УДК 551.22 +552.11

Строение мантийной колонны под кимберлитовой трубкой Айхал (Алакитское поле, Якутия)

Ащепков И.В.¹, Владыкин Н.В.², Ротман А.Я.³, Логвинова А.М.¹, Кучкин А.С.¹, Палесский С.В.¹, Сапрыкин А.И.¹, Аношин Г.Н.¹, Хмельникова О.С.¹

¹ ОИГГиМ СО РАН, Новосибирск, Россия ² Институт геохимии СО РАН, Иркутск, Россия ³ ЦНИГРИ, АЛРОСА, Мирный, Россия

Концентрат из кимберлитовой трубки Айхал – был проанализирован на микрозонде и LAM ICP MS. Детальная термобарометрия на основе граната (Ashchepkov, 2003) и клинопироксена (Ashchepkov, 2003a) позволила построить мантийный разрез литосферы, состоящий из 9 уровней. Нижние горизонты имеют первичную дунит гарцбургитовую природу. Клинопироксеновая геотерма почти непрерывна в средней соответствует тепловому потоку 35 мвт/м² и менее. Два нижних горизонта (65-50 кбар) разогреты до 45 мвт/м2, скорее всего под влиянием внедрившихся протокимберлитовых расплавов, что сопровождалось кристаллизацией мегакристовой ассоциации и титанистых перидотитовых минералов. Два вышележащих горизонта существенно лерцолит- гарбургитовы с большой долей метасоматитов. Пироксенитовая линза состоит из нижнего уровня представленного гранатовыми разностями верхнего, существенно без граната и хромита. Вышележащие пироксенитового перидотиты истощены до гарцбургитов, гранат – шпинелевые перидотиты также умерено истощены. Шпинелевая фация мантии аномально разогрета и содержит существенную долю гранатовых пироксенитов. Безгранатовые железистые разности трассируют основание коры.

При изменении состава минералов по отдельным уровням мантии наблюдаются сопряженные тенденции. Ильменитовые нодули частично кристаллизовались за счет AFC процесса с растворением хромитов. Расщепление ильменитового тренда по Cr_2O_3 обусловлена кристаллизацией его в крупных магматических телах и оперяющих трещинах в перидотитах. В свою очередь жильная система, в которой кристаллизовался ильменит, вероятно влияла на геохимические характеристики породообразующих перидотитовых минералов.

Геохимические особенности минералов: гранатов (12), клинопироксенов (7), хромитов (7), ильментиов (3), цирконов (3), проанализированных LAM ICP MS методом обнаруживают слабое истощение HFSE компонентами и более отчетливое для Zr, которое возрастает при при уменьшении уровня REE, почти примитивное LILE распределение и обогащение Th, U. Для гранатов характерны пики Pb, а для пироксенов минимумы. Ильмениты резко дифференцированы мелкие разности из конечной части ильменитового тренда 1000 обогащены LREE относительно разновидностей из начальной части тренда. REE для хромитов по конфигурации близки к ильменитовым.

Алмазы обнаруживают резкое обогащение Ba, Sr, Pb и Eu аномалии свойственные эклогитам для разновидностей с низким уровнем REE ~0.1 относительно C1, обогащенные разности ~10 C1 не имеют этих тенденций.

Введение

Кимберлитовая трубка Айхал — одна из наиболее продуктивных в Сибирской алмазоносной провинции расположена в центральной части Алакитского кимберлитового поля (рис. 1). Кимберлиты в этой трубки и ксенолиты глубинных пород [16] глубоко изменены серпентинизированы и карбонатизированы, хотя первичные парагенезисы и петрографический тип пород могут быть восстановлены. Особенности минералогии мантии под кимберлитовой трубкой изучены в основном по концентрату [20]. В данной работе приведены дополнительные данные о геохимии и минералогии мантийных пород и реконструкции особенностей строения мантийной колонны жильной системы и процессов, происходящих под кимберлитовой трубкой по этим данным.

Кимберлиты и концентрат изучались визуальным с отбором из концентрата представительных выборок по отдельным минеральным видам. Затем они анализировались в аналитическом центре ОИИГГиМ СО РАН на микрозонде CamebaxMicro (аналитик *О.С. Хмельникова*), а наиболее интересные зерна исследовались методом LAM ICP MS на масспектрометре "ELEMENT" (Finnigan) с лазерной приставкой UV LaserProbe (аналитики *Палесский С.В., Кучкин С.М., Сапрыкин А.И.*). По данным минеральной термобарометрии [3, 21, 22] реконструировано строение мантийной колонны.

Минералогия концентрата

Минеральный концентрат был получен из протолочек керна скважин наиболее свежего кимберлита и из шлама, оставшегося при обогащении кимберлитов. Распределения фигуративных точек гранатов и ильменитов на вариационных диаграммах по разным пробам несколько различаются, различается и количественные соотношения отдельных фаз. Наиболее богаты глубинным ультраосновным материалом туфогенная толща верхней части кимберлитовой трубки с глубин <100 м, где мелкий ксеногенный материал окатан до шарообразной формы, как в продуктах фреатомагматических извержений, например – пикрит-базальтов Витимского плато [4].

Гранат. Распределение гранатов для трубки Айхал весьма специфично. Дунит — гарцбургитовые гранаты здесь распространены чаще, чем в других трубках Алакитского поля (рис. 2). Они начинают встречаться от 3% Cr_2O_3 , затем преобладают, начиная от 6% Cr_2O_3 , а при 8-10% они слагают практически весь интервал, причем степень обеднения CaO и истощения материнских пород растет с хромистостью до 9% Cr_2O_3 . Основной тренд лерцолитовых гранатов протягивается непрерывно от 1 до 8% Cr_2O_3 и около 9%, далее они появляются в интервале 11-12% Cr_2O_3 . Наиболее хромистые

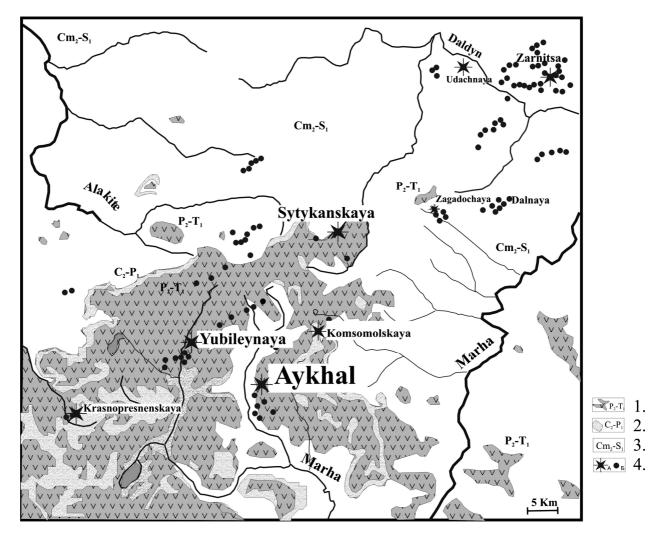


Рис. 1. Схема положения изученных кимберлитовых трубок в пределах Алакитского и Далдынского районов.

1. P_2 $-T_1$ траппы, 2. C_2 $-P_1$ песчаники, 3. Cm_2 $-S_1$ карбонатные толщи, 4. кимберлитовые трубки (а- продуктивные, б – с неустановленной продуктивностью).

разности $\sim 15\%$ Cr_2O_3 попадают в верхнюю часть гарцбургитового поля. Пироксенитовые гранаты [50] встречаются на отрезке от 4 до 6,5% Cr_2O_3 . судя по CaO, но обогащение TiO_2 характерно и для малохромистых гранатов – до 4 %. Повышение FeO также выражено в интервалах 0-3,5 и 4-7 % Cr_2O_3 .

Cr- $\partial uoncudы$. В предыдущих исследованиях хромистый клинопироксен для данной трубки практически не отмечался [20], хотя в первых же протолочках кимберлита он был обнаружен в образцах керна богатого гранатом пикроильменитом и другим ксеногенным материалом. Обогащение Na_2O свойственно малоглубинным низкохромистым гранатам и скорее отвечает пироксенитам.

Моноклинные пироксены из трубки Айхал гетерогенны, различаются, как минимум, 3 группы хромистых клинопироксенов. Наиболее железистые 4-6,5% FeO обнаруживают 2 тренда совместного роста TiO_2 и FeO и падения CaO, что типично для процесса магматической дифференциации (рис.3).

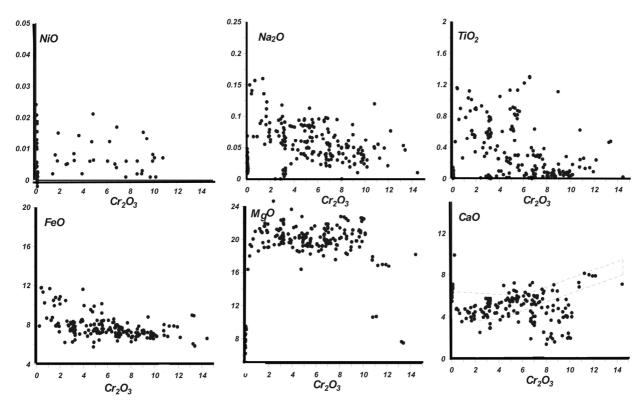


Рис. 2. Вариации состава гранатов из кимберлитовой трубки Айхал.

Почти стабильные содержания Na₂O и Al₂O₃ позволяют предполагать процесс взаимодействия эволюционирующего расплав с мантийными уровне мантии. перидотитами на ОДНОМ Данные термобарометрии показывают, что железистый тренд образован наложением двух групп одна из которых (~4-6% FeO) отвечает наиболее глубинным условиям, а другая (>6% FeO) – шпинелевой фации мантии. Промежуточные значения отвечают различным продуктам взаимодействия глубинных расплавов и мантийных перидотитов на разных уровнях мантийной колонны. Основная группа FeO гетерогенна и образована вероятнее всего 1-3% различными по петрографическому составу перидотитами. Ст-диопсиды с высокими концентрациями Cr- Na обычно типичны для метасоматических ассоциаций [29, 57]. Совмещение высоко- и низкобарических трендов с различными тенденциями привело к тому, что обычно четкие зависимости положительных корреляций FeO- TiO₂- Na₂O Al₂O₃ и отрицательного FeO- Cr_2O_3 проявлены неотчетливо.

Хромиты, которые являются также типичными перидотитовыми минералами, в концентрате из трубки Айхал преобладают над ильменитами. Гистограмма Cr₂O₃ имеет резко ассиметричное логнормальное распределение с максимумом соответствующим алмазным парагенезисам 60-64 % Сг₂О₃ (рис.4). Кроме того, имеется не менее 6 дополнительных максимумов, которые вероятно отвечают расслоенности мантийной Хромитовый трубках, обнаруживает тренд, также как и в других расщепление на ульвошпинелевую и хромитовую ветви в интервале 40-64%

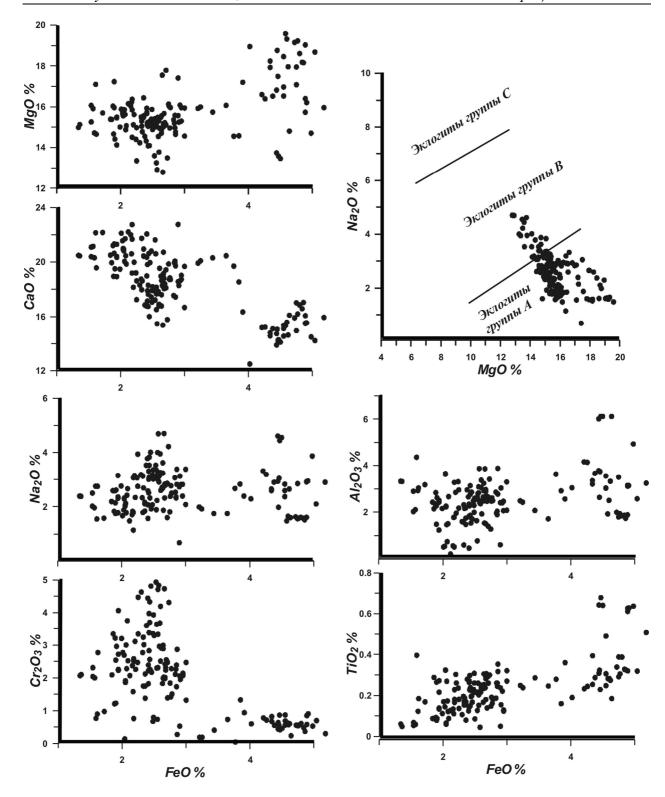


Рис. 3. Вариации состава Ст- диопсидов из кимберлитовой трубки Айхал.

 Cr_2O_3 . На отдельных отрезках существуют серии непрерывных составов, которые связывают две ветви и могут отвечать вариациям составов отдельных пород контактового типа (между титанистыми парагенезисами и типичными перидотитами) или магматической или метасоматической зональности. В интервале 37-30% Cr_2O_3 у хромитового тренда пропуск, затем

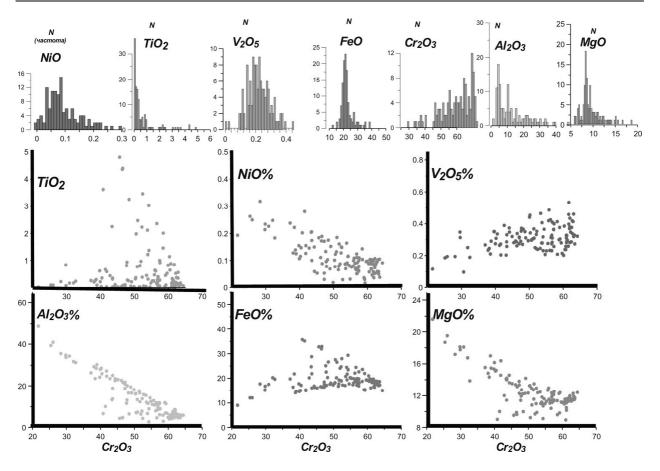


Рис. 4. Вариации состава хромитов из кимберлитовой трубки Айхал.

начинают преобладать обогащенные MgO разновидности шпинелидов. Возрастание содержания NiO от 0,05 до 0,3%, скорее всего, связано с окислительно- восстановительными условиями [59] и, что более вероятно, с потенциалом S, который повышается в нижней части мантийной колонны. Концентрация V_2O_5 в хромистых ассоциациях обнаруживает существенные вариации и в целом снижется вместе с Cr_2O_3 с 0,5 до 0,1 %, что нетипично для хромитовых трендов.

Ильмениты в трубке Айхал распространены не во всех разновидностях кимберлита и преобладают в полимиктовых туфах и брекчиях. Интервал вариаций TiO_2 составляет 45-55%, что обычно для трубок Алакитского района (рис. 5) Для более магнезиальных разновидностей характерно расщепление тренда на низко- и высокохромистые ветви, более резкое, чем для тр. Зарница [2]. По всей вероятности, это обусловлено кристаллизацией в разных условиях: в крупных магматических телах, где влияние вмещающих перидотитов минимально, и жильных телах с контаминацией перидотитами. Низкохромистые (<1%) в интервале 55-48 % TiO_2 имеют тенденцию снижения хромистости, вероятно, за счет сокристаллизации хромита (ульвошпинелевой ветви), для высокохромистых разновидностей характерно, наоборот, постепенное повышение концентраций Cr_2O_3 , что также типично и для трубки Юбилейная [7]. Как и в других трубках отмечается резкое повы-

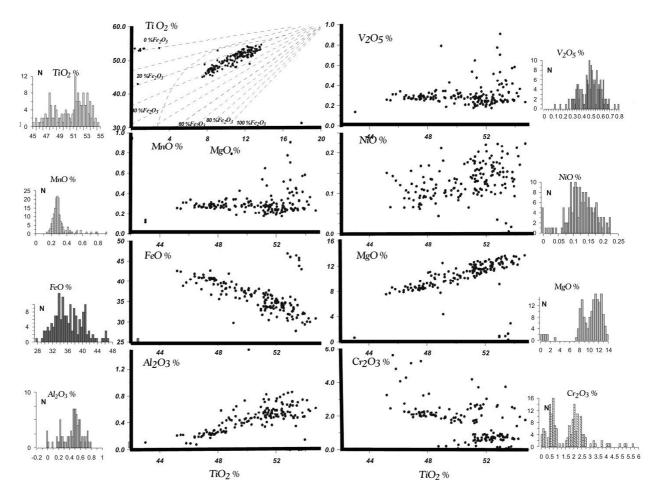


Рис. 5. Вариации состава ильменитов из кимберлитовой трубки Айхал.

шение хромистости в начале и в конце тренда (до 6% Cr_2O_3). Ильменитовый тренд трубки Айхал близок по конфигурации к тренду из трубки Сытыканская [51]. Для Al_2O_3 отмечаются отдельные отрезки, на которых ветви с резким снижением концентраций этого компонента на фоне общего долее плавного убывания. Вероятнее всего, это связано с сопутствующим фракционированием граната в разных пропорциях на отдельных отрезках тренда (уровнях глубинности мантийной колонны). NiO имеет общую тенденцию снижения, в конце наблюдается отрезок резкого возрастания его концентраций, вероятно за счет взаимодействия с мантийными перидотитами остаточных порций протокимберлитового расплава, кристаллизовался ильменит при формировании системы подводящих каналов Уровень концентраций извержениями. MnO ДЛЯ низкомагнезиальной части тренда почти постоянный 0,2-0,3%. В начале тренда отмечаются наиболее высокие содержания до 3% и отдельные субтренды снижения концентраций MnO. Начиная с 51% TiO2, уровень MnO в ильменитах стабилизируется. Вероятно, что высокие концентрации могут быть связаны с некоторой примесью субдукционного материала в нижней части мантийной колонны, поскольку объяснять широкие вариации FeO-MnO чисто темепературными условиями маловероятно [30]. Такие вариации были обнаружены ранее в пределах поликристаллических ильменитовых нодулей киберлитовой трубки KL-1 Колорадо [5], причем наиболее высокие концентрации отмечены в мелких изометричных зернах интерстициального вида. Для V_2O_5 характерны тенденции небольшого роста, что типично для магматических процессов. Возрастание до 3% отмечено лишь в начале тренда и, возможно, отвечает полной кристаллизации небольших порций расплава в слепых жилах. Окислительные условия, судя по уровню окисного железа, несколько растут в конце ильменитового тренда. Кимберлитовые пикроильмениты, которые продуктами долгое время считаются дифференциации кимберлитовой магмы [32, 42] благодаря сходству по изотопному составу [45] более вероятно кристаллизовались протокимберлитового расплава в полибарической системе на стадии формирования подводящих каналов.

Флогопиты в данной трубке встречаются часто, но ограниченное число проанализированных зерен не позволяет рассмотреть систематические вариации — два из проанализированных зерен относятся к перидотитовому типу кристаллизовавшихся в слабоистощенных породах.

Проанализированный Na-K *амфибол* относится к хромсодержащим паргаситам [55] и, вероятно, не очень глубинный.

Термобарометрия

Из-за почти полного отсутствия сростков минералов была применена лишь мономинеральная термобарометрия по клинопироксену [3,22] и гранату [21]. Геотерма, полученная по клинопироксену с использованием жадеит — диопсидовой термобарометрии [21] регулярна и похожа на многие трубки Южной Африки [44], отвечая в средней части тепловому потоку 35 мвт/м² и даже ниже, а в нижней части на уровне ~ 65 кбар разогреву до 45 мвт/м² (рис. 5) Пропуск в интервале 60-65 кбар вероятнее всего отвечает дунит гарцбургитовому горизонту мегакристаллических перидотитов [12]. В верхней части на уровне 10-25 кбар отмечена высокотемпературная ветвь, которая более типична для ксенолитов щелочных базальтоидов [4] и определена также для трубки Удачная [10] и кимберлитоподобных пород Алдана [24] и некоторых других районов. Это доказывает что близкоодновременное проявления базальтового и кимберлитового магматизма [52] типично и для данного района.

Ст- клинопироксеновая термобарометрия [44] дает близкую геотерму, более компактную в средней части и более глубинную для разогретой ветви которая распадается на два интервала ~ 70 и ~75 кбар. В верхней части колонны высокотемпературная ветвь практически совпадает с Юго-Восточной Австралийской геотермой [48].

Гранатовая термобарометия [9] позволяет получить очень близкую геотерму с наложением на полученную по клинопироксену (рис. 6). В основном варианте (уравнения {1-7} [9]) эта геотерма дает 7 (8) сгущений, в

Рис. 6. ТР диаграмма для мантиной колонны под кимберлитовой трубкой Айхал.

1 - оценки по клинопироксеновому термобарометру $T^{\circ}C$ [3] и P (кбар) [7]; 2 - оценки по клинопироксеновому термобарометру $T^{\circ}C$ и P (кбар) [44]; 3 - оценки по гранатовому термобарометру [9] $T^{\circ}C$ [1] - P 2 [6], и 4- то же по [9], $T^{\circ}C$ [3] - P2 [5].

нижней части количество точек намного выше, что свидетельствует о преобладании сравнительно истощенных пироксеном, но обогащенных гранатом мантийных парагенезисов на глубине. В нижней части мантийной колоны гранатовая геотерма расщепляется на высокотемпературную ~ 43 мв/м2 и отвечающую изобарическому разогреву ветви. Высокотемепартурная гарцбургитовый горизонт, ветвь трассирует ДУНИТ ПО видимому, неравномерно и аномально высоко разогретый. Продолжения этой ветви отмечаются до 42 кбар. Скорее всего, эти гранаты отвечают сравнительно высокотитанистым парагенезисам, сформированным под влиянием формирующейся подводящих системы каналов подъема протокимберлитовых расплавов. Вариант с определением давления по

упрощенному варианту, который применяется для пироксенитов уравнение {5} [9], дает в основном высокотемепературную ветвь, хотя некоторая часть попадает и на низкотемпературную геотерму.

Расслоенность литосферной части мантии под континентами [35], по – видимому, является обычным свойством и сформирована при подслаивании субдукционных пластин [49]. Для верхнепалеозойских кимберлитов число горизонтов, определенных для мантийных колонн под отдельными трубками, почти постоянно и колеблется от 7 до 9. Мы построили модели расслоенности по проанализированным минералам на основе графиков вариаций основных компонентов в минералах от давления определенного по гранату [22] и клинопироксену [22]. Для хромитов сделано то же на основе хромистости, поскольку она линейно связана с давлением [47], что было эмпирически проверено также для ксенолитов из многих трубок, включая тр. Удачная [10, 26, 54] и тр. Обнаженная (рис. 7).

Ильменитовый тренд, по нашим представлениям, тоже полибарический, а MgTiO₃ минал коррелирует с давлением [53]. Поскольку MgO линейно связан с ТіО2, последний компонент можно использовать в первом в барометрии. правомерности приближении целях В пользу представлений помимо экспериментальных данных [52] свидетельствует постоянство содержаний TiO₂ в поликристаллических нодулях трубки KL1 Колорадо [6], несмотря на широки вариации содержаний FeO, MnO. Нижний предел давления 65 кбар отвечает ~55 % ТіО2, а верхний приблизительно 30 кбар -содержаниям 6 % MgO и 44% TiO₂. Более детальная калибровка с учетом всех компонентов позволит сделать более надежную модель для строения жильной системы на стадии, предшествующей извержению. В настоящем варианте можно предполагать, что начальный хромистый отрезок тренда связан с высокотемпературными алмазоносными метасоматитами [13] пироксенитами [11],a отдельные линейные отрезки протокимберлитовых каналов в мантии, а конечные с метасоматитами ветвящихся жил заключительной стадии. По клинопироксену определено 9 горизонтов в строении литосферной мантии. Самый нижний (9) должен отвечать деформированным перидотитам или продуктам взаимодействия с ТИП плюмовыми расплавами. Этот пироксенов же высокотмпературный и железистый установлен в верхнем горизонте 65-60 кбар (8), который, скорее всего, судя по особенностям минералогии гранатов дунит-гарцбургитовый. Минералогия свидетельствует, что и нижележащий высокотемпературный изначально также был представлен истощенными породами. Следующий мантийный уровень 60-50 (7), исходя из высоких содержаний Na-Cr в пироксенах – существенно лерцолит- гарцбргитовый с высокой долей метасоматитов. Близкая минералогия, но с более стабильным составом гранатов и более истощенным у пироксенов отмечена на следующем мантийном уровне 50-48 кбар (6).

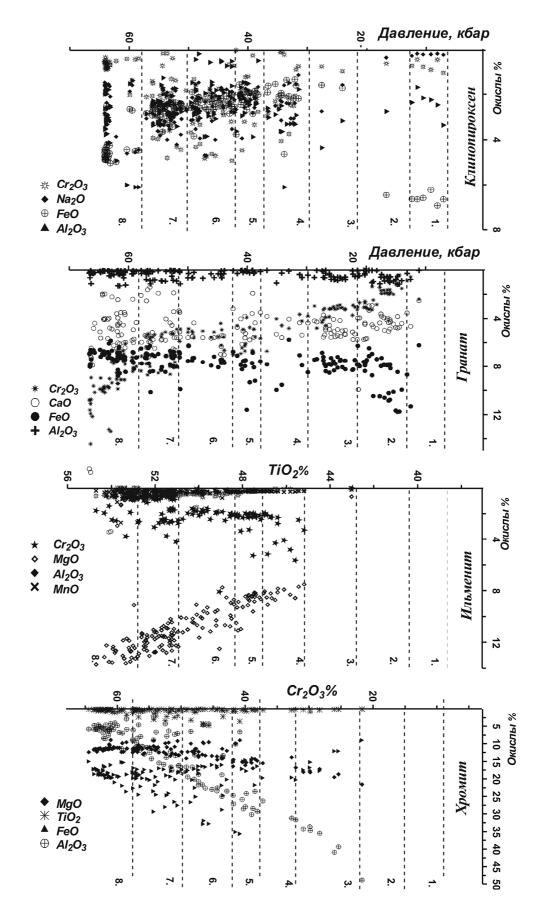


Рис. 7. Реконструкция слоистости мантийной колонны под кимберлитовой трубкой Айхал и изменение состава минералов с глубиной.

Пироксенитовая линза, которая дает излом лерцолитового поля на диаграмме Cr₂O₃-CaO для гранатов в данной мантийной колонне, скорее всего, гетерогенна. В интервале 37-42 кбар (5) отмечается повышенной железистостью значительной доли гранатов и клинопироксенов, что скорее всего отвечает гранатовым пироксенитам. Вышележащий горизонт в кбар отличается преобладанием пироксенового интервале 30-38 (4) материала над гранатовым, широкими вариациями железистости и других компонентов. Хромиты на данном отрезке давления встречаются редко, а высокохромистые вероятно, замещают хромиты ильмениты И, перидотитовых парагенезисах. Горизонт в интервале 30-21 кбар – это видимо гранат – шпинелевые перидотиты. Хром-шпинели вероятно мелкозернистые и слабо представлены в изученной выборке. Шпинелевая фация мантии в интервале 14-22 кбар (2) представлена гранатами из двух типов пироксенитов железистых 10-12% FeO и более магнезиальных анатектических 7-8% FeO. Последний мантийный горизонт ~13-10 кбар в нашей выборке представлен лишь высокотемпературными низконатровыми железистыми пироксенитами без граната.

Составы шпинелидов обнаруживают ритмичное возрастание содержаний железа в трех нижних горизонтах (8-6) здесь же широко проявлены ульвошпинелевые составы, причем содержания TiO_2 растут почти монотонно. В нижней части пироксенитовой линзы концентрации FeO - TiO_2 в ильмените повышены. Но ниже чем в предшествующих. В гранат — шпинелевом горизонте вместо хромитов представлены Cr- пикотиты.

Для ильменитов высокие концентрации Al_2O_3 и низкие Cr_2O_3 характерны для горизонтов (9-7), выше (слой 6) типичны более хромистые парагенезисы, менее обогащенные глиноземом, концентрация которого скачкообразно падает в хромитах вышележащего горизонта (5). Ильменит из горизонта сконцентрированы, скорее всего, **(4)** перидотитах протокимберлитовыми импрегнированных расплавами парагенезисах. Выше по разрезу протокимберлитовые расплавы в мантии под трубкой Айхал, вероятно, не поднимались. Отдельные ильмениты вероятно из метасоматических пород [31, 56] отмечены на уровне 30 кбар.

Геохимия редких элементов

Геохимия редких элементов для гранатов (12), клинопироксенов (7), хромитов (7), ильменитов (3), цирконов (3) получена методом LAM ICP MS (рис. 8).

Для клинопироксенов определены спектры распределения REE с относительно низкими для алмазной фации глубинности La/Yb_n отношениями, которые свидетельствуют о сравнительно низкой доле граната в породе и лишь один из спектров с высоким La/Yb_n и La/Sm_n ,>1 отвечает наиболее глубинным ассоциациям, причем метасоматическим. На спайдердиаграммах у всех пироксенов отмечаются достаточно высокий

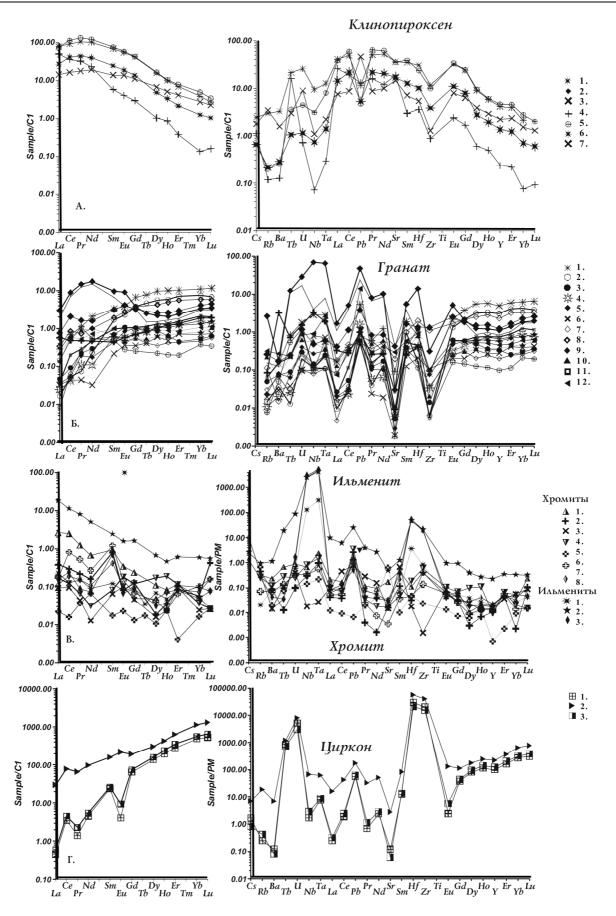


Рис. 8. Спектры REE и спайдердиаграммы TRE для минералов из концентрата кимберлитовой трубки Айхал.

уровень U,Th и Ta- Nb троги, глубина которых и Ta/Nb отношения растут вместе уровнем REE. Для граната с высокими наклонов REE характерна высокая концентрация Th, но очень низкая U. Для всех пироксенов характерны Pb (кроме одного) и Zr минимумы.

Различаются 4 типа гранатов: 1 — с обычными округлыми REE истощенными LREE спектрами [36] и небольшими Се максимумами; 2- с истощенными LREE спектрами, изломом на Nd и низкими концентрациями REE в целом; 3 — с уплощенными REE спектрами; 4- с S — образными, обогащенными LREE спектрами. Для всех гранатов характерны глубокие минимумы Sr, Zr (кроме двух) и высокие максимумы Pb. Почти для всех характерны почти примитивный тип левой части спайдердиаграмм с небольшими флуктуациями и небольшими пиками U. У двух зерен гранатов с S- образными распределениями, обогащенными LREE, определены очень высокие концентрации Th, U, Nb, Ta, вероятно за счет микровключений рутила ильменита, а LILE группа — флогопита.

Ильменитовые спектры TRE, определенные для трех зерен различаются – один ильменит, обогащенный REE (~10 La_n) имеет дифференцированный наклонный обогащенный LREE спектр также приподнятые U, Th на спайдердиаграмме, вероятно за счет включений рутила, два других − слабо наклонены графики REE. Пики HFSE для одного близки, к определенным для другого значительно ниже. Для всех характерны Pb пики.

Xромиты из данной трубки имеет слабо наклонные спектры REE с низкими концентрациями от 1 до 0,01 La_n , зерна с более высокими концентрациями имеют больший наклон, что подразумевает дифференциацию исходного расплава. Для всех хромитов, кроме одного характерны спектры с небольшим обогащением HFSE (Ta > Nb, Zr > Hf) и пиками Pb, тем выше, чем выше уровень REE, лишь для одного определен Zr минимум, но небольшой пик U. Хромит с самым низким уровень REE имеет небольшой Y минимум и несколько приподнятый уровень левого крыла спайдердиаграммы.

Цирконы имеют типичные спектры [57] слабонаклонные с обеднением LREE, два из них с более низким уровнем обнаруживают Eu минимум и вероятно имеют эклогитовую или нижнекоровую природу. Другой с высоким уровнем REE имеет уровень обогащения ~100 для La_n и ~1000 Yb_n скорее относится к мегакристовой ассоциации. У всех цирконов хорошо выражены Zr-Hf Th-U π -U π -U

Геохимия алмазов. Мелкие прозрачные алмазы (14) октаэдрического типа были проанализированы тем же методом (LAM ICP MS) и спектром анализируемых элементов. На графике распределения REE у алмазов (рис. 8) обнаружены наклонные, обогащенные LREE спектры с уровнем обогащения ~ 10 - 0.1 La_n, как и для хромитов ильменитов, степень обогащения и наклон коррелируются. Для зерен с самым низким содержанием установлен минимум Eu и максимум U для других с La_n <1 наоборот максимумы Eu что

предполагает эклогитовую природу алмазов и небольшие пики U не выраженные у более обогащенных TRE разновидностей. Для всех кристаллов характерны высокие пики Ba, Sr, Pb и небольшие минимумы Y.

Дискуссия

В настоящей статье приведен материал, который позволяет сделать строении мантийной колонны выводы И возможной СВЯЗИ мегакристаллических образований, которые пока представлены только ильменитом, не рассматривая специально подборки ксенолитов, которые требуют более детального изучения. Даже высокая степень изменения кимберлитов, которая привела к фактическому исчезновения из концентрата ортопироксена и оливина позволила сделать достаточно детальную модель литосферной мантии. Вариации строения химические особенности отдельных минеральных видов, несомненно, надо рассматривать с позиций их положения в мантийном разрезе. Надежность мономинеральной термобарометрии еще требует некоторого подтверждения, однако на примере трубки Удачная и других кимберлитовых трубок показана хорошая сходимость данных полученных по клинопироксену и гранату [9]. Проблему в настоящее время представляет в основном деление на отдельные разновидности – эклогитовые, пироксенитовые и перидотитовые с тем, чтобы грамотно применять к ним термобарометрические методы. Из выборки проанализированных зерен в основном были исключены оранжевые эклогитовые гранаты, к сожалению, среди клинопироксенов не были проанализированы омфацитовые разновидности, доля которых должна быть существенной, судя по гранатам. Обращает внимание с одной стороны различия по главным компонентам, что в целом определяется по – видимому исходным составом пород - степенью их истощения. Даже на одном мантийном уровне они могут быть различны, что показано при рассмотрении минералогии отдельных горизонтов мантии. С одной стороны ясно, что первичная гетерогенность строения мантийной колонны несомненно обусловлена субдукционными процессами [34, 48, 49]. Как было показано возраст отдельных пластин [49] омолаживается к нижней части литосферной мантии кратонов. Скорее всего, 4 нижних горизонта были причленены к литосферному килю в палеозое, имея в виду девонский возраст кимберлитов можно полагать, что период цикличности близок к 60 млн. лет, что в принципе совпадает с цикличностью, которая определяет продолжительность геологических периодов и определяется особенностями конвекционного режима. Несомненно, что требует выяснения природа дунитовых горизонтов в основании литосферы и определение природы увеличения степени истощения пород мантийного киля кротона с глубиной. Она может иметь геодинамический характер, когда последовательно снизу к литосфере "привариваются" породы континентальной окраины, мантийного клина и ультраистощенные перидотиты океанических желобов. В пользу этого

свидетельствует наличие эклогитов, которые по ТР параметрам часто относятся к самым глубинным горизонтам и чередуются с дунитами, как например в тр Удачная.

Однако такие же породы могут быть сформированы в зонах промывки в мантии сконцентрированными потоками флюидов, например субдукционной природы. Подобные шлиры дунитов фиксируются в перидотитах различного уровня глубинности начиная от офиодитовых разрезов, где с ними ассоциируют подиформные залежи хромитов. В ксенолитах щелочных базальтов гнезда дунитов часто более железисты и обусловлены фильтрацией водонасыщенных расплавов сопряженных с развитием щелочнобазальтовых систем [4]. Схожий процесс вероятен для кимберлитов, это, например, ильменитовые дуниты с выскохромистыми пиропами. Обращает внимание довольно высокий уровень концентрации литофильных компонентов LILE, что может быть связана с миграцией флюидов связанных с разложением флогопитов или влиянием глубоко субдуцированной континентальной коры.

В целом геохимический облик минералов, несмотря на ультраистощенный состав многих перидотитов, трубки Айхал имеет многие черты континентальной мантии (и коры). Истощенность выражается в низких содержаниях Al в пироксенах и CaO в гранатах и видимо пониженной модальной доли граната в мантийных породах глубинного уровня, что привело к довольно низким La/Yb_n отношениям и смещению пика Cr на диаграммах для гранатов. Однако для шпинелей этот пик резко смещен в хромистую область, и говорит о том, что доля потенциально алмазоносных пород очень велика.

Заметно. геохимические характеристики TRE отдельных минеральных видов часто совпадает, несмотря на различии в химизме макрокомпонентов, это может означать наличие сквозных процессов, которые не могли существенно повлиять на макросостав в данном случае, но могли определить основной спектр микроэлементов. Обращает внимание также на контрастные различия с геохимических спектрах, например, гранатов и клинопироксенов - потивоположные экстремумы для Рb и Се и более скоррелированное поведение инертных компонентов HFSE, Th. Это может свидетельствовать о многостадийности процессов, когда разные минеральные виды кристаллизовались как результат процесса сродни масштабному метасоматозу, охватывавшему большие протяженные вертикали зоны мантии близкоодновременно, когда росли например титанистые гранаты и т.д. Источник таких метасоматизирующих процессов может быть разным: 1- флюидно - магматически потоки, сопряженные непосредственно субдукцией; 2 плюмовое воздействие метасоматические и гидратированные горизонты в мантии. 3 - процессы, c кимберлитообразованием непосредственно связанные на стадии формирования подводящих каналов.

Обилие циркона в трубке Айхал может оказаться сопряженным с общим истощением пород и минералов этим элементов под влиянием специфических условий.

Геохимические спектры алмазов показывают, что первичная субдукционная природа алмазов несомненна, однако природа пиков Ва, Sr, Рb может быть как первично субдукционной, так и обусловлена карбонатитовым метасоматозом например вокруг протокимберлитовых магматических систем.

Отсутствие данных о положении эклогитов в разрезе мантийной колонны и минеральных включений в алмазах из трубки Айхал определение конкретного положение в мантии алмазоносных горизонтов пока проблематично. Это требует дальнейшего совершенствования методов термобарометрии для эклогитовых систем и анализа самих эклогитовых минералов.

Строение жильной системы, к которой относятся ильмениты, интерес большой обусловлено строением несомненно, вызывает И перидотитовой колонны. Сопряженное поведение хромитов и ильменитов (рис.7) в разрезе мантии также коррелируется и с поведением силикатных минералов. По-видимому, первичная слоистость определила строение жильной системы, которая развивалась лишь до пироксенитовой линзы. С другой стороны развитие богатых Ті магматической системы повлияло на кристаллизацию хромитов, что привело к образованию парагенезисов – гранатов, клинопироксенов, хромитов.

Внедрение протокимберлитовых расплавов на уровень 50- 65 кбар (9-7), по-видимому, привело к обильной кристаллизации ильменита, существенному разогреву и, скорее всего, сопровождалось существенным метасоматозом и изменением первичных парагенезисов перидотитов. Эти процессы могли сопровождаться образованием и перекристаллизацией и ростом крупных алмазов, для которых температурный фактор играет существенную роль [32]

Выводы

- 1. Изменение состава перидотитовых минералов и системы, в которой кристаллизовалась мегакристовая ассоциация из протокимберлитовых расплавов, происходит сопряжено.
- 2. Существенный разогрев в нижней части колонны под действием на уровне 50-65 кбар, который обусловлен внедрением протоким-берлитовых масс по-видимому был причиной высокой продуктивности кимберлитовой трубки.
- 3. Перидотитовый субстрат под кимберлитовой трубкой Айхал представлен аномально истощенным веществом по крайней мере на 2 нижних горизонтах.

- 4. Материал из мантии кимберлитовой трубкой захватывался в основном с нижних уровней из алмазной фации, что наглядно показано по рапредлению хромистости шпинелидов.
- 5. Геохимические характеристики минералов перидотитовой колонны обусловлены метасоматическими агентами отщепившимися при субдукционных процессах от погруженных блоков коры (осадков) континентального типа.
- 6. Мелкие алмазы из трубки Айхал имеют в основном геохимические характеристики свойственные эклогитам континентального типа.
- 7. Жильная протокимберлитовая система существенно влияла на алмазоносность мантийной колонны.

Благодарности

Авторы благодарны сотрудникам аналитического Центра ОИГГиМ. а также Н.П. Похиленко и Н.В. Соболеву за полезную дискуссию.

Работа проведена при финансовой поддержке гранта РФФИ 03-05-64146 и интеграционных проектов: СО РАН № 67 и РАН № 6-2-1.

Литература

- 1. **Алымова Н.А., Костровицкий С.И., Иванов А.С., Серов В.П.** Пикроильмениты из кимберлитов Далдынского поля Якутия // Доклады Академии Наук . 2004. Т. 395а. № 3. С. 444 -447. Подписи к рисункам.
- 2. **Амшинский А.Н., Похиленко Н.П.** Особенности составов ильменитов из кимберлитовой трубки Зарница // Геология и геофизика. 1983. № 11. С. 116-119.
- 3. **Ащепков И.В.** Уточненное уравнение Jd-Di барометра. Вестник РАН Отделение наук о Земле. 2003, N1. pp.45-46.
- 4. **Ащепков И.В., Андре Л.** Дифференциация мантийных расплавов на примере пироксенитовых ксенолитов пикробазальтов Витимского плато // Геол. и геофиз., 2002, 43, N 4, c.343-363.
- 5. Ащепков И.В., Владыкин Н.В., Митчелл Р.Г. Куперсмит Г., Сапрыкин А.И., Хмельникова О.С., Аношин Г.Н. Мантийная эволюция плато Колорадо Температурный градиент и строение литосферного киля: интерпретация изучения минералов концентрата из трубки КL-1 Юго- восточного края Сибирского кратона- реконструкции по дезинтегрированным ксенолитам кимберлитовых трубок Алданского щита // Доклады Академии Наук . 2002. Т. 385. № 4. С. 721-726.
- 6. Ащепков И.В., Владыкин Н.В., Митчелл Р.Х., Куперсмит Г., Гаранин В.Г., Сапрыкин А.И., Хмельникова О.С., Аношин Г.Н. Мантийная эволюция под плато Колорадо: интерпретация изучения концентрата кимберлитовой трубки КL-1. Доклады Академии Наук, 2002., т.385. N 6, с. 721-726.
- 7. Ащепков И.В., Владыкин Н.В., Николаева И.В., Палесский С.В., Логвинова А. М., Сапрыкин А.И., Хмельникова О.С., Аношин Г.Н. О минералогии и геохимии мантийных включений и строении мантийной колонны кимберлитовой трубки Юбилейная, Алакитское поле, Якутия. // Доклады Академии Наук .2004. Т.395. № 4. С.1-7.
- 8. **Ащепков И.В., Владыкин Н.В., Николаева И.В., Палесский С.В., Логвинова А. М., Сапрыкин А.И., Хмельникова О.С., Аношин Г.Н.** О минералогии и геохимии мантийных включений и строении мантийной колонны кимберлитовой трубки

- Юбилейная, Алакитское поле, Якутия. // Доклады Академии Наук .2004. Т.395. № 4. С.1-7.
- 9. Ащепков И.В., Владыкин Н.В., Ротман А.Я., Логвинова А.М, Афанасьев В.П., Вишнякова Е.В., Хмельникова О.С. Применение новых версий термобарометрии гранатов для реконструкции строения мантии под кимберлитовыми районами сибирской платформы и для оценки перспектив их алмазоносности // Эффективность прогнозирования и поисков месторождений алмазов: прошлое, настоящее и будущее. (Алмазы-50) 25-27 мая 2004 г. с.34-36.
- 10. **Малыгина Е.В., Похиленко Н.П.** Ассоциация пироп-хромшпинелид в ксенолитах перидотитов из кимберлитов и особенности реакции гранатизации перидотитов в литосфере Сибирской платформы // Петрография на рубеже XXI века: итоги и перспективы: Материалы Второго Всероссийского петрографического совещания, 27-30 июня 2000 г., Сыктывкар. Т. IV, Сыктывкар, 2000, с. 286-289.
- 11. **Пономаренко А.И., Специус З.В., Соболев Н.В.** Новый тип алмазоносных пород гранатовые пироксениты // Докл. АН СССР, 1980, 251, N 2, c.438-441.
- 12. **Похиленко Н.П., Соболев Н.В., Бойд Ф.Р., Пирсон Г.Д., Шимизу Н.** Мегакристаллические пироповые перидотиты в литосфере Сибирской платформы: минералогия, геохимические особенности и проблема происхождения // Геол. и геофиз., 1993, 34, N 1, c.71-84.
- 13. **Похиленко Н.П., Соболев Н.В., Соболев В.С., Лаврентьев Ю.Г.** Ксенолит алмазоносного ильменитпиропового лерцолита из кимберлитовой трубки "Удачная" (Якутия) // Докл. АН СССР, 1976, 231, с.438-442.
- 14. **Розен О.М.; Серенко В.П.; Специус З.В.; Манаков А.В.; Зинчук Н.Н.** Якутская кимберлитовая провинция: положение в структуре Сибирского кратона, особенности состава верхней и нижней коры // Геол. и геофиз. 2002. Т. 43. N 1. С. 3-26
- 15. **Ротман А.Я.** Кимберлит-базитовые соотношения в алмазоносных провинциях Сыктывкар: Изд-во Ин-та геол. Коми НЦ УрО РАН, 2000. Т. 1 –с. 179-182.
- 16. **Саврасов Д.И.** Ксенолты глубинных попрод в кимберлитах Якутии. Новосибирск: Издво НИЦ ОИГГМ СО РАН, 1998. 377.
- 17. **Смелов А.П.; Тимофеев В.Ф.; Зайцев А.И.** Строение, этапы становления фундамента Северо-Азиатского кратона и фанерозойский кимберлитовый магматизм Мирный: Мирнин. гор. типогр., 2003. c.186-191
- 18. **Соболев Н.В., Похиленко Н.П., Ефимова Э.С.** Ксенолиты алмазоносных перидотитов в кимберлитах и проблема происхождения алмазов // Геол. и геофиз., 1984, N 12, c.63-80
- 19. **Соболев Н.В., Похиленко Н.П., Зюзин Н.И.** Хромсодержащие гранаты из ксенолитов ультраосновных пород в кимберлитах Якутии // Геол. и геофиз., 1973, N 2, c.66-73.
- 20. **Харькив А.Д., Зинчук Н.Н., Крючков А.И.** Месторождения алмазов Мира. Москва: Недра. 1998. 545 с.
- 21. **Ashchepkov I.V.** Empirical garnet thermobarometer for mantle peridotites // Seattle Annual Meeting (November 2-5, 2003). Abstract ID: 65507.
- 22. **Ashchepkov I.V.** Jd-Di barometer for mantle peridotites and eclogites // Experiment in Geosciences. V. 10. № 1. C. 137-138.
- 23. Ashchepkov I.V., Vladykin N.V., Rotman A.Y., Logvinova A.M., Nikolaeva I.A., Palessky V.S., Saprykin A.I., Anoshin G.N., Kuchkin A., Khmel'nikova O.S. Reconstructions of the mantle layering beneath the Alakite kimberlite field: comparative characteristics of the mineral geochemistry and TP sequences./ Plume and problems of deep sources of alkaline magamtism. Proceedings of International workshop. 2004 Irkutsk. Irkutsk State University. Ulan-Ude. Pp..
- 24. **Ashchepkov I.V., Vladykin N.V., Saprykin A.I., Khmelnikova O.S.** Composition a thermal structure of the mantle in peripheral parts of the ancient shields within Siberian craton // Revista Brasileira de Geociencias. 2001. V. 31(4). P. 527-636.

- 25. **Boyd F.R., Pearson D.G., Nixon P.H., Mertzman S.A.** Low-calcium garnet harzburgites from South Africa: their relations to craton structure and diamond crystallization // Contrib. Mineral. Petrol. 1993. V. 113. P. 352 –366.
- 26. **Boyd F.R., Pokhilenko N.P., Pearson D.G., Mertzman S.A., Sobolev N.V., Finger L.W.** Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. //Contrib. Mineral. Petrol. 1997. V. 128. № 2-3. P. 228-246.
- 27. **Brey G.P., Kohler T.** Geothermobarometry in four-phase lherzolites II: new thermobarometers, and practical assessment of existing thermobarometers // J. Petrol. 1990. V. 31. P. 1353 –1378.
- 28. **Dawson J.B., Stephens W.E.** Statistical classification of garnets from kimberlite and associated xenoliths // J. Geol. 1975. V. 83. P. 589-607.
- 29. **Dencker I., Nimis P., Zanetti A., Sobolev N.V.** Major and Trace Elements Composition of Cr-Diopsides from the Zagadochnaya Kimberlite Pipe (Yakutia, Russia): Insights into Metasomatic Processes in the Yakutian Lithosphere. //Extended Abstracts of the 8International Kimberlite Conference. 2003. FLA 0234.
- 30. **Feenstra A., Engi M.** An experimental study of the Fe-Mn exchange between garnet and ilmenite// Contrib. Mineral. Petrol. 1998 v131: pp.379-392
- 31. **Gregoire M., Bell D.R., Le Roex A.P.** Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited // Contrib. Mineral. Petrol. 2002. V.142(5).P. 603-625.
- 32. **Fedortchouk Y., Canil D., Carlson J.A.** Oxygen Fugacity of Kimberlite Magmas and their Relationship to the Characteristics of Diamond Populations, Lac de Gras, N.W.T., Canada. //Extended Abstracts of the 8International Kimberlite Conference. 2003. FLA_0098.
- 33. **Griffin W.L., Moore R.O., Ryan C.G., Gurney J.J., Win T.T.** Geochemistry of magnesian ilmenite megacrysts from Southern African kimberlites // Russian Geol. Geophys. 1997. V. 38(2). P. 398-419.
- 34. **Griffin W.L., Ryan C.G., Kaminsky F.V., O'Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P.** The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton // Tectonophysics. 1999. V. 310. P. 1–35.
- 35. Griffin W.L.; Doyle B.J.; Ryan C.G.; Pearson N.J.; O'Reilly Suzanne Y.; Davies R.; Kivi K.; Van Achterbergh E.; Natapov L.M. Layered mantle lithosphere in the Lac de Gras area, Slave craton: Composition, structure and origin // J. Petrol. 1999. Vol. 40. N 5. P. 705-727.
- 36. **Griffin, W. L., Fisher N. I., Friedman J. H., O'Reilly S. Y., and Ryan C. G.** Cr-pyrope garnets in the lithospheric mantle. 2. Compositional populations and their distribution in time and space // Geochem. Geophys. Geosyst. 2002. V. 3(12). P. 35.
- 37. **Hearn B.C.** Jr. Upper-Mantle Xenoliths in the Homestead Kimberlite, Central Montana, USA: Depleted and Re-Enriched Wyoming Craton Samples // 8th International Kimberlite Conference Extended Abstracts.
- 38. **Kennedy C.S., Kennedy G.C.** The equilibrium boundary between graphite and diamond, J. Geophys. Res. 81 (1976) 2467–2470.
- 39. **Kostrovitsky S.I., Alymova N.V., Ivanov A.S., Serov V.P.** Structure of the Daldyn Field (Yakutian Province) Based on the Study of Picroilmenite Composition //Extended Abstracts of the 8International Kimberlite Conference. 2003.FLA 0207.
- 40. **Krogh, E. J.** 1988. The garnet-clinopyroxene Fe-Mg geothermometer a reinterpretation of existing experimental data. // Contrib. Mineral. Petrol. V.99, pp.44-48
- 41. **Kuligin S., Malkovets V., Pokhilenko N., Vavilov M., Griffin W., O'Reilly S.** Mineralogical and geochemical characteristic of a unique mantle xenoliths from the Udachnaya kimberlite pipe. // 8 th International Kimberlite Conference Extended Abstracts.
- 42. **McGregor I.D.** The system MgO- SiO₂- Al₂O₃: solubility of Al₂O₃ in enstatite for spinel and garnet peridotite compositions // Am. Miner. 1974. V. 59. P. 110-117
- 43. **Moor R.O., Griffin W.L., Gurney et al.** Trace element geochemistry of ilmenites megacrysts from the Monastery kimberlite, South Africa // Lithos. 1992. V. 29. P.1-18.

- 44. **Nimis P., Taylor W.** Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer // Contrib. Mineral. Petrol. 2000. V. 139. № 5. P. 541-554.
- 45. **Nixon, P.H.** Ed.1973 Lesotho Kimberlites./Cape and Transvaal, Cape Town, 470 Nickel KG, Green DH. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. //Earth Planet .Sci. Lett . 1985. V.73: pp.158-170.
- 46. Nowell G.M., Pearson D.G., Bell D.R., Carlson R.W., Smith C.B., Kempton P. D., And Noble S. R. Hf Isotope Systematics of Kimberlites and their Megacrysts: New Constraints on their Source Regions. // J. Petrology . 2004 v.45, pp.1583-1612.
- 47. **O'Neil H.S.C.** The transitions between spinel lherzolite and garnet lherzolite, and its use as a geobarometer // Contrib.Miner.and Petrol., 1981, 77, 2, 185-194
- 48. **O'Reilly S.Y., Griffin W.L., Poudium Diomany, Morgan P.** Are lithospehers forever? // GSA Today. 2001. V. 11. P. 4-9.
- 49. Pearson D.G. The age of continental roots. // Lithos 1999. Vol. 48. P. 171-194.
- 50. **Pokhilenko N. P., Sobolev N.V., Kuligin S. S., Shimizu N.** Peculiarities of distribution of pyroxenite paragenesis garnets in Yakutian kimberlites and some aspects of the evolution of the Siberian craton lithospheric mantle // Proceedings of the VII International Kimberlite Conference. 2000. The P.H. Nixon volume. P. 690-707.
- 51. **Reimers L.F., Pokhilenko N.P., Yefimova E.S., Sobolev N.V.** Ultramafic mantle assemblages from Sytykanskaya kimberlite pipe (Yakutia) // Seventh International Kimberlite Conference, Cape Town, April 1998: Extended Abstracts, Cape Town, 1998, pp. 730-732.
- 52. **Ryan C. G.; Griffin W. L.; Pearson N. J.** Garnet geotherms: Pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. // J. Geophys. Res. B. 1996. V. 101. № 3. P. 5611-5625.
- 53. **Saxena, S.K., Chatterjee N., Fei Y., Shen G.**. Thermodynamic Data on Oxides and Silicates, Springer, Berlin, 1993, 428 pp.
- 54. **Smith D.**, 1999. Temperatures and pressures of mineral equilibration in peridotite xenoliths: Review discussion and implication. // In Mantle Petrology: Field Observations and High Pressure Experimentation: A tribute to Francis R. (Joe) Boyd. Eds. Fei, Y.,
- 55. **Tindle A.G., Webb P.C.** PROBE-AMPH; a spreadsheet program to classify micro-probederived amphibole analysis. //Computers and Geosciences. 1994.V 20. (7-8). P. 1201-1228.
- 56. Van Achterberg E., Griffin W.L., Steinfenhofer J. Metasomatism in mantle xenoliths from Letlhakane kimberlites estimation of element fluxes // Contrib. Mineral.0 Petrol. 2001. V. 141. P. 397-414.
- 57. **Spetsius Z.V., Belousova E.A., Griffn W.L., O'Reilly S.Y., Pearson N.J.** Archean sul¢de inclusions in Paleozoic zircon megacrysts from the Mir kimberlite, Yakutia: implications for the dating of diamonds //Earth and Planetary Science Letters. 2002. v.199 pp. 111-126
- 58. Van Keken P. E., Kiefer B., Peacock S.M. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle // Geochemistry, Geophysics, Geosystems. 2002. V. 3. № 10.
- 59. **Wang W.Y. & Gasparik T.** Metasomatic clinopyroxene inclusions in diamonds from the Liaoning province, China // Geochim. Cosmochim. Acta. 2001. V. 65. P. 611-620
- 60. Wood B.J. 1991 Oxygen barometry of spinel peridotites. // Rev. Mineral. v 25 pp. 417 -432.
- 61. **Zack T., Brumm R.** Ilmenite/liquid partition coefficients for 26 trace elements determined through ilmenite/clinopyroxene partitioning in garnet pyroxenites // 7th International Kimberlite Conference. Extended abstracts. Cape. Town, 1998, 702-704.