Уральский геологический журнал, 2004, № 4 (40), с.35-56

УДК 551.332.24

© Д. чл. УАГН В.В.Стефановский

ЛЕДНИКОВЫЕ И ВОДНОЛЕДНИКОВЫЕ ОБРАЗОВАНИЯ В ТЫНЬИНСКОМ МАРГАНЦЕВОРУДНОМ КАРЬЕРЕ (СЕВЕРНЫЙ УРАЛ)

ОАО УГСЭ, Вайнера, 55, Екатеринбург

© Stefanovsky V.V.

GLACIAL AND FLUVIO-GLACIAL DEPOSITS IN TINJA MANGANESE-ORE QUARRY (NORTH URALS)

Автореферат

В статье охарактеризованы опорные разрезы ледниковых, водноледниковых и аллювиальных перигляциального типа образований, приуроченных к зоне перехода складчатого Урала к Западно-Сибирской равнине. Приводятся петрографический состав валунов и крупной гальки, литолого-минеральный спектр и палинологические комплексы из водноледниковых образований. Возраст пород устанавливается по их положению в сводном разрезе, геоморфологической позиции и палинологическим данным. Делается вывод, что ледниковые образования (нижний тилл) были сформированы ледниковыми потоками северо-западного и северо-восточного направлений.

Ключевые слова: Северный Урал, ледниковые, водноледниковые, аллювий перигляциального типа, тилл, матрикс, споры и пыльца, литологоминеральный спектр.

ВВЕДЕНИЕ

Ледниковые образования были изучены в Тыньинском карьере по добыче марганца на Северном Урале (обн.121, рис.1). Он расположен на левом берегу рч. Тынья в 5 км к ЮВ от пос.Первый Северный (12 км к ССВ от п.Полуночное) Ивдельского района Свердловской области. Карьер вытянут в северо-северо-восточном направлении на протяжении 700 м и имеет ширину от 60 до 80 м. Борта карьера обследовались совместно с геологом Ю.А.Кузнецовым в 1995 году. Автором бы-

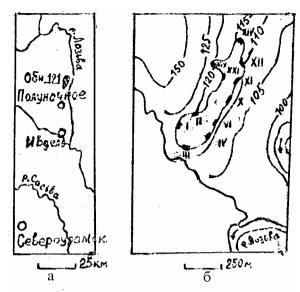


Рис.1. Обзорная схема (a) и план расположения опорных расчисток (б) в Тыньинском марганцеворудном карьере (обн. 121).

ли описаны обнажения юго-западной, южной, восточной и северной стенок карьера. В геоморфологическом отношении карьер занимает нижнюю вогнутую часть коренного склона с абсолютными отметками от 125 м до 110 м. В геологическом плане он приходится на зону регионального тектонического Лозьвинского разлома, в зоне которого проходит граница причленения палеозойских складчатых пород с морскими отложениями палеогена Западно-Сибирской платформы. Глубина карьера не превышает 8-10 м, обнаженность бортов — 3-5 м. Карьером вскрыты ледниковые и водноледниковые образования, образующие сложный фациально-изменчивый комплекс, и аллювий перигляциального типа, формирующий верхнюю криохронную патрушихинскую свиту аллювиального камышловского комплекса.

ОПИСАНИЕ ОПОРНЫХ РАЗРЕЗОВ

В юго-западной части карьера в нижнем уступе описана нижняя часть разреза ледниковых образований на абс. отметке 36

2			Ве рхи	Берхний тилл			Нижний тилп	TRUIT	
2 -	название пород	pasme	размер в см	NDUIK-	10	pasante	жэ я семер	NDUIN-	3
1771		OT	H0	TecTBO	%	OT	OH.	чество	0,
	Габбро мелко- и среднезернистое зеленовато-серое	6x9	20x30	9	14,6	5x7	18x20	9	6,5
		5x8	9x14	1	2,4	8x9	16x19	2	5,4
7	Габбро-диабаз медко-среднезернистый зедтемно-серый	6x9	10x15	4	8,6	5x7	17x22	3	3,2
						8x11	9x14	C	2,2
m	Габбро-диорит	9x13	12x17	2	4,9	6x9	9x13	12	13,1
		10x11	11x16			7x10	16x20	1	1,1
4	Диорит	5x8	11x20	e	7,3	7x10	15x20	9	6,5
			N. S. C.			4x6		1	1,1
2	Порфирит андезитовый	6x9	15x35	4	8,6	ex8	15x26	7	7,6
	Порфирит базальтовый			2	4,9	6x11	25x28	9	6,5
9	Туфопесчаник мелко-среднезернистый зеленовато-серый	9x11	15x20	7	13	530	12x21	8	19,6
						5x8	10x16	∞	8,7
7	Туфовлевропит					7x10		1	1,1
00	Диабаз					ex8	12x16	9	6,5
6	Кварцито-песчаники разнозернистые и мелкозернистые	5xx6	7x8	7	4,9	4x6	7x9	4	4,3
10	Кременъ	5x7	8x11	4	9,8		6x10	1	1,1
11	Кварц желтый, зернистый	302		-	2,4	5x7	7x9	7	2,2
12	Пироксенит	7x14		-	2,4				
13	Риодацит	3x7	9x11	4	8,6	8x12		-	1,1
14	Риолит				100 Care Care Care Care Care Care Care Care	4x6		-	1,1
15	Известияк					5x8		1	1,1
	Bcero:	3	33	41	100			92	100
	Уплоце ниме			4	9,8			11	12
Втом	Удлиненные (типа многогранников)			7	17			15	16,3
числе	Сферические	000		8	73,2			99	71,7
	Выветрелые в разной степени		0	1	2,4			17	18,5

Составил Стефановский В.В.

~120 м (рис.2, расч.ІІ). На опоковидных глинах ивдельской свиты с неровным инъекционным контактом залегают базальные фации ледниковых образований (нижний тилл), представленные рыжевато-бурыми ожелезненными плотными тяжелыми суглинками и глинами, переполненными гравием, галькой и валунами палеозойских пород. По составу матрикса тилл неравномерный: от плотных песчаных глин и тяжелых суглинков до плотных супесей и гнезд глинистых разнозернистых полимиктовых песков. Тилл деформированный (давленный), на что указывают глянцевые уплотненные корочки по периферии гравия, гальки и валунов. Расположение последних и крупной гальки хаотичное. Окатанность валунов и крупной гальки довольно хорошая (2-3 балла), отмечаются прекрасно окатанные (до 5 баллов) и угловатые (1-2 балла). Форма валунов различна: преобладают сферические, удлиненные и плоско-удлиненные (ледогранники), редко утюгообразные. По петрографическому составу крупная галька и валуны представлены: габбро, габбродиориты, порфириты, туффиты, туфопесчаники, кварц белый и желтый, кремни, известняки (табл.1). В нижней базальной части тилла (0.3-0.5 м) наблюдаются мелкие отторженцы подстилающих пород (ксенокласты), инъекционные мелкие клинья, трещины различных направлений, на контакте сильное ожелезнение и омарганцевание до гнезд, линз и прожилок полосчатых железисто-марганцовистых эпигенетических образований. Тилл подстилается полосчатыми бурожелезняково-марганцовистыми эпигенетическими рудами, буро-красновато-черного цвета, с железисто-марганцовистыми стяжениями в черном песчаноглинистом омарганцованном цементе (0.3-0.4 м). Ниже залегают темно-серые, жирные, опоковидного облика глины с конкрециями сидерита (до 8х10 см). Тилл залегает в котлообразных гляциодиапировых понижениях глин ивдельской свиты. По генезису нижний тилл, судя по инъекционному и гляциодиапировому контакту с подстилающими породами, присутствию ксенокластов, деформированности пород и наличию разнонаправленных трещин, может относиться к массивной субфации тиллов протаивания (базальные ортотиллы). Эти ледниковые образования прослежены в западном и восточном (до расч.ХІ) бортах карьера в основании вскрытых обнажений и везде им присущи темно-серые, темно-синевато- и зеленовато-серый цвет, 38

плотная хаотичная упаковка кластического материала, наличие выветрелых валунов палеозойских пород, трещин различных направлений и ксенокластов подстилающих опоковидных глин. Вскрытая мощность до 4 м. В северной части карьера (расч.ХХІ) в средней части темно-серого тилла с субгоризонтальной тонкоплитчатой текстурой была встречена по плоскости развальцованная тонкая прерывистая линза (до 5 мм) растительного детрита, из которой после промывки большого объема породы удалось определить ископаемые остатки карпологической флоры (табл.2).

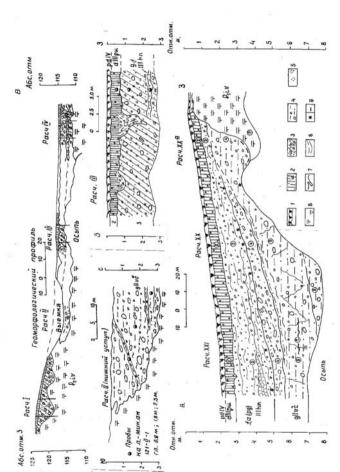
Таблица 2 Карпологические остатки из ледниковых образований Тыньинского карьера (обн. 121, расч. XXI). Определения С.С.Трофимовой

		Количество
Список видов	Остатков	прочих растительных
	семян	остатков
Bryales gen.		веточки
Pinus sibiricus	6	
Picea obovata	35	3 крыла, хвоя, часть веточ- ки
Pinaceae	9	2 фоссилизированные чешуи шишек
Larix sp.	1	
Betula sect. Albae	130	2 прицветные чешуи
B.nana	50	
Rubus sp.	4	
Empetrum nigrum	68	
Stellaria palustris	4	
Comarum palustre	110	
Vaccinaceae	1	1 фрагмент листа
Menyanthes trifoliata	1	
Ranunculus sceleratus	3	
Ranunculus sp.	4	
Thalictrum sp.	5	
Urtica dioica	1	
Potentilla sp.	4	
Viola sp.	13	
Cyperaceae	1	
Carex sp. 1	45	
Carex sp. 2	16	
Carex spp.	1000	
Potamogeton sp.	3	
Hippurus vulgaris	3	
Неопределимые	29 (из них 5	
	обугленных)	

По наличию значительного количества арктических и арктобореальных видов можно воссоздать палеогеографическую обстановку заболоченной лесотундры, которая, возможно, соответствовала одной из холодных фаз межледниковья или криогидротической стадии начала похолодания. В процессе движения ледникового потока прослои торфа были ассимилированы и развальцованы до тонких прослойков, участвующих в строении тиллов. Формирование нижнего тилла вероятно произошло в одно из оледенений среднего неоплейстоцена.

В юго-западной части карьера на абс.отметке 124 м (верхняя часть склоновой поверхности), на протяжении 40-45 м с севера на юг в гляциодиапировых котлах на опоковидных глинах ирбитской свиты наблюдались ледниковые образования несколько другого облика (рис.2, расч.I):

0.0-0.2 M


1. Почва.

0,2-0,6 м

2. Делювиосолифлюксий. Супесь светло-бурая и бурая, макропористая, с многочисленной галькой, гравием, щебнем и редкими валунчиками палеозойских пород. Нижняя граница постепенная.

0.6-4.2 м

3. Тилл супесчаный, бурый, рыхлого и среднеплотного сложения, с многочисленными валунами, галькой, гравием и щебнем палеозойских пород. Расположение валунов и валунной гальки хаотичное, окатанность от 2 до 5 баллов; состав: порфириты, туфы, габбро, диориты, долериты, кварциты, риодациты, кварц желтый, кремни. В нижней приплотиковой части (0,1-0,2 м) наблюдается тонкое рассланцевание до тонкоплитчатой текстуры: прослойки (1-2 мм) подстилающих морских глин ивдельской свиты, песчаного и алевритового состава с хаотично расположенной галькой и гравием и сильно омарганцованные до черно-бурого цвета. Нижний контакт четкий, резкий, участками постепенный. Последний связан с тонким рассланцеванием подстилающих морских опоковидных глин и сильным их омарганцеванием.

водноледниковых образований в северо-западной, юго-западной и южной стен-- суглинок бурый с гравием и щебнем; 3 Условные обозначения:

гнезда разнозернистого песка; 6 - глины опоковидные;

- элементы слоистости; 9 - ожелезнение и омарганцевание.

4,2-6,0 м 4. Ивдельская свита палеоцена. Глины темносерые, опоковидные, с прослойками (1-2 мм) глауконито-кварцевого алеврита, с конкрециями сидерита.

По данным литолого-минерального анализа наблюдается отличие минерального спектра приплотиковой части тилла (тилл базальной стагнации - плитчатая субфация) от верхней части тилла (абляционный генетический подтип – субаквальная фация). В базальном тилле заметно значительное влияние в минеральном спектре подстилающих пород: в пелитовой фракции глинистые минералы представлены смесью каолинита, гидрослюды и монтмориллонита, присутствуют в незначительном количестве панцири губок и диатомовых; в легкой фракции доминирует кварц (34%), в тяжелой фракции преобладают устойчивые к химическому выветриванию минералы – ильменит, лейкоксен, циркон, сфен, а также аутигенный лимонит, вероятно образованный за счет марказита и сидерита. Палеогеографический коэффициент – 3.0, что характерно для отложений кремнистой субформации верхнего палеоцена - нижнего-среднего эоцена [Цаур, Якушев, 1991] и что подтверждает литологическую связь базальной фации с подстилающими породами. В верхней абляционной субаквальной фации в пелитовой фракции доминируют гидрослюды и слюды, в легкой алевритовой фракции преобладают калиевые полевые шпаты и обломки измененных тонко-мелкозернистых и кремнистых пород; в тяжелой фракции господствуют неустойчивые к химическому выветриванию минералы группы эпидота, роговой обманки, пироксенов моноклинного и ромбического, а также магнетита. Палеогеографический коэффициент – 0.02, что характерно для ледниковых и перигляциальных четвертичных образований. Верхняя часть разреза расчистки I (слой 2) вероятно является делювированной и частично преобразованной субаэральными процессами частью абляционного тилла, т.к. она имеет с последним постепенную границу и близкий литолого-минеральный состав фракций.

В южной стенке карьера на абс.отметках 120-122 м был описан довольно выдержанный разрез верхнего тилла (рис.2, расч.III):

псевдоморфозы по ледяным жилам; 8

лунчиками; 4 - тилл суглинистый

0.0 - 0.2 M

1. Почва.

0.2-0.6 м

2. Делювиосолифлюксий. Супесь светло-бурая, макропористая, слабо известковистая, с редким гравием и галькой полимиктового состава. Нижняя граница неровная, участками постепенная, участками с отдельными криогенными клиньями и котловинами. Размер клина: ширина ~ 60 см, глубина ~1.4-1.6 м.

0.6-до 3.0 м

3. Тилл супесчаный, буровато-серый, песчаногравийно-галечный, рыхлого сложения, с многочисленными валунами палеозойских пород; расположение последних хаотичное, окатанность неравномерная: от отличной (5 баллов) до крупного щебня со сглаженными гранями; состав: габбро, порфириты, туфопорфириты, туфопесчаники, кремни (много), кварц (мало). Размеры валунов: 20x15 см – 10%, 10x10 см – 20%, 5x5 – 25%, 2x3 см – 45%. В средней части наблюдается линзовидный прослой разнозернистого песка с гравием и редкой галькой (10-15 см). Тилл буровато-грязно-серого цвета, на фоне валунного галечника выделяются гнезда гравийного песка, участками скопления валунов. Ниже – осыпь.

По геоморфологической позиции, внешнему облику и простиранию эти ледниковые образования соответствуют «верхнему» тиллу расчистки І. По хаотичному расположению валунов и рыхлому сложению они также соответствуют супрагляциальным образованиям абляционной фации.

Петрографический состав валунов из «нижнего» и «верхнего» тиллов довольно близок между собою (табл.1). Все они представлены уральскими палеозойскими породами местного распространения и из центральной части Урала. Состав валунов из нижнего тилла более разнообразен и в нем отмечены туфоалевриты, риолиты и мраморизованные известняки, которые в верхнем тилле не встречены, а также для нижнего тилла характерно присутствие значительного количества выветрелых валунов — 18.5%. В верхнем тилле отмечается несколько повышенное содержание кремней — 9.8%, в нижнем тилле — 1.1%.

Литолого-минеральный состав пелитовой фракции ниж-

него и верхнего тиллов также близок между собой, но и имеет некоторые отличия (табл.3). В частности, глинистые минералы в нижнем тилле представлены только гидрослюдой, в верхнем – гидрослюдой и смесью гидрослюды с каолинитом; в легкой фракции зерен кварца значительно больше в верхнем тилле – 14-23% (в нижнем — 4-9%), обломков кремнистых и тонкомелкозернистых пород несколько больше в нижнем тилле — 27-44% (в верхнем — 13-21%); в тяжелой фракции в нижнем тилле значительно превалируют устойчивые к химическому выветриванию минералы ильменит и лейкоксен — до 25% (в верхнем — до 6%), но в верхнем тилле преобладают такие неустойчивые минералы, как пироксены — до 16% (в нижнем до 1%), обыкновенная роговая обманка — 25-35% (15-17%). Палеогеографический коэффициент выше у нижнего тилла — 0.23-0.45, у верхнего — 0.01-0.06.

Таким образом, в расчистках I — III Тыньинского карьера вскрыты ледниковые образования: нижний и верхний тиллы. Они отличаются по геоморфологической позиции, внешнему виду, по составу крупного кластического материала, его выветрелости и литолого-минеральному спектру — все это позволяет предположить разновозрастность тиллов и различные фациальные особенности их формирования. Нижний тилл — базальная фация (ортотиллы), верхний — абляционная субаквальная фация (аллотиллы) [по Каплянской, Тарноградскому, 1993].

В средней и северной части карьера вскрываются водноледниковые и аллювиальные образования перигляциального типа, формирующие II надпойменную камышловскую террасу с относительной высотой поверхности ~ 13-15 м, слабо наклоненной к востоку к долине р.Лозьва и осложненной термокарстовыми просадками. Верхнюю часть разреза камышловского комплекса слагают водноледниковые образования, которые фациально замещаются к северо-востоку аллювием перигляциального типа. Они прослежены по восточному борту карьера в расч.IV-XIII. Водноледниковые образования, включающие комплексы спор и пыльцы, были описаны в восточном борту карьера и имеют следующее строение (расч.VI, рис.3).

Таблица 3 Литолого-минеральный состав Тыньинского карьера ледниковых и водноледниковых образований

Фракции		Них	кний т	пли	Водноледниковые образования				
	Ħ	Минералы		Глины	[Глины	[Песчано-
÷	d o	·	ОТ	до	cp.	ОТ	до	cp.	гравийно- галечные образова- ния
	EB	Гравийный > 1 мм	сл.	14.3	4.6	сл.	20,5	11.1	65.9
	CIZ	Песчаный 1-0,1 мм	1.3	22.9	7.8	5.1	7.2	6.4	21.7
Грансостав		Алевритовый 0.1-0.01 мм	13.7	34.3	20.5	10.9	17.8	14.0	2.7
Ĺ	1 ран	Пелитовый < 0.01 мм	51.8	82.7	67.1	61,4	81.6	68.5	9.7
		Гидрослюда	81	98	92.4	63	93	80.0	-
١.,	x	Гидрослюда и каолинит	-	-	-	-	-	-	60
1	пелитовая	Кварц и полевой шпат	ед.	3	0.8	ед	1	0.7	5
	MI	Слюда и хлорит	1	10	3.8	3	15	9.5	15
1 3	<u> </u>	Гидроокислы Fe	-	2	0,4	-	-	-	10
		Растительные остатки	ед.	1	0.6	1	15	6,3	-
		Обломки спикул губок	-	1	0.2.	ед.	1	07	-
		Кварц	4	48	22.6	10	24	18.3	12
		Калиевый пол.шп. и альбит	19	49	31.6	14	40	27.3	16
	88	Плагиоклаз	ед.	1	0.4	4	1	1.0	1
	Ö Ö	Слюда и хлорит	2	4	3,0	1	2	2.0	9
	TMC.	Обломки крупно- и м/з пород	21	44	32.0	3	46	25.0	37
	Алевритовая	Растительные остатки	-	2	0.6	-	19	11.0	-
-	Ą	Обломки спикул губок	-	ед.	ед.	-	ед.	ед.	-
		Гидроокислы Fe	-	-	-	-	-	-	-
		Глауконит	-	-	-	-	-	-	-
388		Ильменит	4	24.0	17.0	2	10	5.7	-
	HZI.	Лейкоксен	-	10	5.4	ед.	2	0.7	ед.
ая 1я Устойчивая	ой	Циркон, сфен и др.	-	2	1.4	ед.	ед.	ед.	ед.
	y	Гранаты	ед.	2	0.6	-	ед.	ед.	ед.
		Группа эпидота	16	50	37,8	11	42	21.5	22
еле	1Ba	Роговые обманки	6	17	12.8	6	37	25.3	22
Тяжелая Неустойчивая	Пироксены	ед.	40	11.8	15	63	33.0	17	
	CTO	Актинолит	ед.	1	0.4	-	ед.	ед.	2
	ey	Магнетит	3	21	9.4	ед.	18	70	37
		Апатит	ед.	3	1.0	-	ед.	-	-
	Ayr.	Лимонит	ед.	5	1.2	ед.	ед.	ед.	-
Пал	еогео	ографический коэффициент	0.10	0.49	0.34	0.02	0.14	0,07	< 0.01

Продолжение таблицы 3

4		Myyonoyy		Верхний тилл							
Фракции						Песчано-гравийно-					
Эак		Минералы		Глины			галечнь	ie			
₽						0	бразова	ния			
			OT	до	cp.	OT	до	cp.			
Грансостав	_	Гравийный> 1 мм	0.6	8.9	3.6	7.4	51.4	35.3			
8		Песчаный 1-0,1 мм	3.9	18.7	10.7	15.6	65.6	3I.5			
анс		Алевритовый 0.1-0.01 мм	9.1	18.1	12.6	4.1	6.6	6.5			
Гр]	Пелитовый< 0.01 мм	62.6	82,2	73.3	18.0	28.2	22.8			
		Гидрослюда	87	94	90.5	84	17	86.0			
Б,]	Гидрослюда и каолинит	85	86	85.5						
DBa		Кварц и полевой шпат	1	5	2.5	ед.	3	1.0			
Ĭ	-	Слюда и хлорит	3	5	4.0	5.	15	7.5			
Пелитовая]	Гидроокислы Fe	-	1	0.3	-	5	2,0			
]	Растительные остатки	ед.	1	0.7	-	1	0.2			
	(Обломки спикул губок	-	ед.	ед.	ед.	ед.	ед.			
]	Кварц	14	43	18.0	ед.	20	8			
]	Калиевый пол.шп. и альбит	10	47	28.5	12	42	25.2			
ая]	Плагиоклаз	ед.	4	1.5	ед.	4	1.3			
Алевритовая	(Слюда и хлорит	ед.	4	2.0	6	23	12.0			
рис	(Обломки крупно- и м/з пород	15	51	30.0	5	55	23.0			
1eB]	Растительные остатки	-	ı	-	-	-	-			
Æ		Обломки спикул губок	-	ед.	-	-	ед	-			
]	Гидроокислы Fe	-	-	-	-	-	-			
Глауконит		Глауконит	-	ед.	-	-	-	-			
	вая	Ильменит	1	15	7.5	ед.	2	1			
11.	ЧИ	Лейкоксен	-	2	0.6	-	1	0.5			
1 1 '	ľOŽ	Циркон, сфен и др.	-	ед.	ед.	-	ед.	ед.			
Тяжелая Неустойчивая Устойчивая	Уc	Гранаты	-	ед.	ед.	-	ед.	-			
	К	Группа эпидота	12	44	55.2	40	20	16			
	ИВЗ	Роговые обманки	17	55	26.0	1	35	15.2			
	йч	Пироксены	5	49	19.2	16	60	35.3			
	CTC	Актинолит	-	2	0.5	-	ед.	ед.			
	ey	Магнетит	5	12	8.2	21	38	29.3			
		Апатит	-	ед.	ед.	-	ед.	ед.			
	Ayr.	Лимонит	1	4	2.5	2	6	4.3			
		еографический коэффициент	0.01	0.19	0,10	0.01	0.02	0.015			

0,0-0,2 м 1. Почва.

0,2-0,6 м 2. Делювиосолифлюксий. Суглинок бурый, макропористый, слабо известковый, с редкой галь-

кой и гравием палеозойских пород. 0,6-3,0 м 3. Водноледниковые. Галечник валунный с пес-

3. Водноледниковые. Галечник валунный с песчано-гравийным заполнителем, рыхлого сложе-

45

ния, с хаотичным расположением валунов окатанностью 2-4 балла, с тонкими прослойками - линзами разнозернистых буровато-серых песков, создающих впечатление о горизонтальной слоистости всего слоя. Нижняя граница волнистая, резкая, подчеркнутая сильным ожелезнением до железисто-марганцовистой корочки.

3,0-3,6 м

4. Прослой глины гидрослюдистой, зеленоватосерой, песчано-алевритистой, тугопластичной, с редким гравием, участками с гнездами ожелезненного разнозернистого песка с тонкими (1-2 мм) горизонтальными линзочками тонкозернистого ожелезненного алеврита.

3,6-6,0 м

- 5. Сложнопостроенная толща:
- 3.6-3.8 м. а) линза грубого щебнистого гравия с галькой в разнозернистом полимиктовом глинистом песчаном заполнителе;
- 3.8-5.6 м. б) в верхней части суглинки темносерые с валунной галькой хаотичного расположения, участками сильное ожелезнение; в нижней части косослоистые гравийные пески буровато-серые, рыхлого сложения, с преобладанием галек кварца и кремня;
- 5.6-6.0 м. в) линза деформированных серых гидрослюдных глин, песчано-алевритистых, среднеплотных, с редким гравием и галькой полимиктового состава, участками темно-серых, с редкими растительными остатками;

6,0-7,8 M

6. Ледниковые образования. В верхней части (6.0-6,3 м) тилл супесчаный, зеленовато-серый, гравийно-галечный, с выветрелыми валунами палеозойских пород, с гнездами ожелезнения и омарганцевания; с 6,3 м тилл суглинистый, темно-серый, песчано-гравийный, плотного и среднеплотного сложения, с редкими выветрелыми валунами палеозойских пород, с галькой кварца, кремня и известняка, хорошей окатанности (3-4 балла), гнездами ожелезненный.

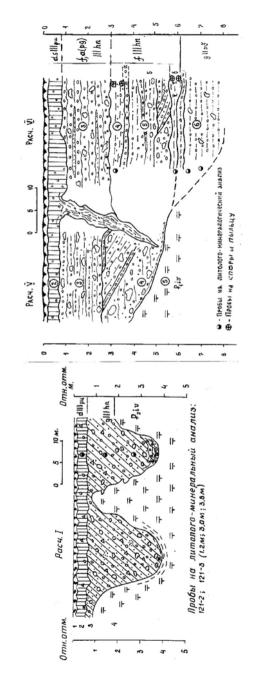


Рис.3. Строение ледниковых и водноледниковых образований в восточном борту Тыньинского карьера (обн. № 121, расч. І, V-VI)

В приведенном разрезе в нижней части водноледниковых образований появляются косослоистые пески, типа аллювиальных, которые с размывом залегают на нижнем тиле.

Литолого-минеральный спектр глинистой составляющей из водноледниковой пачки (слой 4, гл. 3.2 м, слой 5, гл.6.0 м) и нижнего тилла (слой 6, гл 6.5 м, 7.0 м) имеет много общего (табл.3): пелитовая фракция представлена гидрослюдой (63-94%), много слюды (до 15%), но растительные остатки преобладают в водноледниковых слоях, как в пелитовой, так и в легкой алевритовой фракциях (до 19%) и малочисленны в пелитовой фракции зерна кварца, полевого шпата, обломки опала и спикул губок (до 1%). В легкой фракции зерен кварца больше в глинистом матриксе нижнего тилла (43-78%), чем в водноледниковой пачке (10-24%) и в нижнем тилле в тяжелой фракции выше содержание устойчивых к химическому выветриванию минералов - ильменита, лейкоксена, циркона, сфена (7-34%), в водноледниковой (до 5%). Палеогеографический коэффициент выше в нижнем тилле (0.1-0.5), в водноледниковой (0,02-0,05).

Споры и пыльца определены из проб глин (табл.4).

Пыльца очень плохой сохранности, сильно деформированная, структура экзины практически отсутствует. По видовому составу преобладает пыльца травянистых ксерофитов – полынь (Artemisia sp. – 36-56%), маревые (Chenopodiaceae – до 21%) и мезофитов – гвоздичные (Caryophyllaceae – до 26%), с подчиненным развитием древесных пород, преимущественно березы, осины, сосны и ели. Из холодолюбивых растений следует отметить споры гроздовника (Botrychium lunaria), пыльцу полярного кустарника (Alnaster) и карликовой березки (Betula nana L). Ландшафты в период формирования водноледниковых образований были близки к тундростепям с колками древостоя и, вероятно, соответствовали времени ханмейского оледенения.

Подобные водноледниковые образования были изучены автором в Богословском угольном карьере, где они слагают верхнюю часть разреза камышловского аллювиального комплекса и залегают на межледниковой стрелецкой свите с карпологическими флорами казанцевского (стрелецкого) возраста [Стефановский, 2004].

Таблица 4

Содержание спор и пыльцы в расч. VI (обн. N121). Определения Л.А.Пьянковой (в зернах)

		Обн. 1	21-VI				
Споры и пыльца	Сло	й 4		юй 5			
	гл. 3.2 м	гл. 3.5 м	гл. 5.8 м	гл. 6.0 м			
1	2	3	4	5			
Споры:							
Sphagnum sp.	3	5	6	7			
Diphazium tristachyum (Pur.) Rot.	-	-	1	-			
Polypodiaceae	4	5	26	28			
Botrychium lunaria (Z.) Sw.	-	-	20	25			
Всего спор:	7	10	53	60			
Древесные:							
Abies sp.	-	-	1	-			
Picea sect. Eupicea	2	3	2	2			
Pinus sylvestris L.	-	2	2	5			
Pinus sp.	1	1	3	ı			
Betula sect. Albae	-	1	3	16			
B. sect. Nanae	-	-	1	ı			
B. sp.	3	6	24	12			
Alnus sp.	-	1	1	ı			
Alnaster sp.	-	-	1	ı			
Rhamnaceae	-	1	1	ı			
Salix sp.	8	3	1	6			
Всего древесных:	14	18	37	41			
Травянистые:							
Typha sp.	-	-	1	2			
Gramineae	5	-	2	1			
Cyperaceae	-	4	1	2			
Polygonaceae	1	-	1	5			
Polygonum bistorta L.	1	-	1	4			
Chenopodiaceae	3	38	2	6			
Caryophyllaceae	57	2	2	6			
Cruciferae	-	-	-	1			
Sanguisorba officinalis L.	2	-	-	ı			
Ericaceae	1	-	-	ı			
Plantaginaceae	-	-	-	1			

Продолжение таблицы 4

1		2	\(\frac{1}{2}\)	3		4	5	
Artemisia sp.		98	10	00		68	8	3
Compositae		2	(6		5	2	0
Tricolporopollenites sp.		2		1		-		
Всего травянистые:	196		1.	51		80	13	31
Переотложенные:			· ·					
Gleicheniidides sp.		1		-		4	-	
Striatopinites sp.		-	1	1		2	5	
Ulmus sp.		-	,	1	-		-	
Tilia sp.		-	-		-		1	
Всего переотложенных:		1	2		6		6	
Общий состав	217	100%	179	100%	170	100%	232	100
пыльцы и спор:								%
Споры	7	3.2	10	5.9	53	31.2	60	26.0
Древесные	14	6.4	18	10.1	37	21.8	41	17.6
Травянистые	196	90.4	151	84.0	80	47.0	131	56.4

Опорный разрез аллювия перигляциального типа имеет следующее строение (расч. XII):

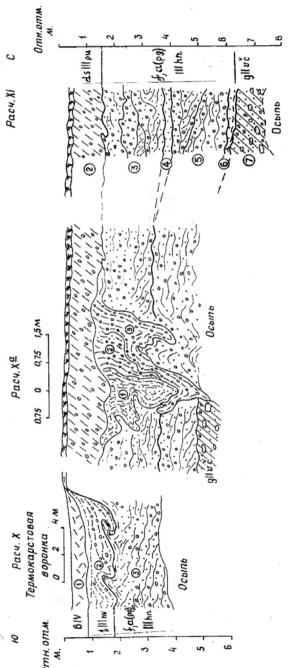
0.0 - 0.2 M

Почва.

0.2-0.8 м

2. Делювиосолифлюксий. Суглинок бурый, макропористый, со столбчатой отдельностью, с редкой галькой и гравием. В южной части расчистки под суглинками наблюдается криогенный котел, размеры которого по ширине ~ 3.0 м, по глубине ~ 2.2 м. Нижняя часть котла выполнена зеленовато-серыми песчаными плотными глинами с гравием и галькой (0.6-0.8 м), верхняя часть — бурыми суглинками с неровным контактом опускающимся клиновидно в котел.

0.8-4.2 M


3. Аллювий перигляциального типа. Галечник гравийный с песчаным заполнителем, буровато-серый, рыхлого сложения, участками пылеватый и слабо глинистый, с прослойками слабо волнистых серых разнозернистых полимиктовых пылеватых песков. Нижняя граница четкая, резкая, подчеркнутая ожелезнением и омарганцеванием.

4.2 - до 5.3 м

4. Пески серые и светло-серые, полимиктовые, с преобладанием зерен кварца, хорошо промытые и окатанные, рыхлого сложения, с четко выраженной косой слоистостью, с линзами гравийных галечников, нередко омарганцеванных. Галька преимущественно кварца, кремня, опоки и палеозойских пород. Окатанность 3-5 баллов.

В приведенном разрезе гравийные галечники с прослоями разнозернистых песков (слой 3) по генезису могут быть как водноледниковыми (ледниково-речными), так и аллювиальными перигляциального типа; пески светло-серые с косой слоистостью (слой 4) - русловой фацией аллювия или фацией протока перигляциального аллювия [Холмова, Лаврушин, 2002]. Автор склонен относить нижнюю и верхнюю пачки песков к смешанному генезису с большим влиянием перигляциальных фаций. В расчистках XIII и XIV, расположенных в северной части восточного борта карьера на абсолютных отметках 110-112 м, наблюдались идентичные разрезы, что и в расчистке XII, но с еще более заметным сокращением гравийно-галечного материала по всему разрезу и увеличением песчаных фракций. В этих разрезах к подошве суглинков приурочены криогенные клинья (псевдоморфозы по ледяным жилам), расположенные на расстоянии 40-50 м друг от друга и образующие сложную полигональную систему. Клинья узкие (ширина в кровле 0,7-1,2 м, редко до 2,7 м), с глубиной внедрения 3-5 м, с неровными инъекционными контактами с вмещающими породами и выполненные зеленовато-серыми плотными алеврито-песчаными глинами с гравием и галькой в ядре и кровле.

Участками в бортах карьера наблюдались выступы диапирового типа из опоковидных глин палеоцена, перемятых, с причудливыми инъекционными криогенными контактами как с нижним тиллом, так и с водноледниковыми образованиями и с аллювием перигляциального типа. Эти криогенные деформации произошли в аридную криогенную фазу завершения ханмейского (ермаковского) оледенения, так как клинья в отдельных расчистках (расч. X-а) перекрыты без следов криогенеза покровным делювиосолифлюксием полярноуральского (сартанского) возраста (рис.4). Термокарстовые просадки на поверхности ка-

Примечание к рис. 4.

Расчистка X - инъекционного типа контакт образований термокарстовой воронки с подстилающими водноледниковыми образованиями: 1 - торф; 2 - супесь серая, участками сильно глинистая, плотного сложения, с галькой и гравием кварца, кремня и растительными остатками (до валунной гальки из заторфованных иловатых глин), сильно перемятых, участками «мусорного» облика; 3 - песок разнозернистый, серый, полимиктовый, гравийный, волнисто- и наклоннослоистый.

Расчистка X^a - сложный криогенный клин многофазового проявления: I - суглинок бурый, плотный, с гравием и галькой кварца, кремня и палеозойских пород; 2 - глины алевро-песчаные, буроватосерые, с галькой и гравием; 3 - глины зеленовато-серые, алевропесчаные, плотные, с галькой и гравием.

Рис.4. Характер проявления криогенных деформаций в восточной стенке Тыньинского карьера (обн. №121, расч. X, X^a, XI).

мышловской террасы имеют овальную форму в плане и начало их заложения связано, вероятно, с невьянским (каргинским) межледниковьем, а также с ранним голоценом. Они выполнены иловатыми глинами, супесями и торфом. Нижний криогенный контакт синхронен криоксеротической стадии полярноуральского (сартанского) похолодания (рис.4, расч.X).

ЗАКЛЮЧЕНИЕ

Таким образом, в Тыньинском карьере описаны различные по литологическому строению и генезису толщи: «нижний» тилл (ортотилл), верхний тилл (абляционная фация), водноледниковые образования и близкий к последним аллювий перигляциального типа, приуроченный к правому борту долины р.Лозьва и залегающий на неровном ложе из опоковидных темно-серых глин ивдельской свиты палеоцена. Нижний тилл (волчанская свита) перекрыт аллювиальным камышловским комплексом первой половины позднего неоплейстоцена. Он сложен плотными суглинками и глинами с хаотично заключенными в них валунами, галькой и гравием уральских палеозойских пород, часто выветрелых до дресвянистого состояния. Мощность до 4 м. В нижней части тилла наблюдаются ксенокласты и развальцованные прослойки и линзы подстилающих опоковидных 54

глин, а также слабо выраженная отдельность. По литологоминеральному спектру матрикса нижний тилл характеризуется преобладанием устойчивых к химическому выветриванию минералов в тяжелой фракции: ильменита (до 24%), лейкоксена (до 10%), циркона, сфена, рутила (до 2%). Палеогеографический коэффициент варьирует от 0.1 до 0.49. Образования нижнего тилла включают растительные остатки в развальцованных линзах, захваченных и ассимилированных ледником в процессе тиллообразования. Для определения возраста ледниковых образований могут быть использованы только косвенные данные: по значительному количеству выветрелых валунов нижний тилл довольно древний, возможно вильгортовский (самаровский); по положению в разрезе он перекрыт аллювиальными и водноледниковыми образованиями камышловского комплекса первой половины позднего неоплейстоцена и отсюда верхний возрастной предел – леплинское (тазовское) время среднего неоплейстоцена; ассимилированные ледником карпологические остатки могут отвечать как сылвицкому (тобольскому), так и ницинскому (ширтинскому) межледниковью и позволяют датировать тилл среднеуральским (бахтинским) временем. По палеогеографическим представлениям последнее время является более предпочтительным, так как снимает многие дискуссионные вопросы как о центрах средненеоплейстоценовых оледенений, так и о роли стадийности фаз и границ их распространения. Тилл был сформирован ледниковыми потоками северо-восточного и северо-западного направлений, двигающихся вдоль тектонического уступа складчатого Урала с Западно-Сибирской плитой и включающих кластический материал как скальных уральских пород (преобладают), так и морских толщ кайнозоя – опоки, песчаники (единично), кремни (много).

Верхний тилл (абляционная фация) имеет локальное распространение и приурочен к пологому коренному склону. Он залегает как в гляциопонижениях на опоковидных глинах палеоцена, так и фрагментами перекрывает нижний тилл. По налеганию на нижний тилл он относился к леплинской стадии среднего неоплейстоцена. Но более вероятно, что он образует одну из составляющих единого парагенетического ряда (ледниковые-водноледниковые – аллювий перигляциального типа), в котором они последовательно замещают друг друга в сторону

долины р.Лозьва и имеют близкий литолого-минеральный спектр с преобладанием неустойчивых к химическому выветриванию минералов. В этом случае возраст верхнего тилла и сопряженных с ним образований по спорово-пыльцевым комплексам тундростепного типа и по положению в сводном разрезе можно датировать ханмейским (ермаковским) горизонтом верхнего неоплейстоцена. В палеогеографическом плане верхний тилл был сформирован горно-долинным ледником, спускавшимся по долине рч.Тынья и оставившим свои следы не выходя далеко за пределы горного кряжа.

Водноледниковые (флювиогляциальные) образования имеют также локальное распространение и фациально замещаются аллювием перигляциального типа, связанного в своем формировании с долиной р.Лозьва, обнажаясь в многочисленных уступах ее правого берега.

Литература

- 1. **Каплянская Ф.А., Тарноградский В.Д.** Гляциальная геология (методическое пособие по изучению ледниковых образований при геологической съемке крупного масштаба). С.-Петербург: Недра, 1993. 328 с.
- 2. Стефановский В.В. Позднекайнозойские образования в Богословском угольном карьере. Уральский геологический журнал, № 1 (37). Екатеринбург: УГЖ, 2004. С.53-78.
- 3. **Холмовой Г.В., Лаврушин Ю.А.** Четвертичный аллювий как объект геологического картирования. Третье Всероссийское совещание по изучению четвертичного периода. Материалы совещания. Том 2. Смоленск: Ойкумена, 2002. С.106-108.
- 4. **Цаур Г.И., Якушев В.М.** Методические рекомендации по литологическому расчленению морских мезозойских и кайнозойских отложений восточного склона Урала и Зауралья. Свердловск: УГСЭ, 1991. 115 с.