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Abstract

In this paper, firstly themesoscopic elemental mechanical model for elastic damage is developed and implemented into the rock

and tool interaction code (R-T2D). Then the failure processes of a heterogeneous rock specimen subjected to a wide variety of

confining pressures (0–80MPa) are numerically investigated using the R-T2D code. According to the simulated results, on the one

hand, the numerical simulation reproduced some of the well-known phenomena observed by previous researchers in triaxial tests.

Under uniaxial compression, rock failure is caused by a combination of axial splitting and shearing. Dilatancy and a post-failure

stage with a descending load bearing capacity are the prominent characteristics of the failure. As the confining pressure increases,

the extension of the failed sites is suppressed, but the individual failure sites become dense and link with each other to form a shear

fracture plane. Correspondingly, the peak strength, the residual strength and the shear fracture plane angle increase, but the

brittleness decreases. When the confining pressure is high enough, the specimen behaves in a plastic manner and a narrow shear

fracture plane leads to its failure. The prominent characteristics are volume condensation, ductile cataclastic failure, and a constant

load bearing capacity with increasing strain. On the other hand, the numerical simulation revealed some new phenomena. The

highest microseismicity events occur in the post-failure stage instead of the maximal stress, and most of the microseismicity

energies are released in the failure localization process. As the confining pressure increases, the microseismicity events in the non-

linear deformation stage increase dramatically and the ratio between the energies dissipated at the non-linear deformation stage and

those dissipated in the whole loading process increases correspondingly. Therefore, it is concluded that the developed mesoscopic

elemental mechanical model for elastic damage is able to reproduce accurately the failure characteristics in loading rock specimens

under triaxial conditions, and the numerical modelling can furthermore obtain some new clarifications of the rock fracture process.
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1. Introduction

Detecting fracture nucleation and understanding the

progressive process of faulting are important keys to

earthquake prediction. The study of rock fracture under

triaxial conditions captures the essential features. Lab-

oratory experiments have traditionally been used as a
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simple and effective way to investigate the progressive

failure process and associated microseismicities in rock

material under triaxial compression. In the recent past,

advanced techniques, such as the optical microscope

(Moore and Lockner, 1995), the scanning electron

microscope (SEM, Tapponnier and Brace, 1976;

Kranz, 1983; Shimada and Cho, 1990; Wu et al.,

2000), elastic-wave propagation measurement (Ayling

et al., 1995), acoustic emission (AE) detection (Lock-

ner et al., 1992; Cox andMeredith, 1993) and the X-ray

computerized tomography (CT) scanning system

(Kawakata et al., 1999), have been applied to labora-

tory experiments by numerous researchers to monitor

the progressive failure process and associated micro-

seismicities. These advanced studies have enhanced

our understanding of the progressive nature of failure

and associated microseismicities within rock under

compression. It is now recognized that the macroscopic

faulting process in a brittle rock actually involves a

multiplicity of microcracks, and its essential nature lies

not only in the initiation and propagation of individual

cracks, but also in the interaction and coalescence of the

crack population. On the one hand, whilst physical

descriptions of fracture phenomena encountered within

stressed rock materials have been established by labo-

ratory experiments and field observations, an accurate

prediction of these phenomena remains one of the most

difficult tasks in the study of rock mechanics (Fang and

Harrison, 2002b). On the other hand, microscopic

observations cannot be made non-destructively, elastic

wave propagation and AE detection need to relate the

changes in physical properties and AE events to crack-

ing activities, and the X-ray CT scanning system is too

complicated, time-consuming and expensive to use.

Fracture mechanics theory predicts fracture gener-

ation by relating the applied stresses to the propagation

of a predefined crack (Whittaker et al., 1992), but the

coalescence of cracks is difficult to describe using this

theory, due to the constant and complicated changes to

the boundary conditions that the dynamic microcrack-

ing events induce (Fang and Harrison, 2002b). More-

over, analytical models have to be simplified and

sometimes this simplification ignores important fac-

tors influencing the material behaviour. For rock

materials, heterogeneity is an example of such a factor.

Due to heterogeneity, the fracture pattern in rock

usually consists of a main crack with various branches,

secondary cracks and microcracks (Liu, 2003).
With the rapid development of computing power,

interactive computer graphics and topological data

structure, numerical modelling has met with great

success in predicting the fracture processes within a

stressed rock material; see for example the studies of

Tang (1997), Blair and Cook (1998), Tang et al.

(2000), Fang and Harrison (2002b), Tang et al.

(2002) and Liu (2003). Whether numerical techniques

will generate realistic results or not depends on the

incorporation of robust numerical methods that can

allow the efficient resolution of multiple interacting

cracks and rigorous fracture models that can reflect

the material fabric characteristics. At present, the

finite element method is the most mature numerical

method. Recently, the damage mechanical model has

become a powerful tool to model the non-linear

behaviour induced in rock materials, which are sub-

jected to a progressive microcracking process. Most of

the damage mechanical models are based on homog-

enizing the rock body and finding its response by

degrading the elasticity of the material (Lemaitre,

1992; Fanella and Krajcinovic, 1988; Lee and Ju,

1991; Hori and Morihiro, 1998).

In the present paper, in order to provide a

powerful tool to understand the mechanisms that

lead to macroscopic failure in heterogeneous rock

material and, at the same time, refine the theories

of damage utilized in continuum models, a meso-

scopic elemental mechanical model for elastic dam-

age is developed. The developed model is coupled

into the rock and tool interaction code (R-T2D) on

the basis of the finite element method to perform

research on the micro-mechanics of failure and

associated microseismicity in a heterogeneous rock

specimen under confining pressures of 0, 20, 40

and 80 MPa. According to the simulated results,

the development of fracture from the mesoscopic

elemental scale to the macroscopic scale, the brittle

to semi-brittle and ductile transitions, the fracture

patterns and the energy dissipation characteristics

are discussed.
2. Mesoscopic elemental mechanical model for

elastic damage

As mentioned in the Introduction, the damage

mechanical model has become a powerful tool to
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model the non-linear behaviour of rock materials

which are subjected to a progressive microcracking

process, by degrading the elasticity of the rock mate-

rial. The mesoscopic elemental mechanical model for

elastic damage, the subject of this paper, falls under

this category of model. Here it is used to describe the

mechanical behaviour of mesoscopic elements in a

rock specimen due to the simplicity of its formulation,

as well as its good performance from a numerical

point of view. Rock is a heterogeneous material and

the main reason for its failure is the process of

initiation and propagation of microcracks, typically

ranging from 0.01 to 1 mm in width (Cerrolaza and

Garcia, 1997). This process leads to a concentration of

these microcracks into a very narrow zone, causing a

visible macrocrack or fissure wider than 1 mm (Cer-

rolaza and Garcia, 1997). Therefore, in the present

paper rock fracture is analysed at the mesoscopic

level. At the beginning, the element in the finite

element method is considered to be isotropically

elastic and its elastic properties can be defined by

the Young’s modulus and Poisson’s ratio. The stress–

strain curve of the element is considered linear elastic

until the given damage threshold is attained, and is

then followed by softening. For simplicity, an elastic

damage model with a constant residual strength under

uniaxial loading is used, as shown in Fig. 1. The

maximum tensile stress criterion and the double

elliptic strength criterion (Liu et al., 2002) are selected
Fig. 1. Mesoscopic elemental constitutive relations und
as two damage thresholds. In all cases the tensile

stress criterion is preferable. It has been proved that

the macroscopic mechanical response of rock at the

macroscopic level can be simulated effectively by

using this simple mesoscopic elemental mechanical

model (Tang et al., 2000, 2002; Zhu, 2001; Liu,

2003).

The elastic damage constitutive relations for a

mesoscopic element under uniaxial compressive stress

and tensile stress are illustrated in Fig. 1. When the

stress of the element satisfies the strength criterion,

the element begins to fail. In elastic damage mechan-

ics, the elastic modulus of material may degrade

gradually as a damage progress. The elastic modulus

of damaged material is defined as follows (Lemaitre,

1992):

E ¼ ð1� DÞE0 ð1Þ

where D represents the damage variable. E and E0 are

the elastic modulus of the damaged and the undam-

aged material, respectively. It must be pointed out that

in the present paper, the element and its damage are

assumed to be isotropic. Therefore, E, E0 and D are all

scalar.

Following the regulations in rock mechanics, ten-

sile stress and dilatant strain are referred to as negative,

and compressive stress and contractional strain are

referred to as positive throughout this paper. When
er uniaxial compressive stress and tensile stress.



H.Y. Liu et al. / Tectonophysics 384 (2004) 149–174152
the mesoscopic element is under uniaxial tensile stress,

the constitutive relation is that shown in Fig. 1 (the

lower part of the figure), which is the elastic–brittle

damage under tensile stress with a given specific

residual strength. No initial damage is incorporated

in this model, and at the beginning the stress–strain

curve is linear elastic and no damage occurs, i.e. D = 0.

When the maximum tensile stress criterion is met, the

damage of the element occurs. Therefore this kind of

damage is also called tensile failure.

Under uniaxial tensile stress as described in Fig. 1,

damage occurs when the tensile stress in an element

reaches its tensile strength, rt, i.e.

r3V� rt ð2Þ
The damage evolution of the mesoscopic element

can be expressed as follows:

D ¼

0 e > et0

1� rtr

E0e
et0ze > etu

1 eVetu

8>>>><
>>>>:

ð3Þ

where rtr is the residual tensile strength, which is

defined as rtr = krt = kE0et0. k is the residual strength

coefficient. et0 is the tensile strain at the elastic limit,

which is the so-called tensile threshold strain. etu is the
ultimate tensile strain of the element, which indicates

that the element would be completely damaged when

the tensile strain of the element attains this ultimate

tensile strain. The ultimate tensile strain is defined as

etu = get0, where g is called the ultimate tensile strain

coefficient. In terms of the strains, the damage evolu-

tion equation of the mesoscopic element under uni-

axial tensile loading can also be expressed as follows:

D ¼

0 e > et0

1� ket0
e

et0ze > etu

1 eVetu

8>>>><
>>>>:

ð4Þ

Moreover, it is assumed that the damage of a

mesoscopic element in the multiaxial stress field is

also isotropic. According to the method of extending

the one-dimensional constitutive law under uniaxial-

tensile to complex-tensile stress conditions, the above-

described constitutive law for uniaxial tensile stress
can be extended to use for three-dimensional stress

states. Under multiaxial stress states the element is

still damaged in the tensile mode when the combina-

tion of major tensile strains attains the above threshold

strain et0. The constitutive law of an element subjected

to multiaxial stresses can be easily obtained by merely

substituting the strain e in Eq. (4) with an equivalent

strain ē. The equivalent strain ē is represented by using

the following nonsymmetric criterion (Cerrolaza and

Garcia, 1997):

ē ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
he1i2� þ he2i2� þ he3i2�

q
ð5Þ

which in the case of plane strain becomes ē ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
he1i2� þ he3i2�

q
, where ei represents the principal

strains and heii�=[ei� abs(ei)]/2. The criterion was

first developed for concrete and it was adopted here

for rock, since both materials are more resistant to

damage in compression than in traction. Microscopic

observations have shown that cracks always have an

orientation mainly normal to the principal strain

directions. This is why the criterion depends only on

the negative strains (Cerrolaza and Garcia, 1997).

heii� ¼ ei if eiV0; a case of tensile strain ð6Þ

heii� ¼ 0 if ei > 0; a case of compressive strain

ð7Þ

It must be emphasized that when D = 1, it is

calculated from Eq. (1) that the damaged elastic

modulus is zero, which would make the system of

equations ill-conditioned. Therefore, in the model a

relatively small number, i.e. 1.0� 10� 5, is specified

for the elastic modulus owing to this consideration.

To describe the mesoscopic elemental damage

under a compressive or shear stress condition, we

choose the double elliptic strength criterion (Liu et

al., 2002) as the second damage criterion, shown in

Fig. 2, i.e.

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
g þ 4s2g

q
þ brg ¼ c; sgzkrg

aV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
g þ 4s2g

q
þ bVrg ¼ c; sg < krg

8><
>: ð8Þ

where a, b, aV, bVand c are constant parameters, which

can be defined according to the stress conditions at the
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triaxial tensile limiting stress state, i.e. Point A (rg
t , 0)

in Fig. 2, at the uniaxial compressive limiting stress

state, i.e. Point B (rg
c, sg

c) in Fig. 2, at the brittle to

ductile failure transition limiting stress state, i.e. Point

C (rg*, sg*) in Fig. 2, and at the hydrostatic pressure

yield limiting stress state, i.e. Point D (rg
P0, 0) in Fig. 2.

rg = r1 + r3 and sg = r1� r3, where r1 and r3 are the

major and minor principal stress, respectively; and rg
and sg are the generalized normal and shear stress,

respectively. rg
t =� 2rt is the generalized normal stress

at the triaxial tensile limiting stress state, where rt is

the uniaxial tensile strength. rg
c = rc and sg

c = rc are the
generalized normal and shear stress at the uniaxial

compressive limiting stress state, where rc is the

uniaxial compressive strength. rg* and sg* are the

generalized normal and shear stress at the brittle to

ductile failure transition limiting stress state. Hoek

and Brown (1980) chose the relationship r1 = 3.4r3

(sg = krg, where k = 6/11, in a generalized shear and

normal stress presentation) as the best approximation

of the brittle–ductile transition. rg
P0 = 2P0 is the

generalized normal stress at the hydrostatic pressure

yield limiting stress state, where P0 is the hydrostatic

pressure. The uniaxial tensile strength rt, the uniaxial

compressive strength rc, and the hydrostatic pressure

P0 can be determined on the basis of laboratory test

and the brittle to ductile failure transition point (rg*,

sg*) can be obtained by solving the cross point

between the Mohr–Coulomb strength envelope and

the critical state line proposed by Hoek and Brown

(1980). Therefore, the double elliptic strength crite-

rion is feasible. As introduced in a previous paper
(Liu et al., 2002), the brittle failure face of the

double elliptic criterion will represent rock failure

in the shear mode at a low confining pressure, just as

the Mohr–Coulomb or Hoek–Brown strength crite-

rion. The ductile failure face will represent rock

failure in the ductile cataclastic mode at a high

confining pressure. Compared with the Mohr–Cou-

lomb strength criterion with a Roscoe cap, the major

advantages of the double elliptic strength criterion is

that it avoids the tip angle in the tension area in the

Mohr–Coulomb strength criterion, and the failure

criterion and yield cap model have the unified math-

ematical form, in which the ductile yield face is

interrelated with the brittle failure face.

At a low confining pressure (sgz krg), on the basis

of the uniaxial tensile strength rt and uniaxial com-

pressive strength rc, the brittle failure conditions in

the double elliptic strength criterion can be repre-

sented as follows (see Appendix A):

ð2c þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
g þ 4s2g

q
þ ð2c �

ffiffiffi
5

p
Þrg

2cð1þ
ffiffiffi
5

p
Þ

zrc ð9Þ

where c = rt/rc is the ratio between the uniaxial tensile

strength and the uniaxial compressive strength.

When the stresses of the element satisfy the brittle

failure conditions, shear damage is induced. A similar

constitutive law is given in Fig. 1 (the upper part of

the figure) when the element is under uniaxial com-

pression and damage occurs in the shear mode

according to the brittle failure condition of the double
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elliptic strength criterion. The damage variable D can

be described as follows:

D ¼
0 e < ec0

1� rcr

E0e
ec0Ve < ecc

8><
>: ð10Þ

where rcr is the residual compressive strength. It is

assumed that rcr/rc = rtr/rt = k holds true when the

mesocopic element is under uniaxial compression or

tension. Similarly to the uniaxial tensile case, ec0 is the
compressive strain at the elastic limit, which is the so-

called compressive threshold strain. ecc is the re-

compaction compressive strain of the element, which

indicates that the re-compaction behaviour occurs

when the compressive strain of the element attains

this re-compaction compressive strain. The re-com-

paction compressive strain is defined as ecc = nec0,
where n is called the re-compaction compressive

strain coefficient.

When the element is under a multi-axial stress

state and satisfies the brittle failure surface of the

double elliptic strength criterion, shear damage

occurs, and we must consider the effect of other

principal stress in this model during the damage

evolution process. When the brittle failure surface

of the double elliptic strength criterion is met, the

compressive threshold strain ec0 can be calculated as

follows (see Appendix A):

ec0 ¼
1

E0

½r1 � mðr2 þ r3Þ�

¼ 1

E0

�mðr2 þ r3Þ þ
1

2cð4c þ 5þ
ffiffiffi
5

p
Þ

(

� 2r3½4c2 þ ð3�
ffiffiffi
5

p
Þc þ 2�

n
þ crcr½�2ð1þ

ffiffiffi
5

p
Þc þ 5þ

ffiffiffi
5

p
�

þ sqrt 16r2
3½�4ð1þ

ffiffiffi
5

p
Þc3 � 4

ffiffiffi
5

p
c2

n
þ ð3�

ffiffiffi
5

p
Þc þ 1� þ 8cr3rcr½�8ð1þ

ffiffiffi
5

p
Þc3

þ 4ð3�
ffiffiffi
5

p
Þc2 þ 2ð9þ

ffiffiffi
5

p
Þc þ ð5þ

ffiffiffi
5

p
Þ�

þ 10ð3þ
ffiffiffi
5

p
Þc2r2

crð4c2 þ 4c þ 1Þ
oo)

ð11Þ
In addition, it is assumed that the damage evolution

is only related to the maximum compressive principal

strain e1. Therefore, the maximum compressive prin-

cipal strain e1 of the damaged element is used to

substitute the uniaxial compressive strain e in Eq.

(10). Thus, the Eq. (10) can be extended to biaxial or

triaxial stress states.

D ¼
0 e1 < ec0

1� kec0
e

ec0Ve1 < ecc

8><
>: ð12Þ

From the above derivation of the damage variable

D (Eqs. (4) and (12)), which is generally called the

damage evolution law in damage mechanics, as well

as the previous Eq. (1), the damaged elastic modulus

of the element at different stress or strain levels can be

calculated. The unloaded element without failure

keeps its original elastic modulus and strength. That

is to say, the element without failure will unload

elastically and no residual deformation is incorporated

in the numerical model.

At a high confining pressure (sg < krg), no strength

reduction is introduced. Therefore, when the ductile

failure surface of the double elliptic strength criterion

is met, the compressive threshold strain ec0 is calcu-

lated in the same way as Eq. (11), except for substi-

tuting rcr with rc.

When the maximum compressive principal strain

e1 of the element exceeds the re-compaction compres-

sive strain ecc, i.e. e1z ecc, re-compaction of the

element occurs. In other words, the fractured elements

can be re-compacted to form a new material with

properties similar to those of intact elements depend-

ing on the lateral pressure when the compression

strain of the element reaches a certain level. This

phenomenon can be often observed either in percus-

sive drilling, crushing or grinding of rocks, where the

re-compacted fractured rock is usually stuck on the

tool or equipment. Lindqvist (1982) has performed

some experiments to validate the existence of the re-

compaction behaviour. Moreover, the evidence for

this kind of re-compaction behaviour can also be

found independently in the work of Lai et al. (1980)

and Lundqvist (1981). In this case, the elastic modu-

lus of the element is gradually increased to resist the

continuous compression.
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Zhu (2001) and Tang et al. (2002) used this

model to simulate the brittle failure of concrete and

the permeability changes of rock masses, respective-

ly, coupling the model with the Mohr–Coulomb

strength criterion, in such a way that, when the

Mohr–Coulomb strength criterion was satisfied, the

compressive threshold strain ec0 was calculated as

follows:

ec0 ¼
1

E0

�mðr2 þ r3Þ þ rcr þ
1þ sin/
1� sin/

r3

� �
ð13Þ

where / is the internal friction angle. However,

since the Mohr–Coulomb strength criterion is only

valid for the brittle part of the rock failure envelope

(Verhoef and Ockeloen, 1996; Zhao, 2000), it

cannot describe the rock behaviour under high

confining pressures. It should be noted that due to

the lack of specific failure criteria for rock elements,

the failure criteria developed based on the testing of

laboratory scale rock specimens are used here for

rock elements. On the basis of the argument devel-

oped by Fang and Harrison (2002a) that a rock

element within a rock specimen can be considered

as analogous to a rock specimen itself, the failure

criteria for rock specimens may be applicable to

rock elements.

How parameters such as the residual strength

coefficient k, the ultimate tensile strain coefficient g
and the re-compaction compressive strain coefficient

n affect the macroscopic behaviour of the constructed

numerical model has been discussed in detail in

previous papers/theses (Tang et al., 2000; Zhu,

2001; Liu, 2003). It has been proved that the effects

of the constitutive parameters are minor, as long as the

residual strength coefficient k, the ultimate tensile

strain coefficient g and the re-compaction compres-

sive strain coefficient n are in the range 0 < kV 0.1,

1.5V gV 5 and 1.5V nV 5, respectively. Calibration

studies on some typical physical–mechanical and

fracture mechanics experiments have been undertaken

and proved that this model can effectively simulate

the non-linearity of the stress–strain response, local-

ization of deformation, strain softening, and crack

initiation, propagation, interaction and coalescence

in heterogeneous rock under a variety of quasi-static

loadings (Liu, 2003).
Therefore, the simulation of failure initiation and

fracture propagation in this investigation is the same

as the method used in the smeared crack model, in that

the crack is smeared over the whole element, which

has the advantage of leaving the mesh topology

untouched. No special singular element is adopted.

When the stress state of an element meets the damage

threshold, the element will be damaged in the tensile

or shear mode. Only when the maximum tensile strain

of the damaged element attains a given ultimate

tensile strain, will the damaged element become

totally cracked. One of the main features of this kind

of model is that there is no need for a pre-fabricated

notch to simulate the failure initiation and fracture

propagation. Moreover, this model has obvious

advantages compared with the model under the dis-

crete crack framework, where usual formulations

assume that a crack, once it opens, does not close;

i.e. there is no consideration of a possible re-estab-

lishment of contact between the crack surfaces. How-

ever, the shortcoming of the mesoscopic elemental

mechanical model for elastic damage is that it requires

much more computer capacity for the same miscros-

tructural window of rock.

In a brittle or quasi-brittle material such as rock,

acoustic emission (AE) is predominantly related to

the release of elastic energy (Tang, 1997). There-

fore, as an approximation, it is reasonable to assume

that the AE counts are proportional to the number

of damaged elements, and the strain energies re-

leased by damaged elements are all in the form of

acoustic emissions (Tang, 1997). In this mode, the

AE counts can be accounted for by the number of

damaged elements and the energy releases can be

calculated from the strain energy releases of dam-

aged elements, which are the shadow area in Fig. 1.

On the basis of this assumption, the cumulative AE

counts and cumulative AE energy release can be

realistically simulated with the above-mentioned

numerical model.

The developed mesoscopic elemental mechanical

model for elastic damage was fully implemented

into the rock and tool interaction code (R-T2D) on

the basis of the finite element method, as shown in

Fig. 3. In the code, the numerical specimen is

constructed according to the heterogeneous material

model (Liu, 2003) with the homogeneous index m

and elemental seed parameters, such as the critical
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strength r0, elastic modulus E0, etc. During the

loading process, the finite element method is used

to compute the stress and deformation in each

element, and the Mohr–Coulomb strength criterion

or the double elliptic strength criterion (Liu et al.,

2002) is used to examine whether or not elemental

damage occurs. An external load is slowly applied

on the constructed numerical specimen step by step.

When in a certain step the stresses in some elements

satisfy the strength criterion, the element is damaged

and becomes weak according to the rules specified

by the above-described mesoscopic elemental me-

chanical model for elastic damage. The stress and

deformation distributions throughout the model are

then adjusted instantaneously after each rupture to

reach the equilibrium state. At positions with in-

creased stress due to stress redistribution, the stress

may exceed the critical value and further ruptures

are caused. The process is repeated until no failure

elements are present. The external load is then

increased further. In this way the system develops

a macroscopic fracture. Thus the code links the

mesoscopic mechanical model to the continuum

damage model and ultimately to macrostructure

failure, which has been regarded as one of the most

challenging tasks in the area of brittle failure micro-

mechanics.
3. Failure process of a rock specimen under

various confining pressures

3.1. Numerical model

Laboratory experiments on rock fracture in com-

pression are normally carried out by loading cylin-

drical specimens in either uniaxial or triaxial

conditions (ISRM, 1978; Kovari et al., 1983). Al-

though an experimental system for a triaxial test in

the laboratory can be very complicated, with respect

to numerical modelling the interesting part is the

core of the system, which consists mainly of a rock

specimen and a pair of steel platens (Blair and

Cook, 1998; Tang et al., 2000; Fang and Harrison,

2002b). The numerical model used in this paper

represents the two-dimensional plane stress problem,

as shown in Fig. 4. The model comprises a rock

sample with a length-to-diameter ratio of 2.5 (L/

D = 2.5) and a pair of platens. Both the rock body

and the platens are discretised into 54� 145 = 7830

elements. The steel platens are simulated as homo-

geneous material, which deforms elastically and is

not allowed to failure during the tests, while the

rock sample is simulated as heterogeneous brittle

material. Because of the heterogeneity, each element

contains an unequal number of defects and therefore



Fig. 4. Numerical model for a heterogeneous rock specimen under

various confining pressures.
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possesses different physical–mechanical parameters.

Assume that the local physical–mechanical parame-

ters are distributed following a certain probability

distribution. On the basis of the previous work

(Weibull, 1951; Hudson and Fairhurst, 1969), Wei-

bull’s distribution describes very well the experi-

mental data for the distribution of micro-defects

within rock. Here, we assume that the elemental

physical–mechanical parameters follow the hetero-

geneous material model (Liu, 2003) on the basis of

Weibull’s distribution

uðxÞ ¼ m

x
x
x0

 �m�1

exp � x
x0

 �m� �
ð14Þ

where x is the elemental parameter, x0 is the mean

value of the elemental parameter, i.e. the elemental

seed parameters, such as the critical strength r0,

elastic modulus E0, etc., and m is the shape param-

eter describing the scatter of x, which can be
defined as the homogeneous index of the rock

(Tang, 1997). The disorder of the probability distri-

bution in physical space is achieved by the Monte

Carlo method. Therefore, the method based on

statistics and randomicity satisfies the requirements

of heterogeneity and randomicity of element param-

eters in a finite element network of rock caused by

mineralogy, porosity, grain size, grain orientation

and grain boundary, etc., in real rock. However,

the microstructural details in one given geometrical

model of real rock are not taken into accounts,

which requires further research work. In current

simulations, the homogeneous index m = 2 and the

elemental seed parameters r0 = 100 MPa, E0 = 30

GPa, etc., are used. Moreover, it is assumed that

the Poisson’s ratio m0 = 0.25, the tensile/compressive

strength ratio c = 1/10, the residual strength coeffi-

cient k = 0.1, the ultimate tensile strain coefficient

g= 1.5 and the re-compaction compressive strain

coefficient n = 5. To simplify the triaxial load appli-

cation in the numerical experiments, an initial stress

boundary is applied to the two sides of the rock

specimen and the outer surfaces of both platens to

achieve a hydrostatic stress state at the level of a

specific confining pressure. This is followed by an

incremental axial displacement (0.005 mm/step) of

the platens to apply the axial stress. In the simula-

tion of progressive failure of rock, the reason for

using displacement-controlled loading instead of

force-controlled loading is that displacement-con-

trolled loading enables the simulation of the entire

response spectrum of progressively failure media,

including post-peak softening.

In the following, the failure processes of the con-

structed heterogeneous rock specimen subjected to

confining pressures of 0, 20, 40 and 80 MPa under

triaxial conditions are numerically simulated. It

should be noted that the simulations in this section

were performed using an identical set of properties for

the rock specimen (including the individual element

strength and the elastic modulus) and that only the

confining pressure was varied. Since similar charac-

teristics are observed at confining pressures of 20 and

40 MPa, we describe the failure process of the rock

specimen under uniaxial compression, a moderate

confining pressure and a high confining pressure by

reference to confining pressures of 0, 20 and 80 MPa,

respectively.



Fig. 5. Simulated stress–displacement curve and failure event rate of a rock specimen subjected to a confining pressure of 0 MPa.
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3.2. Failure process of a rock specimen under

uniaxial compression

Since a previous paper (Tang et al., 2000) dis-

cussed the failure process under uniaxial compression

in detail, where, however, the Mohr–Coulomb

strength criterion was used, here we just simply report

the simulated results so that the comparison can be

made in the subsequent fracture analysis under triax-

ial compression. Fig. 5 records the stress–displace-

ment curve and the associated microseismicities’

(failure events’) temporal distributions for a rock

specimen under uniaxial compression. The spatial

distributions of the failure events at the different

loading levels labelled by alphabetic letters, i.e. A,

B, etc., in Fig. 5 are correspondingly depicted in Fig.
Fig. 6. Simulated spatial distribution of the failure event sequence in
6. In the figure, the red (grey in a black–white

picture) colour represents the tensile failure and the

blue (dark in a black–white picture) colour represents

the compressive failure at the current loading level.

The black colour represents the accumulative tensile

and compressive failure at the previous loading lev-

els. At the linear elastic stage (curve before point A in

Fig. 5), the failure events are randomly distributed

throughout the specimen (Fig. 6A) because of the

heterogeneity, reflecting the statistically uniform de-

formation during this portion of the simulation. At the

non-linear deformation stage (curve AB in Fig. 5),

though a few failure events are still occurring

throughout the specimen, more failure events are

now clustered to form a few active microseismic

zones, which are marked by the ellipses in Fig. 6B.
a rock specimen subjected to a confining pressure of 0 MPa.
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The formed actively microseismic zones are the

potential nucleation sites in the future failure process

but it is difficult to predict where the macrofailure

will initiate. After the peak load (Point B in Fig. 5,

where the uniaxial compressive strength is rc = 103.5

MPa), there is a big stress drop (Point C in Fig. 5) in

the stress–displacement curve and also a large num-

ber of active micro-seismic events localize in one of

the potential nucleation sites to develop a macroscop-

ic crack, which is marked by the ellipse in Fig. 6C.

This is believed to be the result of stress distribution,

redistribution and migration from the surrounding

potential nucleation zones to the active microseismic

zone, where a high stress is established. As the

loading displacement increases, the stress–displace-

ment curve continuously descends (Point D in Fig.

5D) and correspondingly the formed macroscopic

fracture propagates along an inclined plane but ap-

proximately along the major principal stress direction,

which is marked by the ellipse in Fig. 6D. It is found

that during these stages, the failure event counts

decrease in intensity throughout the rest of the spec-

imen expect the macroscopic fracture plane. With

continuous loading displacement, the stress–displace-

ment curve continues dropping down to represent a

typical brittle behaviour (Point E and F in Fig. 5) and

another main fault plane is developed at the active

microseismic zone, which is marked by ellipses in

Fig. 6E and F. It is important to find, and undoubtedly

of some seismological significance, that the highest

AE event counts do not correspond to the maximal

stress (Fig. 5B), but to the post-peak region (Figs. 5

and 6E), which is the new physical phenomena and
Fig. 7. Simulated maximum principal (compressive) stress distribution
has never been reported in literatures on the basis of

laboratory investigations.

Fig. 7 shows the simulated initiation, propagation

and coalescence of the cracks at different loading

levels labelled in Fig. 5. The grey scale in the figure

represents the value of the maximum principal stress.

The brighter the colour, the higher the maximum

principal stress. It can be seen that the onset of failure

in the specimen subjected to uniaxial compressive

loading is indicated first by the formation of a large

number of isolated microfailures (Fig. 7A and B). The

microfailures begin to cluster and become clearly

localized in Fig. 7C, where a macroscopic crack

comes into being. As the loading displacement

increases, the formed macroscopic crack propagates

in a direction sub-parallel to the maximum compres-

sive axis and therefore a fault plane is formed (Fig.

7D). Hence, mode I cracking is the dominant mech-

anism. After that, another main macroscopic crack

begins to grow (Fig. 7E). Finally the two main cracks

propagate at the same time and two conjugated

macroscopic fault planes develop (Fig. 7F).

3.3. Failure process of a rock specimen at a moderate

confining pressure (20 MPa)

Fig. 8 illustrates the resultant stress–displacement

curve and the temporal sequence of the associated

failure event rates when loading the heterogeneous

rock specimen under a moderate confining pressure,

r3 = 20 MPa. Correspondingly, Fig. 9 records the

spatial sequence of failure events in the specimen.

The symbols in the figure have the same meaning as
of a rock specimen subjected to a confining pressure of 0 MPa.



Fig. 8. Simulated stress–displacement curve and failure event rate of a rock specimen subjected to a confining pressure of 20 MPa.
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those in Fig. 6. During the loading process, the

confining pressure is applied on the rock specimen

in the first loading step, and correspondingly an axial

loading displacement (0.09 mm) is applied on the

loading platen to achieve a hydrostatic stress state.

Similar to the case of the uniaxial compression, at the

linear elastic stage (curve before Point A in Fig. 8),

the local failure events are initiated at various sparse

sites (Fig. 9A) because of the heterogeneity. Then, at

the non-linear deformation stage (curve ABC in Fig.

8) more individual failure events develop at a few

microseismic zones, which are marked by the ellipses

in Fig. 9B. Compared with the failure events shown

by the histogram in Fig. 5, more failure events occur

in the confined compression, which reveals that there

is a more progressive non-linear deformation stage in

confined compression than that in uniaxial compres-
Fig. 9. Simulated spatial distribution of the failure event sequence in
sion. At the peak load (Point C in Fig. 8, where the

compressive strength of the rock specimen under a

confining pressures of 20 MPa is rcj20 = 180.2 MPa),

the diffused failed sites tend to become dense at the

marked sites by ellipses in Fig. 9C. During this

process, it is noticed that compressive failure is the

main mechanism, whereas in uniaxial compression,

tensile failure is the main mechanism, as shown by the

red (grey in a black–white picture) colour in Fig. 6C.

This explains why, with the continuous loading dis-

placement, the cracks are formed by the linking of the

failed sites (marked by the ellipse in Fig. 9D) instead

of the extension of the current failure sites parallel to

the major principal stress. At the same time, the failure

events reach the maximum (Point D in Fig. 8) as

shown by the histogram in Fig. 8 and correspondingly

the stress-loading displacement curve descends rapid-
a rock specimen subjected to a confining pressure of 20 MPa.
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ly. It is again noted that the maximum failure events

count does not lay at the peak load but at the post

failure stage, which is the new phenomena explored

by numerical simulation. A subsequent increase in the

loading displacement (Point E in Fig. 8) enhances the

linkage between the failed sites to form a macroscopic

shear fracture plane as marked by the ellipse in Fig.

9E. During this process, the extension of some linked

cracks is observed to propagate parallel to the major

principal stress, because the confining pressure is not

so high. After that, more and more failure sites are

formed in the macroscopic shear fracture marked by

the ellipse in Fig. 9F, which causes the shear fracture

plane to continue to grow until finally the formation of

the macroscopic through-going shear fracture plane is

complete.

Fig. 10 shows the simulated progressive failure

processes in terms of the distribution of the major

principal stress. Again it can be seen that the onset of

failure in the specimen is indicated first by the

formation of a large number of isolated microfailures

(Fig. 10A). However, with the loading displacement

increasing, one notices a behaviour different from the

uniaxial compression case, where the failure sites

propagate parallel to the major principal stress, name-

ly that more individual failure sites tend to develop in

the confined condition and it is only when the diffused

failed sites become dense that extensile cracks begin

to propagate from failed sites (Fig. 10C). A further

increment in the loading displacement causes these

cracks to tend to link with each other (Fig. 10D). A

subsequent increase in the loading displacement

enhances the linkage between the failed sites to form
Fig. 10. Simulated maximum principal (compressive) stress distribution
a macroscopic shear fracture plane (Fig. 10E). The

shear fracture plane continues to grow, until finally the

formation of the macroscopic through-going shear

fracture plane is complete and the specimen fails

completely on the macroscopic scale by a single shear

fracture plane (Fig. 10F).

3.4. Failure process of a rock specimen at a high

confining pressure (80 MPa)

Fig. 11 shows the corresponding stress–displace-

ment curve and the associated failure event rate when

loading the rock specimen at a high confining pres-

sure, r3 = 80 MPa. In Fig. 12, we present the locations

of the failure event sequences occurring during the

loading stages. The symbols in the figure have the

same meaning as the aforementioned. Moreover, the

green (light grey in a black–white picture) colour

represents ductile cataclastic failure, with the stresses

of the element satisfying the ductile failure surface of

the double elliptic strength criterion at the current

loading level. The confining pressure is applied on the

rock specimen in the first loading step, and corre-

spondingly an axial loading displacement (0.36 mm)

is applied on the loading platen to achieve a hydro-

static stress state. As shown in Fig. 11, the compres-

sive strength of the rock specimen under a confining

pressure of 80 MPa is rcj80 = 310.5 MPa. Compared

with the previous cases, as for the stress–displace-

ment curve, the main difference lies in the post-failure

stage (curve BCDEF in Fig. 11). The prominent

characteristics of the post-failure stage under high

confining pressure are volume condensation (as
of a rock specimen subjected to a confining pressure of 20 MPa.



Fig. 11. Simulated stress–displacement curve and failure event rate of a rock specimen subjected to a confining pressure of 80 MPa.
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shown later in Fig. 16) and a very small stress drop or

no stress drop (Point C, D, E and F in Fig. 11).

Therefore, the curve in Fig. 11 presents a plastic

behaviour, which indicates that the stresses of some

elements satisfy the ductile failure surface of the

double elliptic strength criterion, because of the high

confining pressure; and that the compressive strain of

some failed elements in the shearing band attains the

re-compaction compressive strain, so that a re-com-

paction behaviour occurs. As for the failure events,

the main difference is that some of the elements fail in

the ductile cataclastic mode, with the stresses satisfy-

ing the ductile failure surface of the double elliptic

strength criterion, as shown by the green (light grey)

colour in Fig. 12 because of the high confining

pressure. Moreover, more failure events occur before
Fig. 12. Simulated spatial distribution of the failure event sequence in
the peak load (Point B in Fig. 11) and the maximum

failure event rate (Point C in Fig. 11) becomes closer

to the peak load point. The local shear band, marked

by the ellipses in Fig. 12, is formed after the failed

sites become dense and coalesce with each other.

Fig. 13 shows the simulated progressive failure

processes in terms of the distribution of the major

principal stress. In the quasi-linear deformation stage

and non-linear deformation stage, the elemental fail-

ures are initiated at isolated locations (Fig. 13A and

B). The failure sites are not clear in these figures

because the large axial deformation makes the isolated

cracks close. As the loading displacement increases,

the failed sites become dense and a few sites extend

short distances to form arrays of cracks (Fig. 13C).

Then the failed sites begin to coalesce and form local
a rock specimen subjected to a confining pressure of 80 MPa.



Fig. 13. Simulated maximum principal (compressive) stress distribution of a rock specimen subjected to a confining pressure of 80 MPa.
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shear bands (Fig. 13D). Subsequently, a macroscopic

shear band forms (Fig. 13E). Further increments in the

axial displacement tend to re-establish the contact

between the crack surfaces (Fig. 13F) and the material

behaves in a ductile fashion. Compared with the

previous cases (involving uniaxial compression and

moderate confining pressure), the cracks in the spec-

imen induced under a high confining pressure are

closer, which indicates that the compressive strain of

some elements in the shear band attains the re-com-

paction compressive strain and a re-compaction be-

haviour occurs.
4. Discussions

In Section 3, the progressive failure processes of

the heterogeneous rock specimen under a wide range

of confining pressures (r3 = 0–80 MPa) have been

simulated using the developed mesoscopic elemental

mechanical model for elastic damage. In the present

section, the simulated results are discussed through a

comparison with the laboratory data in the literature

and the results simulated by other researchers.

4.1. Fracture development from the mesoscopic scale

to the macroscopic scale

On the basis of the simulated failure event distri-

butions shown in Figs. 6, 9 and 12), it can be

concluded that local failure events are first randomly

initiated at a load level well before the peak load

(Figs. 6, 9 and 12A), with the stresses of the meso-
scopic elements in the heterogeneous rock specimen

satisfying the strength criterion. As the loading dis-

placement increases, some of the failed sites extend in

the direction of the major principal stress in the case

of uniaxial compression and, in the case of confining

pressure, more individual failure sites develop to

connect with each other and hence cause crack arrays

to form (Figs. 6, 9 and 12B). Further loading causes

the coalescence of arrayed cracks and macroscopic

cracks are formed (Figs. 6, 9 and 12C). Finally, the

formed macroscopic cracks propagate and macroscop-

ic through-going fracture planes develop (Figs. 6, 9

and 12D–F). Similar phenomena have been observed

in laboratory tests (Wawersik and Fairhurst, 1970;

Tapponnier and Brace, 1976). Preceding the rock

fracture, mesoscopic processes start from random

initiation and then develop through the extension of

microcracks into the formation and coalescence of

arrayed cracks. Moreover, the degree of crack exten-

sion is influenced by the magnitude of the confining

pressure, in that the extension of failed sites is sup-

pressed with increasing confining pressure. Using a

degradation model coupled with FLAC (Itasca, 1995),

Fang and Harrison (2002b) have also simulated the

fracture development from the elemental scale to the

macroscopic scale. Their results are consistent with

our numerically simulated results. However, it is a

pity that in their model the stress distribution and

redistribution, and the displacement field are not

simulated or shown.

The loss of homogeneity, i.e. the macroscopic

crack, was observed to occur in the softening regime

(Figs. 5C, 8D and 11C), i.e. after the peak stress. This
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loss of homogeneity is recognized as being associated

with the localisation phenomenon, as shown in Figs. 6

and 7C–F,Figs. 9 and 10D–F, and Figs. 12 and 13C–

F, which is consistent with the laboratory results

observed by other authors (Lockner et al., 1991;

Labuz et al., 1996) indicating that shear bands become

fully developed throughout the specimen only in the

softening regime of the specimen’s response.

4.2. Brittle to semi-brittle and ductile transitions

Failure in rock is generally characterised by a

brittle regime, a transitional semi-brittle regime and

a ductile regime (Besuelle et al., 2000). Fig. 14

collects the simulated stress–displacement curves

obtained by the R-T2D code at all the applied confin-

ing pressures used in the simulation, i.e. 0, 20, 40 and

80 MPa. It is shown that the mechanical behaviour of

the specimen is greatly affected by the confining

pressure. The deformation and failure are brittle, if

the confining pressure is zero or relatively low. Under

uniaxial compression, the fracture processes develop

very quickly, so that the specimen collapses over a

very small strain range, which is the brittle regime. In

this case, there are three distinctive strengths, which

split the whole deformation and failure process into

four stages. The three strengths are the yield strength

(Point A in Fig. 5), the limit strength (Point B in Fig.

5), and the residual strength (Point F in Fig. 5). The

four stages are called the elastic region (the line in Fig.

5 before Point A), the initial damage region (AB in
Fig. 14. Simulated stress–displacement curves of a ro
Fig. 5), the post-failure region (BCEDF in Fig. 5), and

the shearing and slipping region, respectively. Dila-

tion under a stress higher than the yield strength (as

shown later in Figs. 15 and 16) and a post-failure

stage with a descending load bearing capacity (Fig. 5)

are the prominent characteristics in this case. At the

post-failure stage, the stress–displacement curve of

the sample experiences stress drops several times

(Point C, D, E and F in Fig. 5) before the axial stress

reaches a residual level, and the behaviour of the

material is brittle. As the confining pressure increases

(to 20 and 40 MPa), the strain hardening range (Fig.

8A,B,C) increases and both the strength loss after the

peak and the brittleness of the curve decrease (Figs.

8 and 14). Finally, when the confining pressure

increases to 80 MPa, the material behaviour becomes

plastic (Figs. 11 and 14). The prominent character-

istics, in this case, are volume condensation (as shown

later in Fig. 16) and ductile cataclastic failure, with the

stresses of some elements satisfying the ductile failure

surface of the double elliptic strength criterion and

with a constant or increasing load bearing capacity

with increasing strain because of the ductile cataclas-

tic failure and because the compressive strain of some

elements exceeds the re-compaction compressive

strain. In addition, the failed specimens with brittle

failure have two conjugated inclined shear bands, but

the remnants of the specimens with ductile failure are

almost barrel-shaped. On the basis of the friction

mechanism between crack surfaces, Kou (1995)

explained the shape of the specimen remnant after
ck specimen under various confining pressures.



Fig. 15. Simulated radial strain versus loading displacement in compressing a rock specimen under various confining pressures.
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testing. In the brittle case, the material plane along the

crack becomes weak compared with other possible

planes, and the crack is prone to grow in that plane.

This is the case where the bearing capacity of the

specimen decreases progressively during the forma-

tion of the shearing band. The shearing band in the

specimen, once formed, splits the specimen into two

parts, and, due to stress relief, each of them may be

treated as rigid. The specimen deformation is then

induced by the relative slip between the two rigid

parts. In the ductile case, however, the plane along the

cracked surface becomes stronger than the other

possible shear planes and unfavourable to crack

growth. The specimen remnant becomes barrel-

shaped due to the action of stresses and friction from

the two loading platens. Therefore, confining stress
Fig. 16. Simulated volumetric strain versus loading displacement in c
has an important influence on the mechanical proper-

ties of rock.

The numerically simulated results are consistent

with the laboratory observations in triaxial experi-

ments (Wawersik and Fairhurst, 1970; Brady and

Brown, 1992; Weijermars, 1997), indicating that the

confining pressure influences the non-linearity of the

stress – strain curve. As the confining pressure

increases, the peak strength increases, the hardening

range widens and the strength drop in the softening

(i.e. post-peak) range decreases, with the material

becoming plastic when the confining pressure is

sufficiently large. It should be noted that the only

variable in the simulation used to produce Fig. 14 is

the confining pressure, and that all the other model

parameters are identical across all the simulations.
ompressing a rock specimen under various confining pressures.
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Therefore, a comparison between numerical simula-

tions and laboratory observations in the literature

shows that the mesoscopic mechanical model is

capable of reproducing the whole range of stress–

strain curves, from brittle to plastic, displayed by rock

subjected to various confining pressures.

Figs. 15 and 16 show the radial strain and the

volumetric strain, respectively, versus the loading

displacement in compressing the rock specimen at

various confining pressures (0, 20, 40 and 80 MPa).

Because the confining pressures are applied on the

rock specimen in the first step and corresponding axial

loading displacements are applied on the loading

plates to achieve the hydrostatic stress state, we do

not have the loading history until the axial stress is

larger than the confining pressure. After the confining

pressures are applied on the rock, the maximum

contractional radial strains are induced in all the cases

(Fig. 15). In the case of uniaxial compression, firstly

the dilatant radial strain gradually increases as the

axial loading displacement increases. Then after the

peak load (Fig. 5B), the dilatant axial strain dramat-

ically increases in the post-failure stage. Under mod-

erate confining pressures (20 and 40 MPa), the

contractional radial strain is induced before the non-

linear deformation stage, but its value becomes

smaller and smaller with increasing axial loading

displacement. In the non-linear deformation stage,

the contractional radial strain gradually becomes the

dilatant radial strain. After the peak stress, an increase

in the dilatant radial strain is observed. However,

under high confining pressure (80 MPa), the contrac-

tional radial strain is always induced during the whole

loading process, although its value becomes smaller

and smaller and finally seems to keep a small constant

value as the loading displacement increases. As far as

the volumetric strain versus the loading displacement

curves is concerned (Fig. 16), one observes first that

an initial contraction is induced at all confining

pressures, including the uniaxial compression case,

and increases with increasing axial loading displace-

ment. Then up to the peak stress, depending on the

confining pressure, one obtains either dilatancy under

uniaxial compression, or contraction at the moderate

and the highest confining pressure. Moreover, the

contractional volumetric strain under the high confin-

ing pressure increases faster than that under the

moderate confining pressure in the post-failure stage.
A similar evolution has been observed in laboratory

tests on porous rocks (Cornet and Fairhurst, 1974) and

coal (Kou, 1995). Therefore, the comparisons be-

tween the induced radial and volumetric strain inside

the specimens during the triaxial compression tests

show a relative dilatancy in the brittle regime, but a

relative contraction, so-called ‘‘shear-enhanced com-

paction’’, in the semi-brittle regime and a high com-

pactancy in the ductile regime (Wong et al., 1997).

It is noted that the compacting shear bands under

high confining pressures are simulated very well by

the R-T2D code. Compacting shear bands could have

important implications in field applications, which

have been a challenging subject in the context of the

theoretical analysis of localisations by bifurcation

theory (Besuelle et al., 2000). For example, local

permeability reduction in a layer or a set of parallel

layers produced as a result of localisation could

produce important changes in the permeability of a

global structure (Besuelle et al., 2000).

4.3. Fracture patterns and fracture plane angles

Fig. 17 shows a comparison of the typical patterns

of shear bands observed in laboratory tests (taken

from Fang and Harrison, 2002b), simulated by the

local degradation model (Fang and Harrison, 2002b)

and simulated by the R-T2D code in this paper,

corresponding to the various confining pressures.

We observe that in all the tests the specimens have

failed with the appearance of one or several shear

bands through the specimen. In Section 3, we have

shown that the coalescence of cracked or weakened

sites leads to the formation of eventual fracture planes

or shear bands within a rock specimen under com-

pression. In uniaxial compression, the collapse of a

rock specimen is manifested by extensile fracture

parallel to the applied stress, and a combination of

axial splitting and inclined failure surfaces is observed

(Fig. 17(iii), A). At moderate confining pressures, the

eventual failure of the specimen is mainly character-

ized by one or more shear fracture planes (Fig. 17(iii),

B and C). At higher confining pressures, the appear-

ance of intense deformation is exhibited by a ductile

region, and the shear fracture plane becomes narrow

compared with that under a low confinement (Fig.

17(iii), D). Compared with the laboratory results (Fig.

17(i)) and the results simulated by other researchers
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(Fig. 17(ii)), the numerical simulation in this paper

captures the essence of the features observed in

laboratory tests and is consistent with the simulation

performed by others though the rock type is different

in the laboratory results.

According to the simulated eventual fracture planes

in Fig. 17(iii) under confining pressures of 0, 20, 40

and 80 MPa, respectively, the orientation of the shear
bands with respect to the loading axis increases with

the confining pressure. A splitting fracture goes

through the specimen in uniaxial compression (Fig.

17(iii), A) and a sharp shear fracture forms at a small

angle to the major principal stress at a confining

pressure of 20 MPa (Fig. 17(iii), B). A noticeable

increase in the angle is seen at a confining pressure of

40 MPa (Fig. 17(iii), C). When the confining pressure



Table 1

Peak strengths under various confining pressures

Confining pressures 0 MPa 20 MPa 40 MPa 80 MPa

Simulated peak strength 103.5 180.2 224.0 310.5

Theoretical peak strength 103.5 163.5 223.5 343.5
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increases to 80 MPa, the angle of the shear plane of the

specimen increases a little further (Fig. 17(iii), D).

Quantitatively, using a protractor to measure the ori-

entations of the fracture planes in Fig. 17(iii) to the

major principal stress, the fracture plane angles are

about 20j, 37j, 45j and 47j, corresponding to con-

fining pressures of 0, 20, 40 and 80 MPa, respectively.

Theoretically, the orientation of the shear band with

respect to the major principal stress can be predicted by

Mohr’s model to be h = 45j�//2, where / is the

internal friction angle of the material (Paterson,

1978). In this paper, the double elliptic strength crite-

rion, which has a non-linear failure envelope, is adop-

ted to check if the rock material will fail. In this kind of

material with a non-linear fracture envelope, in the case

of the Mohr orientation, / should be defined as the

angle of the failure envelope in the stress state cor-

responding to the failure, which is the orientation of the

more critical plane, i.e. the plane of the stress state in

the Mohr circle which first touches the failure envelope

(Besuelle et al., 2000). Table 1 summarizes the simu-

lated peak stresses corresponding to confining pres-

sures of 0, 20, 40 and 80 MPa, which are 103.5, 180.2,

224.0, and 310.5 MPa, respectively. The theoretical

peak stresses of a rock specimen under confining
Fig. 18. Failure envelope in the Mohr diagram: the lines show the inclina

compression tests.
pressures of 0, 20, 40 and 80 MPa can be calculated

according to the Mohr–Coulomb strength criterion

r1 = rc + r3(1 + sin /)/(1� sin /), which are 103.5,

163.5, 223.5, and 343.5 MPa, respectively. Quantita-

tive comparisons between the numerical and theoreti-

cal peak strength indicate that the numerical simulation

also captures some kinds of quantitative aspects of rock

failures in triaxial compression. Fig. 18 shows the

predicted failure envelope in the Mohr diagram. The

curve tangent to the Mohr circle of the triaxial com-

pression test at the different confining pressures has an

almost elliptic shape, and the slope of the failure

envelope at the high confining pressure is expected to

become negative, which shows that it is reasonable to

use the double elliptic strength criterion to assess the

critical stress. In Fig. 18, the straight lines show the

inclination of the curve tangent to the Mohr circles of

the different triaxial compressions tests. This Mohr

prediction of the angle of the shear bands gives angles

of about 25j, 30j, 34j and 40j at confining pressures

of 0, 20, 40 and 80 MPa, respectively.

Fig. 19 schematically shows a comparison between

the orientations of the fracture planes predicted by the

mesoscopic mechanical model, the Mohr model and

Ramez’s experiments (Ramez, 1967). The simulated

results by the mesoscopic mechanical model show the

same trend as the results obtained with the Mohr

model and Ramez’s experiments, i.e. the fracture

angle increases with increasing confining pressure.

Moreover, our simulated results are consistent with

those predicted by Fang and Harrison (2002b).
tion of the curve tangent to the Mohr circles of the different triaxial



Fig. 19. Orientation of the fracture plane with respect to the major principal stress axis versus the confining pressures at failure.
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4.4. Energy dissipation characteristics

The temporal sequences of the failure event rates

(AE) in the rock specimen subjected to confining

pressures of 0, 20 and 80 MPa were previously shown

in Figs. 5, 8 and 11). It can be noted that in general

AE events are not noticeable until the occurrence of

non-linearity in the stress–displacement curve, and

that the rate at which the AE events appear changes

with the development of the fracture. The AE event

rate increases gradually with the extension of the

cracks, and increases rapidly as the cracks link to-

gether. The rate maximises when the final fracture

planes form, which usually occurs in the post-peak

region of the stress–displacement curve instead of at

the peak load. Moreover, as the confining pressure

increases, the position of the maximum failure events

rate moves towards the peak load (Figs. 5E, 8D and

11C). Figs. 6, 9 and 12) show the spatial sequence of

the failure event rates in the rock specimen subjected

to confining pressures of 0, 20 and 80 MPa. It is

observed that at the first stage, the events are distrib-

uted throughout the specimen, reflecting the statisti-

cally uniform deformation during this portion of the

simulation. It is difficult to predict where the macro-

fracture will initiate in this stage. Then failure events

are clustered near the zone that seems to be the

potential nucleation site, or the diffused failed sites
become dense. A subsequent increase in the loading

displacement makes the nucleated sites extend in the

direction of the major principal stress or enhances the

linkage between the failed sites, and a macroscopic

shear fracture band is formed. Finally, most of the

failure events occur in the macroscopic shear fracture

band.

Correspondingly, associated with these failure

events, there are elastic energy releases (ENR).

Fig. 20 presents the simulated elastic energy releases

and accumulated elastic energy releases during the

fracture process of the rock specimen subjected to

confining pressures of 0, 20, 40 and 80 MPa. It is

observed that, although there are scattered failure

events in the linear deformation stage because of the

heterogeneity, little energy is released. With an in-

creasing failure event rate in the non-linear deforma-

tion stage, there is an increase in the elastic energy

release. The number of failure events increases rapidly

with the coalescence of cracks in the post-failure stage.

Correspondingly, the elastic energy release attains its

maximum value when the eventual fracture plane

forms. It is again noticed that the maximum rate of

failure events and the maximum elastic energy releases

appear in the post-peak range. A comparison of the

energy dissipations shows that more and more energy

is dissipated in the non-linear deformation stage as the

confining pressure increases. Quantitatively, the ener-



Fig. 20. Simulated elastic energy release (ENR) and accumulated ENR in compressing a rock specimen under various confining pressures.
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gy dissipated in the non-linear deformation stage is

16.4% (Fig. 20(i), AB), 24.7% (Fig. 20(ii), ABC),

25.5% (Fig. 20 (iii), AB) and 36.7% (Fig. 20(iv), AB)

of the total dissipated energy for the rock specimen

subjected to confining pressures of 0, 20, 40 and 80

MPa, respectively. Correspondingly, less and less

energy is dissipated by the post-failure stage with

increasing confining pressure, i.e. 82.7%, 74.8%,

73% and 61.4% of the total dissipated energy in the

cases involving confining pressures of 0, 20, 40 and 80

MPa, respectively.
5. Conclusions

The study of brittle fracture process and associated

seismicity in rock under compression is essential for

an understanding of many processes encountered in

rock engineering and earth sciences. In this paper,

firstly the mesoscopic elemental mechanical model for

elastic damage is developed and coupled into the rock

and tool interaction code (R-T2D) on the basis of the

finite element method. Then the triaxial compression

test of a constructed heterogeneous rock specimen is

numerically investigated using the developed meso-

scopic mechanical model. Finally, the fracture devel-

opment from the mesoscopic scale to the macroscopic

scale, the stress–displacement curve, the radial and

volumetric strain–displacement curve, the fracture

pattern and fracture plane angle, and the energy

dissipation characteristic obtained during the simula-

tion of triaxial tests are discussed.

The examples presented and discussed herein dem-

onstrate the power and versatility of the developed

model. On the basis of the simulated results, it is

found that in triaxial tests, at first the local failures are

randomly initiated at a load level well before the peak

load because of the heterogeneity. As the loading

displacement increases, in the case of uniaxial com-

pression, the local failure development is mainly

manifested by the extension of failed sites in the

direction of the major principal stress, with the final

failure of the rock specimen being induced by a

combination of axial splitting and shearing. Dilatancy

and a post-failure stage with a descending load

bearing capacity (brittleness) are the prominent char-

acteristics and tensile failure is the dominantly mech-

anism. In the case of moderate confining pressure, the
extension of the failed sites is suppressed, but the

individual failure sites become dense and link with

each other to form a shear fracture plane. The strain

hardening range, the peak strength, the residual

strength and the fracture plane angle increase, and

the stress–strain behaviour becomes more ductile

with confining pressure increasing. When the confin-

ing pressure is sufficiently large, some of the elements

fail in ductile cataclastic mode with the stresses

satisfying the ductile failure surface of the double

elliptic strength criterion and some of the failed

elements are re-compacted as the compressive strain

attains the re-compaction compressive strain. Corre-

spondingly, the stress–strain relation becomes plastic

and the specimen fails through the deformation of a

narrow shear zone. The prominent characteristics are

volume condensation and ductile behaviour, with a

constant or increasing load-bearing capacity with

increasing strain. It should be noted that because of

rock heterogeneity, the position of the highest micro-

seismic events locates in the post-failure stage instead

of the maximal stress but that position moves towards

the peak load with confining pressure increasing.

Though there are a large number of microseismic

events before the peak load, few energies are dissi-

pated. As the confining pressure increases, the micro-

seismic events in the non-linear deformation stage

increase dramatically, and the ratio between the ener-

gies dissipated by the non-linear deformation stage

and those dissipated in the whole loading process

increases correspondingly.

Therefore, it is concluded that the developed meso-

scopic elemental mechanical model for elastic damage

is able to reproduce the failure characteristics in

loading rock specimens under triaxial compression,

and the numerical modelling can furthermore obtain

some new clarifications of the rock fracture process.

Moreover, this kind of progressive process numerical

model, which avoids the drawback of most quasi-

static experiments that capture only the final failure

pattern due to unstable crack growth, is more useful to

research fracture process.
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Appendix A. The transformation related to the

double elliptic strength criterion

At Point A in Fig. 2, the stress condition is the

triaxial tensile limiting stress state. In practice, it is

very difficult to attain the triaxial tensile limiting

stress state. Therefore, the uniaxial tensile strength

rt is used here as an approximate tensile threshold, i.e.

r1 ¼ r3 ¼ �rt ðA-1Þ
Thus,

rg ¼ r1 þ r3 ¼ �2rt and sg ¼ r1 � r3 ¼ 0

ðA-2Þ
At Point B in Fig. 2, the stress condition is the

uniaxial compressive limiting stress state, i.e.

r1 ¼ rc and r3 ¼ 0 ðA-3Þ
Thus,

rg ¼ r1 þ r3 ¼ rc and sg ¼ r1 � r3 ¼ rc ðA-4Þ
Substituting Eqs. (A-2) and (A-4) into the brittle

failure surface of the double elliptic strength criterion

in Eq. (7), we can obtain the following group of

equations:

2art � 2brt ¼ c

ffiffiffi
5

p
arc þ brc ¼ c

8<
: ðA-5Þ

Combining the above equations, we can represent the

brittle failure conditions in the double elliptic strength

criterion as follows:

ð2c þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
g þ 4s2g

q
þ ð2c �

ffiffiffi
5

p
Þrg

2cð1þ
ffiffiffi
5

p
Þ

¼ rc
ðA-6Þ

where c = rt/rc is the ratio between the uniaxial tensile

strength and the uniaxial compressive strength.
After the elemental stresses satisfy the brittle

failure surface of the double elliptic strength criterion,

the element will fail. Then the element will have the

residual strength rcr. In Eq. (A-6), substituting the

elemental strength rc with the residual strength rcr,

the following equation is obtained

ð2c þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
g þ 4s2g

q
þ ð2c �

ffiffiffi
5

p
Þrg

2cð1þ
ffiffiffi
5

p
Þ

¼ rcr ðA-7Þ

Noting that rg = r1 + r3 and sg = r1� r3, the major

principal stress r1 can be represented as follows after

the element fails:

r1 ¼
1

2cð4c þ 5þ
ffiffiffi
5

p
Þ

2r3½4c2 þ ð3�
ffiffiffi
5

p
Þc þ 2�

n
þ crcr½�2ð1þ

ffiffiffi
5

p
Þc þ 5þ

ffiffiffi
5

p
�

þ sqrt 16r2
3½�4ð1þ

ffiffiffi
5

p
Þc3 � 4

ffiffiffi
5

p
c2

n
þ ð3�

ffiffiffi
5

p
Þc þ 1� þ 8cr3rcr½�8ð1þ

ffiffiffi
5

p
Þc3

þ 4ð3�
ffiffiffi
5

p
Þc2 þ 2ð9þ

ffiffiffi
5

p
Þc þ ð5þ

ffiffiffi
5

p
Þ�

þ 10ð3þ
ffiffiffi
5

p
Þc2r2

crð4c2 þ 4c þ 1Þ
oo

ðA-8Þ

Therefore, when the brittle failure surface of the

double elliptic strength criterion is met, the maximum

compressive principal strain ec0 at the peak value of

the maximum principal stress is calculated as follows:

ec0 ¼
1

E0

½r1 � mðr2 þ r3Þ�

¼ 1

E0

�mðr2 þ r3Þ þ
1

2cð4c þ 5þ
ffiffiffi
5

p
Þ

(

� 2r3½4c2 þ ð3�
ffiffiffi
5

p
Þc þ 2�

n
þ crcr½�2ð1þ

ffiffiffi
5

p
Þc þ 5þ

ffiffiffi
5

p
�

þ sqrt 16r2
3½�4ð1þ

ffiffiffi
5

p
Þc3 � 4

ffiffiffi
5

p
c2

n
þ ð3�

ffiffiffi
5

p
Þc þ 1� þ 8cr3rcr½�8ð1þ

ffiffiffi
5

p
Þc3

þ 4ð3�
ffiffiffi
5

p
Þc2 þ 2ð9þ

ffiffiffi
5

p
Þc þ ð5þ

ffiffiffi
5

p
Þ�

þ 10ð3þ
ffiffiffi
5

p
Þc2r2

crð4c2 þ 4c þ 1Þ
oo)

ðA-9Þ
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Technology, 04.

Liu, H.Y., Kou, S.Q., Lindqvist, P.-A., 2002. Numerical simulation

of the fracture process in cutting heterogeneous brittle material.

Int. J. Numer. Anal. Methods Geomech. 26, 1253–1278.

Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, A.,

Sidorin, A., 1991. Quasi-static fault growth and shear fracture

energy in granite. Nature 350 (7), 39–42.

Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, A.,

Sidorin, A., 1992. Observations of quasi-static fault growth

from acoustic emissions. In: Evans, B., Wong, T.F. (Eds.), Fault

Mechanics and Transport Properties of Rocks. Academic Press,

San Diego, CA, pp. 3–31.

Lundqvist, R.G., 1981. Hemispherical indentation and the design of

’’button bits’’ for percussive drilling. Proc. 22nd Symp. Rock

Mech.. AIME, Cambridge, pp. 219–222.

Moore, D.E., Lockner, D.A., 1995. The role of microcracking in

shear-fracture propagation in granite. J. Struct. Geol. 17 (1),

95–114.

Paterson, M.S., 1978. Experimental Rock Deformation: The Brittle

Field. Springer, Berlin, p. 254.

Ramez, M.R.H., 1967. Fractures and the strength of a sandstone

under triaxial compression. Int. J. Rock Mech. Min. Sci. 4,

257–268.

Shimada, M., Cho, A., 1990. Two types of brittle fracture of silicate

rocks under confining pressure and their implications in the

earth’s crust. Tectonophysics 175, 221–235.

Tang, C.A., 1997. Numerical simulation of progressive rock fail-

ure and associated seismicity. Int. J. Rock Mech. Min. Sci. 34,

249–262.

Tang, C.A., Liu, H., Lee, P.K.K., Tsui, Y., Tham, L.G., 2000. Nu-

merical studies of the influence of microstructure on rock failure

in uniaxial compression. Part I: effects of heterogeneity. Int. J.

Rock Mech. Min. Sci. 37, 555–569.

Tang, C.A., Tham, L.G., Lee, P.K.K., Yang, T.H., Li, L.C., 2002.

Coupled analysis of flow, stress and damage (FSD) in rock

failure. Int. J. Rock Mech. Min. Sci. 39, 477–489.



H.Y. Liu et al. / Tectonophysics 384 (2004) 149–174174
Tapponnier, P., Brace, W.F., 1976. Development of stress-induced

microcracks in Westerly granite. Int. J. Rock Mech. Min. Sci.

13, 103–112.

Verhoef, P.N.W., Ockeloen, J.J., 1996. The significance of rock

ductility for mechanical rock cutting. Rock Mechanics. Bal-

kema, Rotterdam, pp. 709–716.

Wawersik, W.R., Fairhurst, C., 1970. A study of brittle rock failure

in laboratory compression experiments. Int. J. Rock Mech. Min.

Sci. 7, 561–575.

Weibull, W., 1951. A statistical distribution function of wide appli-

cability. J. Appl. Mech., 293–297.

Weijermars, R., 1997. Principles of Rock Mechanics. Alboran

Science Publishing, Amsterdam, The Netherlands, p. 359.

Whittaker, B.N., Singh, R.N., Sun, G., 1992. Rock Fracture
Mechanics: Principles, Design and Applications. Elsevier,

Amsterdam.

Wong, T.F., David, C., Zhu, W., 1997. The transition from brittle

faulting to cataclastic flow in porous sandstones: mechanical

deformation. J. Geophys. Res. 102, 3009–3025.

Wu, X.Y., Baud, P., Wong, T.F., 2000. Micromechanics of compres-

sive failure and spatial evolution of anisotropic damage in Dar-

ley Dale sandstone. Int. J. Rock Mech. Min. Sci. 37, 143–160.

Zhao, J., 2000. Applicability of Mohr–Coulomb and Hoek–Brown

strength criteria to the dynamic strength of brittle rock. Int. J.

Rock Mech. Min. Sci. 37, 1115–1121.

Zhu, W.C., 2001. Mesoscopic numerical model for the fracture

process of concrete and its application. PhD thesis, Northeastern

University (in Chinese).


	Numerical studies on the failure process and associated microseismicity in rock under triaxial compression
	Introduction
	Mesoscopic elemental mechanical model for elastic damage
	Failure process of a rock specimen under various confining pressures
	Numerical model
	Failure process of a rock specimen under uniaxial compression
	Failure process of a rock specimen at a moderate confining pressure (20 MPa)
	Failure process of a rock specimen at a high confining pressure (80 MPa)

	Discussions
	Fracture development from the mesoscopic scale to the macroscopic scale
	Brittle to semi-brittle and ductile transitions
	Fracture patterns and fracture plane angles
	Energy dissipation characteristics

	Conclusions
	Acknowledgements
	The transformation related to the double elliptic strength criterion
	References


