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Abstract The Altaids is one of the largest accretionary

orogenic collages in the world with the highest rate of

Phanerozoic continental growth and significantmetallogenic

importance. It is widely accepted that subduction-related

orogenesis of the Altaids started in the late Precambrian and

gradually migrated southward (present coordinates). How-

ever, it is uncertain when and how the building of the Altaids

was finally completed. Based on structural geology, geo-

chemical, geochronological, and paleomagnetic data, this

paper presents late Paleozoic to earlyMesozoic accretionary

tectonics of two key areas, North Xinjiang in the west and

Inner Mongolia in the east, together with neighboring

Mongolia. The late Paleozoic tectonics of North Xinjiang

and adjacent areas were characterized by continuous south-

ward accretion along the wide southern active margin of

Siberia and its final amalgamationwith the passivemargin of

Tarim, which may have lasted to the end-Permian to early/

mid-Triassic. In contrast, in Inner Mongolia and adjacent

areas two wide accretionary wedges developed along the

southern active margin of Siberia and the northern active

margin of the North China craton, which may have lasted

to the mid-Triassic. The final products of the long-lived

accretionary processes in the southern Altaids include late

Paleozoic to Permian arcs, late Paleozoic to mid-Triassic

accretionary wedges composed of radiolarian cherts, pillow

lavas, and ophiolitic fragments, and high-pressure/ultrahigh-

pressure metamorphic rocks. Permian Alaskan-type zoned

mafic-ultramafic complexes intruded along some major

faults of the Tien Shan. We define a new Tarim suture zone

immediately north of the Tarim craton that is probably now

buried below the Tien Shan as a result of northward sub-

duction of the Tarim block in the Cenozoic. The docking of

the Tarim and North China cratons against the southern

active margin of Siberia in the end-Permian to mid-Triassic

resulted in the final closure of the Paleoasian Ocean and

terminated the accretionary orogenesis of the southern

Altaids in this part of Central Asia. This complex geody-

namic evolution led to formation of giant metal deposits in

Central Asia and to substantial continental growth.
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Introduction

A huge orogenic collage, the Altaids (or Central Asian

Orogenic Belt, Central Asian Mobile Belt, Central Asian
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Orogenic System), lies between the Siberian and Russian

cratons to the north, and Tarim and North China cratons to

the south (Fig. 1). It encompasses an immense area from

the Urals in the west, through Kazakhstan, NW China,

Mongolia, and NE China to the Okhotsk Sea in the Russian

Far East (Zonenshain et al. 1990; Mossakovsky et al. 1993;

Şengör et al. 1993; Badarch et al. 2002; Xiao et al. 2004a,

b; Windley et al. 2007; Briggs et al. 2007).

The Altaids is one of the largest and most complex

accretionary collages that was responsible for considerable

Phanerozoic juvenile crustal growth (Şengör et al. 1993;

Jahn 2004; Jahn et al. 2000, 2004). The prolonged

accretionary processes that started at 1.0 Ga resulted in

considerable enlargement of the Asian continent

(Şengör et al. 1993; Heubeck 2001; Torsvik and Cocks

2004). The many ophiolites in the Altaids are most likely

remnants of a SW Pacific-type archipelago that contained

many small ocean basins (Hall 2002, 2008). This huge

accretionary collage has a long strike-length and history

that makes it ideal for studying the relationships between

the end of accretion, i.e., closure of an ocean basin, and the

end of collision.

The juvenile crustal formation was associated with

metallogenic processes that generated numerous mineral

deposits including world-class gold, silver, copper–

molybdenum, lead–zinc and nickel of late Proterozoic to

Mesozoic age (Cole 2001; Rui et al. 2002; Goldfarb et al.

2003; Seltmann et al. 2003; Yakubchuk et al. 2001;

Yakubchuk 2004; Han et al. 2006a, b).

Despite its importance, our understanding of the Alta-

ids is limited, because of insufficient detailed studies

throughout the vast area. As a result, many published

syntheses describing the Paleozoic tectonic evolution of

the orogenic collage are controversial. Numerous funda-

mental problems are still unresolved, in particular the

timing of the final phase of amalgamation along the

southern margin of Siberia; proposals range from

the Ordovician-Silurian (Tang 1990; He et al. 1994; Tang

and Yan 1993; Han et al. 1997; Kheraskova et al. 2003),

to Devonian-early Carboniferous (Hendrix et al. 1996;

Yue et al. 2001; Solomovich and Trifonov 2002; Charvet

et al. 2007; Wang et al. 2007a). However, considerable

continental growth (Jahn et al. 2000, 2004; Jahn 2004;

Chen et al. 2000; Chen and Jahn 2002, 2004) and massive

metallogenesis (Li et al. 1998, 1999; Heinhorst et al.

2000; Seltmann and Porter 2005) occurred in the

Carboniferous-Permian, and some large-scale metallo-

genesis even in the Triassic.
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Fig. 1 Simplified tectonic map

of the Altaids (Modified after

Şengör et al. 1993; Xiao et al.
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China craton

Int J Earth Sci (Geol Rundsch)

123



Furthermore, there are reports of younger late Car-

boniferous to Permian subduction-related geological

events (Sun et al. 1991; Buslov et al. 2001; Badarch et al.

2002; Xiao et al. 2003b; 2004a; b; Li 2006; Cocks and

Torsvik 2007; Johnson et al. 2007; Rippington et al.

2008), which are important to study, because they provide

information on the time of suturing. A systematic inves-

tigation of the final termination time of the Altaids is thus

important for a better understanding of the continental

growth, of the basic architecture of this accretionary

orogen, and of their inter-relationships with metallogeny.

However, the increasing amount of controversial data

seems to be pointing to the fact that the closure of the

southern Altiad ocean was not a simple process that gave

rise to single, linear collision and suture zone, and that the

timing of the suture formation may have been diachro-

nous along its 3,000 km length. We will consider some of

the variables that may have been responsible for these

complex processes.

In spite of differing tectonic models, it is widely

accepted that the Altaids grew generally southward from

Siberia and southern Mongolia (Zonenshain et al. 1990;

Şengör and Okurogullari 1991; Mossakovsky et al. 1993;

Şengör and Natal’in 1996b; Dobretsov 2003). Therefore,

the southern part of the Altaids in China, Mongolia,

Kyrgyzstan and surrounding regions provides the best data

to study the processes and timing of the final amalgamation

processes that took place between the accretionary south-

ern active margin of Siberia and the northern margins of

the Tarim and North China cratons (Fig. 1). This paper

thus discusses the tectonic history of the southern Altaids

with emphasis on its final amalgamation by connecting

terminal geodynamic processes to those of continental

growth and metallogeny.

Geological background and previous work

The southern Altaids is here defined as the southernmost

part of the orogenic collage best preserved in North

Xinjiang and Inner Mongolia in NW China, and in

southern Mongolia (Fig. 1). This part of the orogen was

mainly constructed by convergent processes between the

southern active margin of the Siberia craton to the north

and the northern margins of the Tarim and North China

cratons to the south. A common characteristic feature of

the southern Altaids is the complex but recurrent

arrangement of dominantly accretionary prism and mag-

matic arc material, interspersed with slivers of oceanic

crust and minor massifs of older continental crust (Şengör

et al. 1993; Xiao et al. 2003a; Jahn et al. 2004). The

two southerly cratons (Tarim and North China) both

have Archean-Proterozoic basement with Paleozoic to

Cenozoic cover rocks (Lu et al. 2002; Kusky et al. 2007;

Zhao et al. 2002, 2004, 2007). The docking of these two

cratons to the southern active accretionary margin that

had grown from the Siberian craton closed the intervening

Paleoasian Ocean and terminated the accretionary oro-

genic processes of the southern Altaids.

Many key aspects of the southern Altaids have been well

studied, including:

• regional studies (Wang and Liu 1986; Zonenshain et al.

1990; Windley et al. 1990; Li et al. 2003; Helo et al.

2006; Shu et al. 2002; Shu and Wang 2003);

• ophiolites (Allen et al. 1992; Wang and Fan 1997;

Buchan et al. 2001, 2002; Matsumoto and Tomurtogoo

2003; Jian et al. 2005, 2008);

• sedimentary basins (Hendrix et al. 1996, 2000; Lamb

and Badarch 1997, 2000; Lamb et al. 2001; Graham

et al. 2001);

• deformation and structures (Laurent-Charvet et al.

2002, 2003; Graham et al. 2001; Briggs et al. 2007);

• high-pressure/ultra-high-pressure metamorphism (Tang

1990; Tang and Yan 1993; Gao et al. 1995; Gao and

Klemd 2001; 2003; Klemd 2003; Klemd et al. 2005; de

Jong et al. 2006; Zhang et al. 2005; 2007a);

• isotopes and geochronology (Jahn et al. 2000; Jahn

2004; Chen and Jahn 2002; Wu et al. 2007; Kröner

et al. 2007); and

• paleomagnetism and reconstructions (Filippova et al.

2001; Bykadorov et al. 2003; Li 2006; Windley et al.

2007; Cocks and Torsvik 2007).

Many models derived from studies of the northern

margins of the Tarim and North China cratons mutually

differ in particular concerning the manner and time of

their docking to the active margin of southern Siberia,

the mutual structural relationships between their different

key tectonic units, and the individual crustal history and

geometry of the units. In this paper we aim to address

many of these problems by evaluating the relevant data

and accordingly produce a new tectonic model for this

part of Central Asia. In view of the fact that the Altaids

is mostly composed of accretionary rocks, in this paper,

we use these studies plus our own data to address many

of these differences, emphasizing the youngest assem-

blages in subduction-related accretionary wedges and

associated magmatic arcs. We will describe these two

regions outlined in Fig. 2: Northern Xinjiang and adja-

cent areas in the west, and western Mongolia and Inner

Mongolia in the east. Available high-resolution isotopic

age data especially SHRIMP U-Pb on zircons, and fossils

including radiolaria in the youngest assemblages

(Tables 1, 2, 3) that incorporate all the information listed

above provide the evidence for the timing of final

amalgamation.
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North Xinjiang and adjacent areas

Northern Xinjiang of China

Northern Xinjiang is a key area in the southern Altaids,

connecting the Kazakhstan orogenic belt to the west and

Mongolian-Chinese Inner Mongolia orogenic belt to the

east (Figs. 2, 3). Northern Xinjiang is divisible into

the following tectonic/orogenic belts: the Chinese Altay,

the East and West Junggar, and the Tien Shan (also called

Tian Shan or Tianshan, Fig. 3). The Chinese Altay, the

northernmost belt, is connected northwards to the Siberian

active margin in Kazakhstan and Russia (Xiao et al. 2004a,

2004b, 2006a, 2008a; Dobretsov et al. 2006; Van der Voo

et al. 2006; Abrajevitch et al. 2007). The Junggar basin is

situated between the Chinese Altay and the Tien Shan. The
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Fig. 2 Schematic map illustrating the Altaids in China and Mongolia with Figs. 3 and 6 outlined

Table 1 Late Paleozoic geochronological data and radiolaria from subduction–accretion complexes in the southern Altaids in Xinjiang and

adjacent areas, which predate the terminal collisional processes

Tectonic units Rocks Method Ages (Ma) References

Chinese Altay metamorphic

arc volcanic rocks

Gneiss SHRIMP 281 ± 3 Hu et al. (2006)

Chinese Altay Mafic granulite SHRIMP 279 ± 6 Chen et al. (2006)

Granitic gneiss and

metapelitic schist

In situ ion-microprobe

Th–Pb

278 ± 9

275 ± 8

259 ± 10

Briggs et al. (2007)

Metasediments Chemical Th-U-total Pb

isochron

261–268 Zheng et al. (2007a, b)

Tien Shan ophiolitic mélange Pillow lava SHRIMP 325 ± 5 Xu et al. (2006a, b)

Tien Shan high-temperature

metamorphic complex

Granulite SHRIMP 299 ± 5 Li and Zhang (2004)

Alaskan-type complex Gabbro SHRIMP 285 ± 1 Qin (2000)

Gabbro SHRIMP 269 ± 2 Zhou et al. (2004b)

Gabbro SHRIMP 284 ± 8 Wu et al. (2005)

Gabbro LA-ICP-MS 281 ± 1 Mao et al. (2006)

Ophiolite in the southern

Tien Shan

Chert Radiolarian fossils Late Permian Li et al. (2005)
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Yili block is located between the western side of the

Junggar basin and the northern side of the Tien Shan. West

Junggar is the Chinese counterpart of the Kazakhstan

orogenic belt, while East Junggar extends eastwards into

Mongolia. The southern Tien Shan belt is the southernmost

part of the southern Altaids. The Turfan or Tu-Ha basin is

southeast of the Junggar basin and north of the Tien Shan.

Our description of these belts is largely from north to south

and from the oldest to the youngest.

Subduction-related plutons and volcanic rocks occur

widely in the Chinese Altay, Junggar, and Tien Shan

mountain ranges of North Xinjiang. In the Chinese Altay

many plutons and volcanic rocks, ranging from the

early–middle Paleozoic (ca. 460–370 Ma) to Carbonifer-

ous (318 ± 6 Ma) and Permian (267 ± 4 Ma), have

subduction-related geochemical signatures (Wang et al.

2006; Yuan et al. 2007; Sun et al. 2007). Significant

380–360 Ma siliciclastic volcanic-hosted massive sulphide

(VMS) deposits with bimodal geochemistry occur in a

major continental magmatic arc in the Chinese Altay

(Goldfarb et al. 2003; Mao et al. 2005).

Briggs et al. (2007) concluded that the Chinese–Mon-

golia Altai experienced two phases of subduction: the first

in the Ordovician–Devonian and the second in the late

Carboniferous-early Permian, confirming that the youngest

arc-related event was as young as the early Permian. In

the Chinese Altay a major continental magmatic arc con-

tains 380–360 Ma siliciclastic volcanic-hosted massive

sulphide (VMS) deposits that have bimodal geochemistry

(Goldfarb et al. 2003; Mao 2005). Granitic gneiss and

Table 2 Late Paleozoic geochronological data from subduction-accretion complexes in the southern Altaids in Inner Mongolia and adjacent

areas (modified after Miao et al. 2007), which predate the terminal collisional processes

Tectonic units Rocks Method Ages (Ma) References

Ondor Sum ophiolitic mélange Pillow lava SHRIMP *260 Miao et al. (2007, 2008)

Banlashan ophiolitic mélange Cumulate gabbro SHRIMP 256 Miao et al. (2007)

Solun Obo (Solonker) ophiolitic mélange Cumulate gabbro SHRIMP 279 ± 10 Miao et al. (2007)

Solonker ophiolitic mélange Plagiogranite, gabbro,

and diabase

SHRIMP 299–246 Jian et al. (2007)

Balengshan ophiolitic mélange Cumulate gabbro Rb-Sr isochron 262 Wang and Liu (1986)

Hegenshan ophiolitic mélange Cumulate gabbro SHRIMP 295 ± 15 Miao et al. (2007)

Mafic dike SHRIMP 298 ± 9 Miao et al. (2007)

Plagiogranite, gabbro,

and diabase

SHRIMP 275 Jian et al. (2007)

Mafic lava Ar–Ar 293 ± 1 Miao et al. (2007)

Kedanshan ophiolitic mélange Plagiogranite SHRIMP 277 ± 4 Jian et al. (2007)

Chert Radiolaria Mid-late Permian Wang and Fan (1997)

Xilinhot complex Gabbro SHRIMP 323 ± 5 Jian et al. (2007)

Shuangjing complex Granitic gneiss SHRIMP 283 ± 9 Li et al. (2007)

Ophiolite near the Xar Moron River Chert Radiolaria Late Permian Wang and Fan (1997)Wang

and Shu (2001)

Ophiolite in the Solonker suture Chert Radiolaria Mid-Permian Shang (2004)

Table 3 Early to mid-Triassic geochronological data from the southern Altaids in Xinjiang, inner Mongolia and adjacent areas

Tectonic units Rocks Method Age (Ma) References

Tien Shan high-pressure/

ultrahigh-pressure

metamorphic complex

Eclogite SHRIMP 233 ± 4–226 ± 4.6

234 ± 7

Zhang et al. (2007a)

Hegenshan ophiolitic

mélange

Plagiogranite, gabbro, diabase SHRIMP 250–275 Jian et al. (2007)

Granodiorite dike SHRIMP 244 ± 4 Miao et al. (2007, 2008)

Meta-mafic dike Ar–Ar 244 ± 2 Robinson et al. (1999)

Banlashan ophiolitic mélange Cumulate gabbro SHRIMP 256 Miao et al. (2007)

Shuangjing complex Gneissic granite SHRIMP 237 ± 3 Li et al. (2006)

Granitic gneiss SHRIMP 226 ± 3 Jian et al. (2007)
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metapelitic schist from the Chinese Altay dated by the

in situ ion-microprobe Th–Pb technique have weighted

mean U–Pb ages of 278 ± 9, 275 ± 8, and 259 ± 10 Ma

(Briggs et al. 2007). Monazites from greenschist/amphib-

olite-grade metasediments in the Chinese Altai, dated by

the chemical Th–U-total Pb isochron method (CHIME),

have Permian metamorphic ages of 261–268 Ma that were

interpreted by Zheng et al. (2007a) as the time of meta-

morphism of subducted crustal and oceanic material

followed by rapid exhumation. This is in good agreement

with SHRIMP U–Pb zircon ages of 290–270 Ma of nearby

mafic granulites about 20 km east of Fuyun, Fig. 4

(Li et al. 2004).

A granitic orthogneiss with arc-related geochemistry in

the Chinese Altay formed by subduction-related processes

(Hu et al. 2006); the petrochemical data indicate that arc

magmatism and metamorphism were approximately coeval

with the peak age at 281 ± 3 Ma (SHRIMP zircon age).

In East Junggar the presence and tectonic setting of late

Paleozoic calc-alkaline volcanic rocks has long been

discussed (Lin et al. 1997; Xiao et al. 2006a; 2008c). At

Zhaheba late Carboniferous intra-oceanic arcs (Long et al.

2006) are mainly composed of basalts and basaltic

andesites (XBGMR 1993), are enriched in LILEs, have

relatively depleted high field strength elements (HFSEs)

and strongly negative Nb-Ta anomalies, all characteristic

indicators of subduction (Long et al. 2006). They also have

high radioactive Sr (ISr = 0.705282–0.705420) and low

radioactive Nd (eNd(t) = ?6.59–?7.58). These character-

istics, along with their low contents of Th (\0.55 ppm) and

Pb (\3.52 ppm) and a high ratio of Ce/Pb (4–79) preclude

the possibility of involvement of continental crust during

the melting, and suggest that these lavas were most likely

produced in an intraoceanic, subduction-related environ-

ment (Long et al. 2006).

The presence and tectonic setting of late Paleozoic calc-

alkaline volcanic rocks have been discussed in East Jung-

gar (Lin et al. 1997; Xiao et al. 2006a, 2008c). Early

Carboniferous andesites, early Permian trachytes and mid-

Permian basalts from the Santanghu Basin (Fig. 3), East

Junggar, have enriched large ion lithophile elements

(LILE) relative to HFSEs, strong negative anomalies in Ta

and Nb relative to REE, and enriched light rare earth ele-

ments (LREE) relative to heavy rare earth elements

(HREE); all these features are typical characteristics of

subduction-related magmas (Zhao et al. 2006a). The
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youngest calc-alkaline volcanic rocks in East Junggar have

Carboniferous to late Permian ages based on fossils and

K–Ar age dating (Lin et al. 1997; Liao and Wu 1998; Liu

andYin 2001; Zhao et al. 2006a), and are regarded as a result

of Permian subduction either in an island arc or an active

continental margin (Lin et al. 1997; Xiao et al. 2006a, b).

Carboniferous-Permian dikes in southern Bogdashan are

interpreted to represent late-stage arc or back-arc magmatic

differentiates (Carroll et al. 1990; Allen et al. 1991).

According to Charvet et al. (2007) the evolution of the

eastern Tien Shan included two stages of ocean floor clo-

sure. First, Ordovician-early Devonian oceans closed giving

rise to the Central Tien Shan arc and suture zone in the

Devonian, and South Tien Shan suture zone by the late

Devonian, and second, further subduction of the North Tien

Shan ocean led to formation of the Yili-North Tien Shan arc

by the late Carboniferous and collision between the North

Tien Shan and Junggar by the late Carboniferous. The last

suture to form was the North Tien Shan suture between the

Yili-North Tien Shan and Junggar by late Carboniferous.

South of the Junggar basin and north of the Tien Shan

there is a long, wide belt of volcanic and volcaniclastic

rocks that extends through the Yili block eastwards to the

northern and southern sides of the Turfan (Tu-Hu) basin.

The belt contains basalts, andesites, rhyolites, dacites,

volcanic breccias, tuffs, and intermediate to felsic volca-

niclastic rocks. Wang et al. (2007b) established that the

volcanic rocks display calc-alkaline chemistry and promi-

nent negative Nb and Ta anomalies consistent with

subduction-related magmas, and HFSE-element concen-

trations indicative of a continental arc. The features

indicate that the northern border of the Yili block was a

continental active margin during the Carboniferous with

final ocean closure in the late Carboniferous. Xia et al.

(2004, 2008) investigated the geochemistry of similar

volcanic and volcaniclastic rocks along the same belt (e.g.

basalts, andesites, dacites, rhyolites, pyroclastic rocks and

minor alkaline volcanic rocks) and concluded that they

were derived from a mantle plume, and were erupted in a

Carboniferous rift that belonged to a Large Igneous Prov-

ince along the length of the Yili-Tien Shan belt. These

conclusions seem incompatible with the arc-type litholog-

ical associations and arc-type chemistry of Wang et al.

(2007b), and were dependant on the assumption that the

Paleozoic ocean closed in the early Carboniferous, and on

the unfounded speculation that this was followed by mantle
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delamination, which enabled new asthenosphere to upwell

and produce the post-orogenic magmatism in a plume-

generated rift. As far as we know, there is no geological

evidence to indicate the presence of a major rift.

Adakitic rocks in the Chinese Altay, Junggar, and Tien

Shan that formed in the late Carboniferous andPermian show

typical subduction-related trace element chemistry and

are associated with island arc volcanic rocks including

Nb-enriched basalts and high-Mg andesites that are all

imbricated with volcaniclastic rocks and accretionary

wedges (Zhao et al. 2006b). 40Ar/39Ar dating of the adakites,

Nb-enriched basalts and arc volcanic rocks in the Tien Shan

have plateau ages of 320 ± 1, 319 ± 2 and 306 ± 4 Ma,

respectively (Wang et al. 2007c; Zhao et al. 2008). These

adakitic rocks have SHRIMP zircon ages of 320–334 Ma

(Zhao et al. 2008), which formed bymelting of basaltic rocks

underplated to the base of thickened lower crust at a depth of

at least 50 km (Zhao et al. 2008). The wide extent of adakitic

rocks in North Xinjiang might indicate either flat subduction

or shallow subduction associated with bending of a

subducting slab, which is very common in the Andean South

American active margin (Kay 1978; Kay et al. 1988;

Nelson 1996; Pankhurst et al. 1999; Gutscher et al. 1999,

2000a, 2000b; Rosenbaum et al. 2005).

Many granites, monzogranites, syenogranites and per-

alkaline granites in the Chinese Altay and Eastern Junggar

have Permian ages and positive eNd(T) values, implying

derivation by partial melting of juvenile material that was

most likely previously subducted Paleozoic oceanic crust/

mantle (Hu et al. 2000; Jahn 2004; Wu et al. 2002; Hong

et al. 2003, 2004; Kovalenko et al. 2004). Some of these

rocks contain Cu, Au and rare metal deposits (Hong et al.

2003, 2004; Kovalenko et al. 2004).

Many late Carboniferous-Permian ultramafic-mafic

complexes in the ChineseAltay and Tien Shan are composed

of peridotite, lherzolite, gabbro, olivine gabbro, hornblende

gabbroic norite, pyroxenite diorite, and diorite, Fig. 4

(Xiao et al. 2004b). Several zoned mafic-ultramafic com-

plexes occur along the southern side of the Erqis fault

(Fig. 4) with an important Ni-Cu sulphide deposit at

Kelatongke in the Altay (Goldfarb et al. 2003) that shows

clear island-arc geochemical signatures, such as negative

anomalies of Nb, Ta, Zr and Ti and enrichment in LILE

(Han et al. 2007). Kelatongke has a Re–Os age of 305 ±

15 Ma (Han et al. 2007). In the Huangshan area, eastern Tien

Shan, some ultramafic-mafic complexes are concentrically

zoned from a dunite core that grades outwards through

peridotite to olivine pyroxenite and hornblende gabbro (Ma

et al. 1997); some of these contain Cu–Ni deposits (Xiao

et al. 2004b; Zhou et al. 2004b; Zhang et al. 2008a). The

Huangshanxi intrusion has a mean 206Pb/238U age of 269 ±

2 Ma (Zhou et al. (2004a), the Huangshandong intrusion has

a Re–Os age on sulphides of 284 ± 14 Ma (Zhang et al.

2008), and a gabbro from the Baishiquian intrusion (with a

Ni–Cu deposit) has a SHRIMP U–Pb zircon age of 284 ±

8 Ma (Wu et al. 2005; Chai et al. 2008). The Baishiquan

intrusion has trace element-isotopic data that indicate com-

ponents of subducted oceanic crust (Chai et al. 2008).

These zoned ultramafic-mafic complexes occur as huge

lenses parallel to the regional trend of sutures or arcs, and

they were intruded into and were imbricated with intensely

deformed, fossiliferous Devonian and Carboniferous strata.

These zoned intrusions are identical to the Alaskan-type

complexes associated with island arcs in Alaska, the Urals

and Japan (Gu et al. 1994; Himmelberg and Loney 1995;

Ishiwatari and Ichiyama 2004). Alaskan-type complexes

have been described from arc, backarc and forearc settings

associated with subduction zones, and they are typical

plutonic constituents of subduction-related volcanic belts

from the Archean (Brugmann et al. 1997) to the Neogene

(Tistl et al. 1994). The Alaskan-type complexes indicate

basaltic arc magmatism that is part of the magmatic

evolution of the convergent continental margin in

western Canada and southeastern Alaska (Taylor 1967;

Himmelberg and Loney 1995; Nokleberg et al. 2005).

Because the zoned mafic-ultramafic intrusions in the

Altay and Tien Shan have a late Carboniferous-early

Permian age, Pirajno et al. (2008) reasoned that they must

be younger than the time of formation of the last suture

zone (if it were pre-late Carboniferous), and therefore

speculated that the intrusions were generated in a post-

tectonic/post-orogenic extensional regime related to a

mantle superplume event, and they further suggested that

their formation was possibly related to the mantle superp-

lume events that gave rise to the Permian Siberian Traps in

NE Russia and the Emeishan continental flood basalts in

SE China. We find such speculation unreasonable, because

there is no published supportive geochemical or isotopic

evidence for a mantle plume derivation, and because it

ignores the geochemical evidence from some intrusions of

a subduction-generated arc origin (Han et al. 2007). We

present our solution to this problem below.

The general view of North Xinjiang is that the northern

margin of the Tarim craton remained a passive margin

throughout most of the Paleozoic (Feng et al. 1989; Kwon

et al. 1989; Coleman 1989; Coleman 1994; Xiao et al.

1994). In contrast, the southern active margin of the Sibe-

rian craton experienced a long history of southward

accretion (Smethurst et al. 1998) that gave rise to a huge

orogenic collage. Therefore, in this part of the southern

Altaids, it is important to understand the manner, timing and

polarity of subduction between the northern Tarim passive

margin and the southern active margin of the Siberia craton

in the southern Tien Shan, subjects which are currently

highly controversial––see later (Laurent-Charvet et al.

2003; Wang et al. 2007a; Charvet et al. 2007).
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Accretionary wedges are common in North Xinjiang,

and many contain important ophiolites that represent the

remnants of former oceanic crust/lithosphere. Most are

arc-related, because their geochemistry shows that they

were mostly generated in suprasubduction zones (SSZ)

(Wang et al. 2003b). Structural and tectonostratigraphic

data indicate that many ophiolites are fragmentary relicts

emplaced within accretionary wedges (Xiao et al. 2003b;

2004a, b). Isotopic ages of some ophiolites yield early

Paleozoic ages (Kwon et al. 1989; Jian et al. 2005;

Xiao et al. 2006b). However, some recent SHRIMP U–Pb

protolith ages indicate that some ophiolitic fragments are

remnants of middle Carboniferous oceanic crust/litho-

sphere (Tables 1, 2, 3) (Xu et al. 2006a, b). Ophiolitic

mafic fragments in the SW Tien Shan contain pillow-

bearing eclogites, the protoliths of which are seamounts

(Gao et al. 1995; Gao and Klemd 2001, 2003; Ai et al.

2006; Zhang et al. 2007a). The eclogites experienced

several episodes of high/ultrahigh-pressure metamorphism

that have SHRIMP U-Pb zircon ages of 340, 310, 280–

290 Ma, and ca. 230 Ma (Tables 1, 3) (Gao et al. 1995;

Gao and Klemd 2001, 2003; Zhang et al. 2007a). North of

the southern Tien Shan accretionary wedge and parallel to

the HP-UHP belt is a high-temperature (HT) granulite that

has a protolith age of 299 ± 5 Ma and a peak metamorphic

age of about 280–290 Ma (Table 1) (Li and Zhang 2004).

The Ili-Central Tien Shan arc is situated north of the HT

rocks. The fact that the HT belt occupies an arcward

position and the HP belt an oceanward position in the

southern Tien Shan is comparable to that in the Japanese

Islands (Isozaki 1996, 1997a; Ota et al. 2004).

In accretionary wedges radiolarian cherts form an

important datable component of preserved ocean plate

stratigraphy that represents a ridge to trench transition,

which documents the history of growth of the ocean and of

the accretionary wedges (eg. Wakita and Metcalfe 2005).

Late Devonian to early Carboniferous radiolarian cherts

occur in early Paleozoic ophiolites along the Kelameili

fault in East Junggar (Table 1) (Shu and Wang 2003).

Radiolarian cherts in the southern Tien Shan (Liu 2001;

Li et al. 2005) (Table 1) (Fig. 5) have ages of

Carboniferous-late Permian, which should predate the final

accretionary event. Furthermore, across the southern Tien

Shan several sets of ocean plate stratigraphy each with

distinctive radiolarian cherts young progressively south-

wards from the late Devonian-early Carboniferous to the

Permian (Liu 2001, 2007; Li et al. 2005). We interpret this

younging as a result of progressive oceanward and south-

ward growth of the accretionary complexes, in a manner

comparable to the progressive younging and oceanward

growth of Mesozoic-Cenozoic accretionary complexes in

Central Japan (Isozaki 1996, 1997b), and in East and

Southeast Asia (Wakita and Metcalfe 2005).

The presence of regionally extensive, Triassic-early

Jurassic collisional foreland basins along strike in western

China and southern Mongolia (Carroll et al. 1990, 1995;

Graham et al. 1990, 2001; Hendrix et al. 1992; Hendrix

2000; Johnson et al. 2001, 2003, 2007; Johnson 2004)

would be expected after collision in the late Permian to

early/middle Triassic.

The adjacent area in Western Mongolia

East of North Xinjiang in China the Altaids extend into

Mongolia. The isotopic ages of rock units in Mongolia are

less well known than in China. Nevertheless, the tectonic

units of the Mongolian belts can be extended into China

and correlate well with those in the Chinese Altay, East

Junggar, and part of the Eastern Tien Shan in China, as

illustrated in Fig. 4 (Xiao et al. 2004a).

The Altay, Turgen, Tseel, and Baaran belts in Mongolia

(Fig. 4) together form the eastern continuation of the pre-

dominantly magmatic belt of the Chinese Altay (Fig. 3).

They mainly consist of Paleozoic arcs and accretionary

wedges (Badarch et al. 2002; Xiao et al. 2004a). The

Baytag arc in southern Mongolia extends westwards into

the Dulate arc of the East Junggar of China––Figs. 3 and 4

(Badarch et al. 2002; Xiao et al. 2004a). This arc consists

of Lower Devonian tholeiitic basalt, andesite, tuff, volca-

niclastic rocks, Middle-Upper Devonian volcaniclastic

sandstone, siltstone, chert, minor limestone, and coal-

bearing mudstone, together with minor late Carboniferous

Carboniferous to Permian

North Tarim
passive margin

East Junggar island arcEastern Tien Shan island arcs
future Kokshaal-Kumishi

accretionary complex

Chinese Altay arc

adakite

adakite
ophiolite

Alaskan-type complexdistance unkown

Fig. 5 Conceptual cross-section illustrating evolution of subduction systems in the eastern part of Northern Xinjiang in the Carboniferous to

Permian (from Xiao et al. 2008a)
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granite and syenite and Permian felsic volcanic rocks

(Badarch et al. 2002; Xiao et al. 2004a). The overall

structure of this arc is characterized by imbricated thrust

stacks, mélanges, high strain zones, and open to isoclinal

folds (Badarch et al. 2002; Xiao et al. 2004a).

In Altan Uul and Nemegt Uul in southern Mongolia an

intra-oceanic island arc was generated during the Carbonif-

erous (Rippington et al. 2008). Thrust-bound sequences of

highly fractured pillow basalt, cumulate gabbro, peridotite,

serpentinite and jasperoid occur directly north of the arc

rocks in at least three discrete belts and are interpreted to be

fragments of an ophiolite. From combined field and petro-

logical evidence Rippington et al. (2008) concluded that

there is an east–west-trending, south-dipping late Carbon-

iferous suture in Altan and Nemegt Uul in southern

Mongolia.

In SW Mongolia and the equivalent section in China

(Dulate) and in the Jiangjun belt farther south the

subduction-accretion complexes young progressively

southwards with the result that the youngest Permian rocks

only occur in the far south (Fig. 4).

Brief summary

In North Xinjiang-Western Mongolia data from predomi-

nant magmatic arcs, accretionary wedges, ophiolites, and

Alaskan-type complexes summarized above all provide

key evidence to confirm that accretion was active from the

early Paleozoic to the end-Permian. The final docking of

the Tarim craton to the southern active margin of the

Siberia craton was not in the middle Paleozoic, but in the

end-Permian based on the youngest Permian constituents

involved in the accretionary units.

Şengör et al. (1993) proposed that the general accre-

tionary geology of the Altaids could be accounted for by a

single arc model (Şengör and Natal’in 1996a, b). However,

the Chinese Altay (a Paleozoic Japanese-type arc with a

possible Precambrian accreted fragment), some Paleozoic

intra-oceanic islands arcs in Western and Eastern Junggar,

and several island arcs in the Tien Shan all contain mutually

different constituents, and so cannot be part of one single

arc. Figure 5 shows that before the final docking the tec-

tonic history was characterized by accretion of several arcs

all created by northward subduction (Xiao et al. 2004a, b).

Inner Mongolia and adjacent area

Inner Mongolia of China

The Paleozoic Altaid orogen in Chinese Inner Mongolia

has been called many names: ‘‘Manchurides’’ (Şengör and

Natal’in 1996a, b), ‘‘Great Hinganling-Inner Mongolian

orogenic belt’’ (Yin and Nie 1996), or ‘‘Central Asian

Orogenic Belt’’ (Jahn et al. 2000; Xiao et al. 2003b;

Windley et al. 2007; Kröner et al. 2007). The main part of

Chinese Inner Mongolia (Fig. 6) is characterized by ENE-

trending tectonic units composed of remnants of ophiolites,

arcs, accretionary wedges and associated volcano-sedi-

mentary rocks that formed during the final closure of the

Paleoasian Ocean. An additional important element of the

eastern Altaids is the Uliastai active continental margin

(Fig. 6) (Lamb and Badarch 1997, 2000; Lamb et al. 2001;

Xiao et al. 2003b), which had separated from the Siberia

craton by the intervening Mongol-Okhotsk ocean that

probably closed progressively eastwards in a scissor-like

movement from the Triassic in western Mongolia

(Zonenshain et al. 1990) to the Jurassic-early Cretaceous in

eastern Mongolia (Tomurtogoo et al. 2005). In this paper

we are mainly concerned with the convergence between the

Uliastai active margin and the northern margin of the North

China craton (Wang and Liu 1986; Xiao et al. 2003b)

(Fig. 6). Unlike the passive margin of the Tarim craton and

the southern active margin of the Siberia craton farther

west in North Xinjiang that both underwent accretionary

and collisional events, Chinese Inner Mongolia underwent

convergence between the two active margins of South

Mongolia (or South Gobi micro-continent) and the North

China craton during most of the Paleozoic to give rise to

the Solonker suture.

The major tectonic subdivisions of the Solonker suture,

which is occupied by the Erdaojing accretion complex, are

described below (Fig. 6). In the north the Uliastai active

continental margin extends along the northern border of

Inner Mongolia from Chagan Obo to Uliastai (Fig. 6), and

to the south of the margin are the Hegenshan ophiolite-arc-

accretion complex, and the Baolidao arc-accretion com-

plex. To the south of the Solonker suture are the Ondor

Sum subduction-accretion complex, the Bainiaomiao arc,

and the North China craton (Xiao et al. 2003b).

At Uliastai a passive continental margin, comprising a

basement of Proterozoic gneiss, schist and quartzite and

Cambrian limestone and siltstone, was converted to an

active continental margin in the Ordovician to Carbonif-

erous (Hsü et al. 1991; Xiao et al. 2003b). The long-lived

active continental margin arc is represented by Devonian,

Carboniferous, and Permian calc-alkaline to alkaline

magmatic rocks. A major Lower Permian continental vol-

canic arc is represented by andesite, tuff, and tuff breccia

with sandstone, siltstone and conglomerate (Wang 1996;

Xiao et al. 2003b).

The Hegenshan ophiolite-arc-accretion complex con-

tains several ophiolitic fragments that are composed of

dunite, gabbro, sheeted dikes, tholeiitic pillow basalt,

radiolarian chert, and coral limestone (Tang 1990; Tang

and Yan 1993). Many previous researchers considered the
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Hegenshan ophiolite to have formed as a result of closure

of the Paleoasian Ocean (Nozaka and Liu 2002). However,

mafic rocks of the Hegenshan ophiolite have suprasub-

duction zone (SSZ-type) geochemical characteristics

(Robinson et al. 1999), and accordingly it should be an arc-

related SSZ-type ophiolite. The presence of middle to late

Devonian radiolaria in some cherts led to a notion that the

ophiolite was of Devonian age (Liang 1991). However, the

nature of the contacts between these units is unclear

(Robinson et al. 1999). The ophiolitic rocks are in fault

contact with volcanic and sedimentary rocks of different

ages ranging from Devonian to Permian (Wang and Liu

1986; Wang 1996; Xiao et al. 2003b; Jian et al. 2007).

Borehole data indicate that the ophiolitic rocks have been

thrust southward over early Permian volcanic rocks and

early to mid-Jurassic clastic sediments (Hsü et al. 1991),

and this idea was supported by magnetotelluric data that

suggest that the ultramafic rocks of the ophiolite occur as

allochthonous klippen (Bai et al. 1993a, b; Lu and

Xia 1993). In summary, the geological and geophysical

data indicate that the Hegenshan ophiolite is an imbricated

component of a major accretionary wedge associated with

the Solonker suture (Xiao et al. 2003b).

Recently acquired SHRIMP U–Pb zircon crystallization

ages of the Hegenshan ophiolitic rocks include a basaltic

dike at 298 ± 9 Ma (Table 2) (Jian et al. 2007, 2008; Miao

et al. 2007, 2008), a cumulate gabbro at 295 ± 15 Ma

(Jian et al. 2007, 2008; Miao et al. 2007, 2008), and a

massive basalt has a whole-rock 40Ar/39Ar age of

293 ± 1 Ma interpreted as the time of formation (Miao

et al. 2007, 2008). An 40Ar/39Ar age of 242 ± 2 Ma on a

meta-mafic dike by Robinson et al. (1999) was interpreted

to be represent the emplacement time of the ophiolite

(Miao et al. 2007, 2008). Moreover, a granodiorite intruded

into a Hengenshan serpentinized harzburgite, has a

weighted mean SHRIMP U–Pb zircon age of 244 ± 4 Ma

(Table 3) (Jian et al. 2007, 2008; Miao et al. 2007, 2008)

interpreted as the emplacement age of a granitic crustal

melt derived from tectonically and/or magmatically thick-

ened crust shortly after closure of the Paleoasian Ocean.
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Fig. 6 Tectonic map of central Inner Mongolia showing its structures

and tectonic belts (compiled from Wang and Liu 1986; Tang 1990;

Tang and Yan 1993; Hsü et al. 1991; IMBGMR 1991; Chen et al.

2000; Badarch et al. 2002 and Xiao et al. 2003a). For clarity, late

Mesozoic-Cenozoic strata are not shown. Some middle to late

Paleozoic isotopic ages of ophiolitic melanges are shown (modified

after Miao et al. 2007, 2008). Insert is a simplified map of Asia

showing the study area and the general tectonic divisions in southern

Mongolia (modified after Lamb and Badarch 1997; Lamb et al. 2001,

2008)
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These new geochronological data suggest that the Hegen-

shan ophiolite formed in the ocean in the Permian and was

accreted in the early to mid-Triassic.

From Inner Mongolia northeastwards to the Lesser

Xing’an Range (Fig. 2), a biotite-plagioclase gneiss from

the Kele block that is situated within the eastern part of the

orogen has a SHRIMP zircon protolith age of 337 ± 7 Ma

and metamorphic overgrowth rims of 216 ± 3 Ma, which

Miao et al. (2004) suggested were related to terminal col-

lision between arcs to the north and south in the Triassic.

They went on to point out that Triassic was a period of

intensive and extensive collisional metamorphism and

deformation throughout the Lesser Xing’an (Miao et al.

2004).

The Baolidao arc-accretion complex contains arc vol-

canic rocks and accretionary wedges. The arc is composed

chiefly of variably deformed metaluminous to weakly

peraluminous, hornblende-bearing gabbroic diorite, quartz

diorite, tonalite and granodiorite, and contemporaneous

volcanic rocks have geochemical data suggesting forma-

tion in island arc and back-arc settings (Chen et al. 2000;

Xiao et al., 2003b). U–Pb zircon ages indicate that the bulk

of the Baolidao rocks were emplaced at ca. 310 Ma in late

Carboniferous time (Chen et al. 2000). A gabbro diorite has

a SHRIMP U-Pb zircon age of 310 ± 5 Ma (Chen et al.

2009). The nearby, undeformed Halatu granites include

muscovite/biotite-bearing monzogranite, granodiorite and

leucogranite, some of which have geochemical signatures

of crustal melt granites (Chen et al. 2000). Ophiolites and

blueschists occur as faulted lenses in nearby north-dipping

Carboniferous and early Permian clastic sediments, and are

overlain unconformably by Upper Permian conglomerates

(Wang and Liu 1986). The presence of late Permian

ophiolitic mélanges and accretionary prisms suggests that

this is not a Permian foreland basin, which could otherwise

date the end of accretion. Chen et al. (2009) reported that

one post-collisional granite has a mid-Triassic SHRIMP

U-Pb age of 234 ± 7 Ma. Eruption of shoshonitic basalts

took place at 224 ± 2 Ma (Jian et al. 2008). These all

should be important constraints to date the end of

accretion.

Several blocks of amphibolite facies gneissic rocks up to

ca. 60 km long occur south and southeast of Xilinhot and

south of Sonid Zuoqi in the Baolidao arc-accretion complex

(Fig. 6). These high-grade metamorphic rocks were previ-

ously interpreted to belong to a continental block solely on

the basis of their high-grade metamorphism and strong

deformation (Wang and Liu 1986; Tang 1990). No precise

isotopic ages were available to confirm this idea, only some

controversial Pb–Pb or U-Pb ages of ca. 900 and 770 Ma

(Kozakov et al. 1999). However, Shi et al. (2003) reported a

SHRIMP detrital zircon age of 437 ± 3 Ma for a migmat-

itic paragneiss from these high-grade metamorphic rocks,

and a magmatic age of 316 ± 3 Ma for a garnet-granite,

which intruded paragneiss (Shi et al. 2003). The presence of

a Silurian or even Devonian metamorphic age negates the

possibility that the protoliths of the amphibolite facies

gneisses were formed in the Precambrian. Shi et al. (2003)

interpreted these turbiditic paragneisses as forearc sedi-

ments and Jian et al. (2008) suggested that ridge subduction

was responsible for their metamorphism. Because the

gneisses form isolated tectonic blocks in an ophiolitic

mélange with blueschist, greenschist, meta-sandstone, and

meta-volcanic rocks, some of which are late Devonian–

early Permian in age, we currently interpret them as blocks

that were accreted and incorporated into the subduction-

accretion complex before the terminal closure of the

Paleoasian Ocean (Xiao et al. 2003b).

The Solonker suture zone is more than 900 km long and

60 km wide and is marked by mélanges, and remnant of

arcs and ophiolites, Fig. 6 (Xiao et al. 2003b; Chen et al.

2009). The suture zone contains the Erdaojing accretionary

wedge (Xiao et al. 2003b) that comprises tectonic mélanges

typical of a modern accretionary wedge, and coherent

turbidites that occur with imbricated ophiolitic rocks, chert,

marble, and arc volcanic rocks (Tang and Yan 1993; Wang

and Liu 1986). The mélanges are characterized by lenses of

mafic-ultramafic rocks, dolomite, quartzite, marble and

blueschist within an argillite matrix (Tang 1990; Xu et al.

2001; Xiao et al. 2003b). In the Linxi area (Fig. 6)

ophiolitic lenses of pyroxenite, layered gabbro, sheeted

mafic dikes, basalt and chert occur in Lower Permian

clastic sediments (Tang and Yan 1993; Wang and Liu

1986; Shao 1989).

Within the Erdaojing complex a cumulate gabbro from

the Solon Obo ophiolite (Fig. 6), which straddles the

China-Mongolia border, has a SHRIMP U-Pb age of

279 ± 10 Ma (Miao et al. 2007). Some sedimentary blocks

in mélanges near Solonker contain middle Permian radio-

laria (Shang 2004). These data suggest that the ophiolites

were derived from the Permian Paleoasian oceanic

crust/mantle and were most likely incorporated into the

Erdaojing accretion complex after the late Permian.

The poorly exposed Ondor Sum subduction–accretion

complex (Fig. 6) contains ophiolites, high-pressure rocks

and granitic gneisses (Wang and Liu 1986; Tang 1990;

Xiao et al. 2003b). In the well-exposed Ulan valley near

Ondor Sum, ophiolitic pillow lavas and ocean plate stra-

tigraphy occur in the south, folded phyllites in the centre,

and thrusted mylonitic high-pressure rocks containing

glaucophane and phengite in the north (Xiao et al. 2003b;

Jian et al. 2007). All these rocks were juxtaposed in a

south-directed thrust stack (Xiao et al. 2003b; Jian et al.

2007). An undeformed, but geochemically unanalyzed

pillow lava from the southern ophiolite has a zircon

SHRIMP age of ca 260 Ma (Miao et al. 2007), which
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provides a late Permian upper age limit for the accretionary

wedge. Phengites from the northern high-pressure rocks

yielded 40Ar-39Ar ages of 453 ± 2 and 450 ± 2 Ma (de

Jong et al. 2006), which suggest that a late Ordovician

subduction complex was at one stage thrusted against a

slice of Permian ocean (presumed) crust.

At Kedanshan along strike to the east (Fig. 6) a dis-

membered ophiolite contains thrust slices of peridotite,

gabbro and basalt that are in fault contact with Silurian

meta-sediments (Xiao et al. 2003b). Zircons from a plagi-

ogranite of the Kedanshan ophiolite have a SHIRMP age of

277 ± 4 Ma (Jian et al. 2007). A cumulate gabbro from an

ophiolitic fragment southwest of Kedanshan has a zircon

SHRIMP U–Pb age of 256 ± 3 Ma (Miao et al. 2007).

Some cherts in mélanges contain late Permian radiolaria

(Wang and Fan 1997; Wang and Shu 2001). These dates

confirm that the Ondor Sum accretionary wedge was still

active in the end-Permian in this area.

The Ondor Sum complex also contains blocks of

gneissic granite, orthogneiss, metamorphosed terrigenous

sediments, marble, and mafic-ultramafic rocks of presumed

oceanic origin, collectively referred to as the Suangjing

complex (Jian et al. 2007). The orthogneiss, gneissic

granite and some high-grade metamorphic rocks were

previously considered to be Proterozoic or early Paleozoic

in age (IMBGMR 1991), although no precise isotopic dates

were known. However, new SHRIMP U–Pb zircon data

show that a micaceous gneiss has an age of *270 Ma

(Miao et al. 2007), and gneissic granites have ages of

283 ± 9, 237 ± 3, and 229 ± 4 Ma (Li et al. 2007). These

data led Li et al. (2007) to conclude that collision between

the Siberian and North China Cratons may have begun in

the mid-Permian and ended in the mid-Triassic.

The Bainaimiao arc, which is close to the northern

margin of the North China craton, contains calc-alkaline

tholeiitic basalts to minor felsic lavas, alkaline basalts, and

agglomerates, volcanic breccias, tuffs, granodiorites, and

granites (Tang 1990; Tang and Yan 1993), as well as

granodiorite, quartz-diorite, and hornblende gabbro plutons

that are intruded by feldspar-quartz porphyry. A granodi-

orite has a Sm–Nd isochron age of 429 Ma which gives a

formation age for this arc which is close to the northern

margin of the North China craton (Nie and Bjǿrlykke

1999).

A major recent breakthrough in the tectonic study on

the North China craton was the recognition of an active

continental arc on its northern side in which granitic

plutons have SHRIMP zircon intrusion ages of 311 ± 2,

324 ± 6, 302 ± 4 and 310 ± 5 Ma (Zhang et al. 2007b,

c). These Carboniferous plutons have for a long time been

considered to belong to the early Precambrian basement of

the North China craton (IMBGMR 1991). However, their

calc-alkaline geochemistry and subduction-related I-type

signature confirm that there was an Andean-style

continental arc along the northern margin of the North

China craton in the late Paleozoic (Xiao et al. 2003b;

Zhang et al. 2007b, c).

Tuff beds in Upper Paleozoic sedimentary rocks are

widespread along the northern margin of the North China

craton (Zhang et al. 2007b, c). Geochemical analyses of the

tuffs from an area west of Beijing indicate they have a calc-

alkaline volcanic arc composition (Zhang et al. 2007b, c).

One tuff west of Beijing (39�5605700, 115�5503000) has a

SHRIMP zircon 206Pb/238U weighted mean age of

296 ± 4 Ma (Zhang et al. 2007b, c), and an ash sample from

Upper Paleozoic strata from Daqingshan, south of Hohhot,

has a SHRIMP U–Pb concordia age of 290 ± 6 Ma (Cope

2003; Cope et al. 2005). These dated volcaniclastic rocks

indicate that the northern side of the North China craton was

an active continental margin in the Permian.

From their re-evaluation of the most reliable isotopic

data from the Solonker suture zone (Chen et al. 2009)

concluded that they constrain the timing of collision to

between 296 and 234 Ma.

The adjacent area in Southern Mongolia

The tectonic belts just described above continue west into

the southern part of Mongolia, west of the international

boundary as shown in the inset of Fig. 6. On a bigger

picture they form part of the South Gobi and Solonker

zones. They are divisible into the following belts, which

from north to south include: the Gobi Altay, Trans-Altay,

South Gobi, and Solonker (see insert map in Fig. 6)

(Ruzhentsev et al. 1985; Carroll et al. 1990; Hendrix et al.

1992; Graham et al. 1993; Ruzhentsev and Burashnikov

1995; Ruzhentsev and Pospelov 1992; Johnson et al. 2001,

2007; Badarch et al. 2002; Johnson and Graham 2004a, b;

Cope et al. 2005). The eastern section of this transect can

be further subdivided into several terranes, namely the

Nuhetdavaa, Enshoo, Hutag Uul, and the Sulinheer

(Solonker) (Badarch et al. 2002). These terranes correlate

well with the tectonic assemblages described above in

Inner Mongolia of China (Fig. 6).

The Nuhetdavaa terrane is the western continuation of

the Uliastai active continental margin (Xiao et al. 2003a). It

mainly consists of gneiss, amphibolite, schist, marble,

sandstone, siltstone, limestone, minor conglomerate, and

volcanic rocks of probable early to middle Paleozoic age

(Badarch et al. 2002). Silurian clastic sediments contain

Tuvaella brachiopods. The presence of Devonian andesite,

tuff, rhyolite, and volcaniclastic rocks (Badarch et al. 2002)

indicates a mid-Paleozoic arc. Carboniferous to Permian

volcanic and marine sedimentary rocks of the middle Gobi

volcanic-plutonic belt (Badarch et al. 2002) probably

formed in a late Paleozoic active margin based on the
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sedimentary, geochemical, structural and tectonic data

(Lamb and Badarch 2001; Lamb et al. 2008; Johnson et al.

2007).

The Enshoo terrane contains ophiolitic fragments of

dunite, gabbro, sheeted dikes, tholeiitic pillow basalt,

radiolarian chert, and coral limestone (Tang 1990; Tang and

Yan 1993; Badarch et al. 2002). The Enshoo arc comprises

variably metamorphosed and sheared gneiss, quartzo-feld-

spathic schist, Devonian to Permian calc-alkaline basalt,

andesite, dacite, tuff, volcaniclastic rocks, and minor

limestone, some of which contain cold water fusulinids and

brachipods (Ruzhentsev et al. 1985; Ruzhentsev and Bur-

ashnikov 1995; Ruzhentsev and Pospelov 1992; Badarch

et al. 2002). Badarch et al. (2002) regarded the Enshoo

terrane as a Devonian island arc, but in its eastern extension

in China the Hegenshan ophiolite-arc-accretion complex

has accretion ages as young as early to mid-Triassic.

The Hutag Uul terrane is the western extension of the

Baolidao arc-accretion complex in China (Xiao et al.

2003b). This terrane consists mainly of gneiss, schist, mi-

gmatite, marble, quartzite, limestone, and meta-sandstone

of unknown age. Much work (Lamb and Badarch 1997;

Lamb et al. 2001; Webb and Johnson 2006) has shown that

most rocks in this terrane, which were previously mapped

as Precambrian on account of their high-grade and

strong deformation, are actually Mesozoic tectonites with

probable Paleozoic arc-related protoliths. Middle to late

Paleozoic rocks also occur in this terrane including

Devonian basalt, andesite, dacite, tuff, volcaniclastic rocks,

minor pillow lavas, coral-bearing limestone, Carboniferous

volcaniclastic rocks, Permian marine sedimentary and

volcanic rocks (Badarch et al. 2002), and marine flysch as

young as early Triassic (Ruzhentsev et al. 1985, 1989;

Ruzhentsev and Pospelov 1992). The terrane was intruded

by subduction-related tonalite, diorite, and granodiorite of

Devonian- Carboniferous age (Badarch et al. 2002).

The Sulinheer terrane is the western continuation of

the Solonker suture and Erdaojing accretionary wedge

(Ruzhentsev et al. 1989; Badarch et al. 2002; Xiao et al.

2003b). It chiefly consists of fragments of ophiolite,

mélange, and late Permian olistostrome. There are also

Carboniferous clastic rocks, limestone, Pennsylvanian-

Lower Permian limestone, and Upper Permian clastic rocks

(Badarch et al. 2002). Blocks of tholeiitic pillow basalt,

tuff, radiolarian chert, and massive limestone occur in a

matrix of clastic sediments with ages ranging from

mid-Paleozoic to Permian.

Brief summary

In Inner Mongolia arcs, accretionary wedges and ophiolites

all contain key evidence that indicates that growth of the

Altaids took place by successive phases of accretion from

the early Paleozoic to the early-middle Triassic. Figure 7

shows a possible tectonic scenario for the evolution history.

The two wide Carboniferous-Permian accretionary wedges

on either side of the Paleoasian Ocean amalgamated,

giving rise to the Solonker suture in the end-Permian to

mid-Triassic (Xiao et al. 2003b; Li et al. 2007; Chen et al.

2009).

Discussion

Biogeography and unconformable Molasse

In the Himalayas the time of change from marine sediments

to unconformable molasse-like terrestrial fresh-water sedi-

ments may mark the timing of collision between the India

and Tibet continental plates and the time of closure

of Tethys (Searle et al. 1987; Yin and Harrison 2000).

However, accretionary orogens are usually composed of

ophiolitic fragments, mélanges, olistrostomes, and coherent

sedimentary units of huge thickness (Wiedicke et al. 2001;

Ogawa 2001; Jolivet et al. 2003; Konstantinovskaya and

Malavieille 2005; Glen et al. 2007). In Japan the presence of

undeformed, clastic, terrestrial or arc-derived sediments

unconformable on deformed accreted rocks with marine

Paleoasian Ocean

ophiolitic melange
future Hegenshan ophiolitic melange

Xilinhot metamorphic rocks in
accretionary complex

N
Southern Mongolian (Uliastai)

active margin

Paleoasian Ocean

Baolidao island arc

accretionary complex

Carboniferous - Permian

North China craton

active margin

S

Ondor Sum
accretionary complex

Bainaomiao arc-
accretionary complex

Fig. 7 Schematic cartoon demonstrating the tectonic evolution of the Paleo-Asian Ocean and the multiple subduction systems in the

Carboniferous-Permian (modified after Xiao et al. 2003a)
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sediments can mark the boundary between a forearc basin

and underlying accreted rocks from the trench, and also

geophysical profiles and onland sections show small clastic

sedimentary basins overlying unconformably accreted

rocks in the trench (Pickering and Taira 1994). Therefore,

care must be taken in interpreting unconformable clastic

sediments. For example, in Inner Mongolia early Permian

sandstones and conglomerates with abundant marine shelly

and plant fossils overlie early Permian turbidites interpreted

to belong to an accretionary wedge; Jian et al. (2007) sug-

gested that these sedimentary relations give the maximum

age of final suturing of that part of the Altaids. However, in

so far as the overlying sediments are marine, and in view of

the modern Japanese examples given above, this conclusion

seems unlikely.

Nevertheless, in Inner Mongolia and the Tien Shan there

is a major unconformity in many places that separates

Upper Permian, deformed and metamorphosed accretion-

ary rocks below from unmetamorphosed, undeformed mid-

upper Triassic terrestrial clastic, often red-bed, sediments

above (Xiao et al. 2003b, 2008a). These overlying red-bed,

terrestrial sediments were probably derived by erosion of

mountains elevated as a result of preceding collision tec-

tonics, and therefore they have special significance for the

timing of suture formation along the southern Altaids,

because all subduction-accretion should have been ended

by the time of the unconformity.

These relations are in good agreement with the line of

distribution of the cold-water Boreal Angaran species in

mostly terrigeous sediments and warm-water paleoequato-

rial Cathaysian fossils in mostly limestones and reefs, which

approximately coincides with the Tien Shan-Solonker

suture (Wang and Liu 1986; Dewey et al. 1988; Tang 1990;

Tang and Yan 1993; Guo 2000; Manankov et al. 2006). The

advanced research on biostratigraphy, paleobiogeography

and paleogeography of Permian species throughout central

and eastern Asia (e.g. Manankov et al. 2006; Shen et al.

2006; Shi 2006) provides us with an important constraint on

tectonic development. The most relevant conclusion is that

mixing of cold- and warm-water faunas reached a climax in

the Wordian (270.6–265.8 Ma) (Shi 2006) largely within

the Solonker suture zone east of the western end of the

North China craton. The faunal data show that the Tien

Shan-Solonker ocean closed in a scissor-like motion with

the molasse terrestrial deposits in northeastern China indi-

cating the final closure of the ocean was in the late Permian

(Shen et al. 2006).

Paleomagnetic data

The end-Permian to mid-Triassic termination model may be

incompatible with the paleomagnetic data from the western

part of the Southern Altaids. Figure 8 is a summary of

paleomagnetic data for the Siberian and Tarim cratons and

the southern Kazakhstan arcs. Van der Voo (1993) pointed

out that the Siberian cratonwould have been very close to the

Tarim craton since ca. Devonian-Carboniferous time

according to mid-late Paleozoic paleolatitudes. However, in

an updated view, Smethurst et al. (1998) put the Siberian

craton in a more northerly position, which is almost 40

degrees north of the Tarim craton in Devonian-Carbonifer-

ous time (Fig. 8). For the late Devonian paleolatitude of the

Siberian craton, more recent data indicate that the Siberian

craton was near 30�N (Kravchinsky et al. 2002). Paleo-

magnetic data show that the latitude of the Tarim craton at

the interval between the end-Permian and Triassic was very
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Fig. 8 Paleomagnetic data for

Siberia, South Kazakhstan, and
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close to that of the accretionary marginal sequences lying to

the north including those in the Junggar and Tien Shan

(Li et al. 1989, 1991; Li 1990). However, it is important to

note that the paleolatitude differences between these Central

Asian cratons or continental arcs were not large after 500 Ma

(Fig. 8). If a small difference of the paleolatitudes means an

approaching, near-collisional situation, these cratons and

continental arcs would have collided in the early Paleozoic,

which is negated by the data in this paper.

Considering the paleolatitude distributions of the Sibe-

ria, Kazakhstan, and Tarim cratons, which are illustrated in

Figs. 8 and 9, the differences of these cratonic blocks or

continental arcs (Kazakhstan, see Şengör et al. 1993) were

very small during the whole Paleozoic. Considering the

differences between the Siberia and Tarim cratons, the end-

Permian should have been the time when these cratons

were close. Also, the orientation of the Siberia and Tarim

cratons during the Paleozoic (Fig. 9) clearly shows that the

present EW long axis of the Tarim craton was N–S-ori-

ented and remained the same until after 240 Ma, while the

Siberian craton more or less kept its present up-side-down

orientation. These relations suggest that the separation

between the Siberia and Tarim cratons during the Paleozoic

may have been similar to that in the present-day Pacific,

where two cratons (Eurasia and North America) are

oriented longitudinally and without considerable latitude

differences. This scenario is in good agreement with most

reconstructions that show relations between Eurasia and

Gondwana (Nie 1991; Kravchinsky et al. 2002; Fortey and

Cocks 2003; Lawver et al. 2003; Huang et al. 2005;

Abrajevitch et al. 2007). The end-Permian to Triassic

termination model agrees relatively well with the paleo-

magnetic and geological data for the eastern part of the

Southern Altaids, where the North China craton collided

with the southern Siberian active margin (including the

eastern Southern Mongolia-Gobi) in the late Paleozoic to

early Mesozoic (Zhao 1990; Enkin et al. 1992; Dobretsov

et al. 1995; Smethurst et al. 1998; Thomas et al. 2002;

Torsvik and Cocks 2004; Cocks and Torsvik 2007).

The Permian-Triassic termination model might initially

seem incompatible with a recent model of fault-controlled,

pendulum-style indentation of the Kazakhstan (Ili) block

into the Tien Shan collages between Junggar and Tarim

(Wang et al. 2007a). We agree that considerable dis-

placements may have taken place on large-scale strike-slip

faults or as a result of block rotation (Shu et al. 1999;

Laurent-Charvet et al. 2002, 2003; Wang et al. 2007b;

Charvet et al. 2007). However, there are two possibilities

concerning such a tectonic environment; post-orogenic

(Wang et al. 2007a) or syn-orogenic (Xiao et al. 2006a;
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2008a, b). If the large-scale relative motions between the

Kazakhstan (Ili)-Junggar tract and the Southern Altaid

orogenic collages are valid, as supported by paleomagnetic

data, we suggest that the syn-orogenic rotation model is

more viable, if the movements took place in an active

margin, thus negating the need for indentation of a rela-

tively thin continental Kazakhstan (Ili)-Junggar tract into

two already-amalgamated, rigid plates (Tarim and Siberia).

The presence of strong, late Permian thrusting and

Permo-Triassic orogen-parallel strike-slip faulting might

create a problem for the Permo-Triassic termination model,

if these structures were post-orogenic (Laurent-Charvet

et al. 2002, 2003; Chen and Arakawa 2005). However, these

structures need not be post-orogenic, because in modern

active margins and ancient orogens such as Alaska and the

American Cordillera, there are many comparable syn-

subduction thrusts and orogen-parallel strike-slip faults

(Kusky et al. 1997; Gutscher et al. 1998; Kusky and Bradley

1999).

Subduction polarity

The polarities of subduction zones during the closing stages

of the Paleo-Asian ocean are important to constrain, and

have been much discussed. The polarity of subduction in the

eastern part of the Altaids has proved less controversial. It

has long been widely accepted that there was northward

subduction under the Uliastai active continental margin

(Şengör et al. 1993; Şengör and Natal’in 1996a; Miao et al.

2007; Windley et al. 2007; Chen et al. 2009). Xiao et al.

(2003b) proposed that there was southward subduction

under a narrow accretionary wedge in front of the North

China craton, although without evidence of a continental

margin magmatic arc. However, Zhang et al. (2007c,

2008b) reported Carboniferous to early Permian horn-

blende-bearing granitic plutons (324 ± 6–274 ± 6 Ma)

that were emplaced in an Andean-type, active continental

arc on the northern margin of the North China craton,

confirming that southward subduction also contributed to

the closure of the Paleo-Asian ocean. From these relations

Zhang et al. (2008b) concluded that final amalgamation of

the Mongolian arc terranes with the North China craton

occurred in the late Permian to earliest Triassic.

However, the subduction polarities in the western

Altaids are currently controversial. Many authors have long

agreed that the Tarim craton has a passive margin on its

northern side (Allen et al. 1992; Carroll et al. 1995;

Zhang 1994; Wang et al. 1995; Rui et al. 2002), and in the

most recent tectonic review Gao et al. (2009) clearly

indicate that Tarim had a passive margin on its northern

side since 460 Ma. In contrast, Chen et al. (1999) proposed

that the southern Tien Shan oceanic plate was subducted

southwards beneath an active margin on the northern side

of the Tarim craton. However, we emphasize the fact that

no subduction-related rocks have been recorded anywhere

along the northern margin of the Tarim craton, and this fact

negates the southward subduction model. Recently, a new

terrane called the ‘‘Central Tien Shan arc’’ was proposed to

occupy a tectonic position between the already-existing

Ili-Central Tien Shan to the north and the Tarim craton to

the south (Charvet et al. 2007; Lin et al. 2009; Gao et al.

2009). These authors used the subduction record in this

‘‘arc terrane’’ to infer a southward subduction polarity of an

oceanic plate in the Paleozoic. However, this new ‘‘Central

Tien Shan terrane’’ is not the same as the well-defined and

much quoted Ili-Central Tien Shan block. Accordingly,

southward subduction beneath the new ‘‘central Tien

Shan’’ terrane provides no information on the tectonic

setting of the northern margin of the Tarim craton. We

know of no evidence that indicates there was active sub-

duction tectonics on the northern margin of the Tarim

craton. HP-UHP eclogitic rocks occur on the southern side

of the Ili-Central Tien Shan block, and because they

contain zircons that have metamorphic rims with ages of

234–226 Ma Zhang et al. (2007a) concluded that the HP

metamorphism formed as a result of collision between the

Tarim and Yili-Central Tien Shan blocks in the early

Triassic. However, HP metamorphism develops during

subduction to eclogite-facies depths, soon after which

exhumation must take place, and collision of plates occurs

after that.

Predominant thrust-vergence in or against a suture zone

may provide important information on the earlier polarity

of subduction. From recent structural studies Charvet et al.

(2007), Lin et al. (2009) and Gao et al. (2009) reported

major north-vergent structures in the southern Tien Shan of

China. From more detailed studies Wang et al. (1994)

demonstrated that north-verging thrusts prevail in the

northern part of the southern Tien Shan, but south-verging

thrusts in the southern part of the southern Tien Shan. The

fact that the Ili-Central Tien Shan arc is located to the

north, the HP-UHP rocks and accretionary complex in

the middle, and the Tarim passive margin to the south,

which will be further discussed below, may indicate that

the south-verging thrusts in the southern part of the

southern Tien Shan could be the expression of a northward

subduction. Of course, this needs further detailed structural

and geochronological studies.

The 2007 international Middle Asian Seismic (MANAS)

profile across the Kyrgyz and Chinese Tien Shan reported

by Schelochkov et al. (2008) showed that the rigid Tarim

lithosphere is thrust coherently northwards below the

southern margin of the Tien Shan; also new tomographic

images show high-speed anomalies dipping northwards

below the southern margin of the Tien Shan. Also the

southern side of the Tien Shan block against the Tarim
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craton to the south is marked by a major seismic anomaly

that dips northwards under the Tien Shan (Wang et al.

2003a; Zhao et al. 2003). However, the age of formation of

these geophysical anomalies is unknown.

The northern margin of the Tarim craton

Because there is a current major controversy about whether

the northern margin of the Tarim craton was passive

(Allen et al. 1992; Carroll et al. 1995; Zhang 1994; Wang

et al. 1995; Rui et al. 2002; Xiao et al. 2004b; Gao et al.

2009) or active (Charvet et al. 2007) in the late Paleozoic,

it is useful here to summarize key sedimentary data,

because they bear on the timing of the suture zone on the

southern side of the Tien Shan. Most of the Precambrian

Tarim basement is buried beneath a thick cover of Upper

Proterozoic and Phanerozoic sediments of the Tarim basin.

The northern margin of Tarim is dominated by a thick

succession of Upper Carboniferous to Lower Permian

platform carbonate sediments and reefs that were deposited

on a north-facing passive continental margin prior to col-

lision with the southern margin of the Tien Shan to the

north (Allen et al. 1992, 1999; Graham et al. 1990;

Windley et al. 1990). According to Lee (1985) Carbonif-

erous fossiliferous platform carbonates reach a thickness of

1,500 m and locally 5,000 m. In the early Permian marine

regression began, but still leaving locally more than

1,000 m of marine limestones and mudstones. By the late

Permian continental red beds covered most of the Tarim.

Chen and Shi (2003) published the first detailed lithostra-

tigraphy and biostratigraphy, based on a synthesis of oil-

company hydrocarbon borehole data, which outlined the

depositional history of the Tarim basin. In the late Car-

boniferous to late Permian the northwestern margin of the

basin was close to an open epeiric sea with the result that

marine carbonate sediments with intermittent massive

reefal carbonates accumulated on a major passive margin

from the Baskirian-Moscovian boundary at 311.7 Ma in

the Pennsylvanian late Carboniferous to the end of the

Kungurian at 270.6 Ma in the late Permian, following

the international time scale of Gradstein et al. (2004).

Biozones throughout this period were defined in the Kalpin

region of the northwestern Tarim basin (see Fig. 3)

by brachiopods, fusulinids, conodonts, corals, and rarer

ammonites and palynoflora (Chen and Shi 2003). Although

terrestrial sediments were deposited in the centre of the

Tarim basin from the mid-Artinskian stage in the Cisura-

lian epoch at ca. 280 Ma, the northern passive margin

continued with deposition of shelf carbonates through the

Qipan sedimentary cycle during the Kungurian stage from

275.6 Ma (mid-Permian) to 270.6 Ma (late Permian). The

seas finally withdrew at the end of the Kungurian, after

which the whole Tarim basin including the northern

margin was covered with terrestrial red beds during the

late Permian (Wang et al. 1992). Significantly the end of

carbonate deposition in the late Kungurian at about

271 Ma was signaled by massive eruption of basaltic sills,

after deeper water clastic sedimentation took place. These

marine-nonmarine-basalt sill relations are very similar to

those in the Alpine-Mediterranean region when carbonate

platforms collapsed (and intruded by basalt sills), frag-

mented and subsided (with deposition of non-marine silts

and sands) from the early Jurassic to the early Cretaceous

(Jenkyns 1970) in advance of the Alpine collision tecton-

ics. Unfortunately the demise of the carbonate platform

along the northern Tarim has never been studied or inter-

preted in terms of the disintegration of a carbonate shelf.

Instead the deposition of terrestrial sediments in the late

Permian is interpreted only as a foreland basin controlled

by southward-directed thrusts. In spite of these differences

in interpretation of the sediment record, the data do suggest

that the South Tien Shan suture zone must have formed by

the end of the Permian (Nishidai and Berry 1990).

In contrast, Watson et al. (1987) suggested that collision

of Tarim wtith the Junggar block to the north and that

carbonate deposition on the northern side of Tarim was

terminated in the latest Carboniferous. Nishidai and Berry

(1990) followed these ideas stating that the Tarim platform

collided with the Junggar block to the north in the late

Carboniferous. From their structural studies integrated with

the sedimentary records of Carroll et al. (1995), Charvet

et al. (2007) concluded that the ocean on the northern side

of the Tarim craton disappeared between the late Devonian

and early Carboniferous during which the South Tien Shan

suture zone formed and was buried under terrestrial sedi-

ments by the start of the Permian.

In summary, we suggest that the latest, up-to-date, and

most detailed biostratigraphic data of Chen and Shi (2003)

unequivocally indicate that the northern margin of the

Tarim craton was passive and marine until 270.6 Ma in the

late Permian, and therefore, the suture zone could not have

formed before then.

This means that there must have been a suture (we call

this the North Tarim suture) on the northern side of this

passive margin to account for the closure of the ocean in

the late Permian, but there is no such suture exposed today

in the southern Tien Shan, where all ophiolitic mafic-

ultramafic rocks are pre-Permian or pre-early Permian (e.g.

Charvet al. 2007). So where is this final suture? The answer

to this problem comes from Jacques Charvet (personal

communication to BFW on 25 November 2008), who

suggested that the North Tarim suture could have been

subducted northwards under the Tien Shan during the

Cenozoic subduction of the Tarim block as illustrated on

the recent seismic reflection profiles (Schelochkov et al.

2008). The formation of such a suture in the late Permian
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would permit northwards subduction through much of the

Permian under the active continental margin of the southern

Tien Shan, and that would readily account for the Permian-

age, Alaskan-type, zoned mafic-ultramafic complexes that

are aligned along the southern margin of the southern Tien

Shan that would have formed in an Alaskan-type environ-

ment of an active continental margin. This model would

therefore not necessitate the introduction of a mantle plume

in the Permian in the southern Tien Shan just in order to

explain the occurrence of the zoned mafic-ultramafic com-

plexes in so-called post-orogenic or post-collision times (i.e.

Charvet et al. 2007; Pirajno et al. 2008).

The above idea of the former presence of a Permian

subduction zone on the northern side of the Tarim craton is

supported by Li et al. (2003) who pointed out that the

narrow Kuluketaq massif (which is located between the

South Tien Shan and the Tarim basin and consists of

Precambrian crystalline rocks) contains a belt of Permian

calc-alkaline magmatic rocks that have an active conti-

nental margin chemical affinity (Jiang et al. 2001), this

implying that there was an open ocean on the northern side

of Tarim subducting northwards under the Kuluketag block

during the Permian. The late Permian North Tarim suture

should today be below the Kuluketag block and below the

southern margin of the South Tien Shan farther west.

Tectonic model

The Altaids comprised the southern part of Eurasia in the

late Paleozoic to early Mesozoic. Therefore the recon-

struction of Eurasia cannot be undertaken without the

detailed paleogeography of Central-East Asia, which is

largely occupied by the Altaids. Based on the above points,

and using published data, we propose a new model to

explain the distribution and paleogeography of the Siberia,

Tarim and North China cratons, and southern Mongolia in

the late Permian (Fig. 10).

Some former reconstructions consistently placed the

Tarim craton attached to southern Eurasia in the middle to

late Paleozoic, and put the North China craton in the

southern oceanic domain, detached from Eurasia (Şengör

et al. 1993; Şengör and Natal’in 1996a, b). This would be
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consistent with detailed paleomagnetic data that suggest

progressive ocean closure and younging of suturing

towards the east from the end-Permian in the Tien Shan to

the early-mid Triassic in Inner Mongolia (Zhao 1990).

Farther east in the Lesser Xing’an Range in NE China

reliable data suggest that formation of the main suture zone

was completed by collisional tectonism in the late Triassic

at 216 ± 3 Ma (Miao et al. 2004); although Shen et al.

(2006) preferred final closure of the ocean in the late

Permian. Therefore, it seems to us that current information

points to diachronous, scissor-like suturing between the

western and eastern parts of the Altaids, as confirmed by

biostratigraphic data of Shi (2006), in a manner not unlike

the eastward younging of formation of the suture that

closed the Mongol-Okhotsk ocean from the Triassic in

western Mongolia (Zonenshain et al. 1990) to the Jurassic-

early Cretaceous in eastern Mongolia and Siberia

(Tomurtogoo et al. 2005). We agree with Johnson et al.

(2007) that the earlier well-documented marine-nonmarine

transition (Carroll et al. 1995; Hendrix et al. 1996; Lamb

and Badarch 2001; Lamb et al. 2008) in the west of the

southern Altaids compared with the east broadly supports a

younging of collision eastwards.

Implications for continental growth and metallogeny

The Phanerozoic crustal growth of the Altaids is well

constrained by petrochemical and isotopic data. Sm–Nd

isotopic data of granitic rocks indicate their juvenile char-

acter and short life, since separation of the source rocks or

magmas from the mantle (Jahn 2004; Jahn et al. 2004;

Zheng et al. 2007b; Kröner et al. 2007). However, we agree

with Kovalenko et al. (2004) that the most likely source for

the granites is juvenile lower crust of the accretionary

orogen (Yuan et al. 2007).

The terminal orogenesis of the western Altaids was

previously considered to be early or middle Paleozoic (Shu

et al. 1999; Shu et al. 2002; Laurent-Charvet et al. 2002,

2003; Wang et al. 2007a, b; Charvet et al. 2007), but the

recognition of younger (late Permian-middle Triassic)

geological relationships and geodynamic events in the

middle Altaids has refined the timing of the termination.

This has implications for understanding the metallogenic

history. For example, in the eastern Tien Shan several

episodes of mineralization can be related to specific tectonic

events (Han et al. 2006a, b; Zhang et al. 2008c): porphyry-

type and volcano-sedimentary Cu deposits, island arc

generation (c. 360–320 Ma); orogenic-type Au deposits,

accretion-collision (c. 300–280); mafic-ultramafic Cu-Ni

and epithermal Au deposits (Fig. 11), syn- to post-collision

extension (c. 280–245 Ma); some Au and skarn W-Mo

deposits, intracontinental extension (c. 240–220 Ma).

The southern Altaids is a Precambrian-early Mesozoic

orogenic belt that provides excellent information on

accretionary processes, metallogeny and continental

growth that are complementary to the younger Phanerozoic

accretionary orogens in Mesozoic-Cenozoic Japan, Alaska

and the American Cordillera (Sample and Fisher 1986;

Haeussler et al. 1995; Nelson 1996; Goldfarb et al. 1997;

Hansen and Dusel-Bacon 1998; Nokleberg et al. 2005), and

other accretionary orogens in the world (Bierlein et al.

2002; Gray et al. 2002; Glen et al. 2007).
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Problems with interpretations along the suture zone

It is important to acknowledge some of the problems

encountered in interpreting a[3,000 km-long suture zone.

With the large number of variable, often controversial,

interpretations of relations along this length, it might be

surprising if it were just a simple ‘straight-line’, orthogo-

nal, continuous, simple closure like that of the Indus-

Tsangbo suture. Indeed, because it is so often claimed that

the Altaids formed by irregular archipelago-type accretion

of multiple arcs, marginal basins, and several microconti-

nental blocks, comparable to that in Indonesia today

(summarized in Xiao et al. 2008c), one might expect that

the final suturing was also highly irregular along such a

long closure zone. For example, sedimentary-stratigraphic

relationships suggest that early indentation of a promontory

or salient in the area of south-central Mongolia led to

separation of the Junggar basin to the west from the

Solonker ocean basin to the east (Johnson et al. 2007).

Moreover, many differences between the western and

eastern parts of the suture zone may make it difficult to

correlate the timing of closure of the ocean. For example,

many foreland-like basins have been reported in the west,

but few in the east; this makes it difficult to compare post-

amalgamation tectonic development (e.g. Junggar basin,

Hendrix et al. 1992; Turpan-Hami basin, Wartes et al.

2002; N. Tarim, Chen and Shi 2003). Like the Himalayas,

post-collisional thrusting was characteristic of the Tien

Shan-Solonker orogenic belt. This NS-directed deforma-

tion is evident in the thrusted sediments and foreland basins

in southern Mongolia and Inner Mongolia (e.g. Hendrix

et al. 1992, 1996; Zheng et al. 1996; Dumitru and Hendrix

2001; Vincent and Allen 2001; Darby et al. 2001).

Unfortunately, much of this post-collisional thrusting had

the effect of obscuring evidence of many pre-collisional

geological relationships and syn-collisional deformation.

Conclusions

The late Paleozoic to early Mesozoic geodynamic pro-

cesses of two key areas, North Xinjiang in the west and

Inner Mongolia in the east, together with neighboring

Mongolia, reveal that the building of the Altaids was

finally completed between the late Permian and middle

Triassic in the west and early/middle Triassic in the east.

The late Paleozoic tectonics of North Xinjiang and adjacent

areas were characterized by continuous southward accre-

tion along the wide southern active margin of Siberia and

its final amalgamation with the passive margin of Tarim by

the end-Permian. In contrast, in Inner Mongolia and adja-

cent areas the development of accretionary wedges along

the southern active margin of Siberia and the northern

active margin of the North China craton may have lasted to

the early/mid-Triassic. Farther east in NE China final col-

lision probably took place in the late Triassic. In other

words, the final closure of the Paleo-Asian ocean was

diachronous along its[3,000 km length, and took place

mainly in a complicated scissor-like fashion with the suture

zone younging eastwards. However, it was not a simple,

linear ocean closure and suture; it is more likely that a

more complex development took place with, for example,

salients, trapped ocean basins, irregular development of

foreland basins, southwards and northwards subduction

north of the North China craton versus northwards sub-

duction away from the Tarim craton, and irregular post-

collisional thrusting, which obscured many pre- and syn-

collisional relationships. In our view, many of the diverse

and varied opinions related to the timing of the suture

formation owe their origins to such variations. Neverthe-

less, it seems to us that many of the controversial

conclusions on the timing result from decisions made from

study of just one discipline; only more multi-disciplinary

studies will resolve such issues. The complex geodynamic

evolution of the Altaids led to widespread post-collisional

thrusting, mountain building, formation of giant metal

deposits, and to substantial continental growth throughout

Central Asia. The closure of the Paleo-Asian ocean gave

rise to one of the longest and most spectacular suture zones

in the world.
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Jian P, Liu DY, Kröner A, Windley BF, Shi YR, Zhang FQ, Shi GH,

Miao LC, Zhang W, Zhang Q, Zhang LQ, Ren JS (2008) Time

scale of an early to mid-Paleozoic orogenic cycle of the long-

lived Central Asian Orogenic Belt, Inner Mongolia of China:

implications for continental growth. Lithos 101:233–259

Jiang CY, Mu YM, Zhao XN, Bai KY, Zhang HB (2001) Petrology

and geochemistry of active continental-margin intrusive rock

belt on the northern margin of the Tarim. Regional Geol China

20(2):158–163 (in Chinese with English abstract)

Johnson CL (2004) Polyphase evolution of the East Gobi basin:

sedimentary and structural records of Mesozoic-Cenozoic intra-

plate deformation in Mongolia. Basin Res 16:79–99

Johnson CL, Graham SA (2004a) Cycles in perilacustrine facies of

late Mesozoic rift basins, southeastern Mongolia. J Sediment Res

47:786–804

Johnson CL, Graham SA (2004b) Sedimentology and reservoir

architecture of a synrift lacustrine delta, southeastern Mongolia.

J Sediment Res 47:770–785

Johnson CL, Webb LE, Graham SA, Hendrix MA, Badarch G (2001)

Sedimentary and structural records of late Mesozoic high-strain

extension and strain partitioning, East Gobi basin, southern

Mongolia. In: Hendrix MS, Davis GA (eds) Paleozoic and

Mesozoic Tectonic Evolution of Central and Eastern Asia: from

Continental Assembly to Intracontinental Deformation. Geolog-

ical Society of America Memoir, vol 194, pp 413–434

Johnson CL, Greene TJ, Zinniker DA, Moldowan MJ, Hendrix MS,

Carroll AR (2003) Geochemical characteristics and correlation

of oil and nonmarine source rocks from Mongolia. Am Assoc

Petrol Geol Bull 87:817–846

Johnson CL, Amory JA, Zinniker D, Lamb MA, Graham SA, Affolter

M, Badarch G (2007) Sedimentary response to arc-continent

collision, Permian, southern Mongolia. In: Draut A, Clift PD,

Scholl DW (eds) Formation and applications of the sedimentary

record in arc collision zones. The Geological Society of America

Special Paper, vol 436, pp 363–390. doi: 10.1130/2007.2436(1116)

Jolivet L, Faccenna C, Goffe B, Burov E, Agard P (2003) Subduction

tectonics and exhumation of high-pressure metamorphic rocks in

the Mediterranean orogens. Am J Sci 303:353–409

Kay RW (1978) Aleutian magnesian andesites: melts from subducted

Pacific oceanic crust. J Volcanol Geotherm Res 4:117–132

Kay SM, Maksaev V, Moscoso R, Mpodozis C, Nasi C, Gordillo CE

(1988) Tertiary Andean magmatism in Chile and Argentina

between 2888 and 3388: correlation of magmatic chemistry with

a changing Benioff zone. J Southeast Am Earth Sci 1:21–39

Kheraskova TN, Didenko AN, Bush VA, Volozh YA (2003) The

Vendian-Early Paleozoic history of the continental margin of

Eastern Paleogondwana, Paleoasian Ocean, and Central Asian

Foldbelt. Russ J Earth Sci 5:165–184

Int J Earth Sci (Geol Rundsch)

123



Klemd R (2003) Ultrahigh-pressure metamorphism in eclogites from

the western Tianshan high-pressure belt (Xinjiang, western

China)-Comment. Am Mineral 88:1153–1156

Klemd R, Brocker M, Hacker BR, Gao J, Gans P, Wemmer K (2005)

New age constraints on the metamorphic evolution of the high-

pressure/low-temperature belt in the western Tianshan Moun-

tains, NW China. J Geol 113:157–168

Konstantinovskaya EA, Malavieille J (2005) Accretionary orogens:

erosion and exhumation. Geotectonics 39:69–86

Kovalenko VI, Yarmolyuk VV, Kovach VP, Kotov AB, Kozakov IK,

Salnikova EB, Larin AM (2004) Isotopic provinces, mechanism

of generation and sources of the continental curst in the Central

Asian mobile belt: geological and isotopic evidence. J Asian

Earth Sci 23:605–627

Kozakov IK, Kotov AB, Salikova EB, Kovach VP, Kirnozova TI,

Berezhnava NG, Lykin DA (1999) Metamorphic age of crystal-

line complex of the Tuva-Mongolia massif: U-Pb geochronology

of granitoids. Petrology 7:177–191
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