismic events based on a multiscale analysis

of the fault’s fractal geometric structure.

We have also shown that the multiscale spatial

behavior of subcritical energy distribution in the HP

model manifests itself in fractal dynamics of the

parameters defined by Eqs. (7) and (8). The conductivity

fluctuations rpðtÞ that allow for changeable percolation
features of the fault matrix exhibit long-range correla-

tions that can be used for the assessment of the range of

avalanche sizes consistent with the current state of the

system. The drpðtÞ=dt signal generated by unstable grid

sites has distinct fractal properties. By its shape, this

signal is reminiscent of pre-seismic ULF electromagnetic

emissions that also display a clustering of activity before

strong earthquakes (Fig. 7). However, a more elaborate
version of the model should be created that includes

specific electromagnetic parameters of the earth crust

before its dynamics can be compared to the ULF

emission in a quantitative way. Such a model should

also be able to reproduce consecutive earthquake cycles

with large events tending to recur on the same main

fault(s), as it happens typically in real seismic systems

(Tzanis and Vallianatos, 2003). This implies a non-
trivial interplay between high-dimensional behavior

associated with SOC mechanism and low-dimensional

behavior due to reversible deviations of the fault matrix

from its global critical point predicted by the concept of

dynamical self-organization (Rundle et al., 2000). One

way to combine these two mechanisms is to introduce

certain amount of ‘‘static’’ memory into a sandpile
; 200 as compared to ULF lithospheric emissions registered prior to the

bservation point (Nikortsminda station) located about 40 km from the
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algorithm that would allow to mimic fault systems with

quenched heterogeneities that survive many system-wide

avalanches and define preferred locations for future

catastrophic events. Another possible approach is to

make the instability threshold zc depending on large-

scale properties of the model and/or the driver. Such a

feedback leads naturally to low-dimensional loading-
unloading cycle during which the system undergoes a

transition from supercritical to subcritical global

behavior without losing its scale-free features at small

spatial and temporal scales (Uritsky et al., 2001). This

effect may also play a significant part in the generation

of seismic cycles and can be used for earthquake pre-

diction.
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