ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ ГЕОЛОГИЯ И РАЗВЕДКА 2006, № 6

ТЕХНИКА ГЕОЛОГО-РАЗВЕДОЧНЫХ РАБОТ

УДК 550.362

Д.Е. МИКЛАШЕВСКИЙ, Ю.А. ПОПОВ, В.А. ВЕРТОГРАДСКИЙ, И.О. БАЮК

ИЗМЕРЕНИЯ КОМПОНЕНТ ТЕНЗОРОВ ТЕПЛОПРОВОДНОСТИ И ТЕМПЕРАТУРОПРОВОДНОСТИ ГОРНЫХ ПОРОД ПРИ ПЛАСТОВЫХ ТЕРМОБАРИЧЕСКИХ УСЛОВИЯХ

Описаны новые метод и аппаратура, обеспечивающие измерения компонент тензоров тепло- и температуропроводности горных пород при одновременном воздействии повышенной температуры и трех компонентов давления (вертикального и бокового горного и порового). Приведены результаты метрологического контроля разработанной измерительной аппаратуры, проводившегося с использованием эталонов тепло- и температуропроводности и установки оптического сканирования для прецизионных неразрушающих измерений тепловых свойств минералов, горных пород и руд. Описаны результаты определения компонент тензора теплопроводности монокристалла кварца, являющегося природным эталоном анизотропии тепловых свойств, при совместном влиянии повышенных температуры (до 140°С) и давления (до 130 МПа). Проведено сравнение результатов измерений с прежними экспериментальными данными.

Данные о тепло-, температуропроводности и объемной теплоемкости горных пород при пластовых температурах (*T*) и давлениях (*P*) с учетом анизотропии пород необходимы при решении фундаментальных и прикладных задач геотермии, математическом моделировании процессов тепло- и массопереноса в горном массиве, при рассмотрении различных горно-геологических и геолого-геофизических проблем.

Разработанные методы теплового каротажа, позволяющие определять тепловые свойства горных массивов непосредственно в скважинах [1, 11, 16, 18, 20], в настоящее время не получили широкого внедрения ввиду значительной продолжительности измерений, недостаточного радиуса влияния и сложности учета конвекции скважинного флюида на результаты измерений.

К основным работам, посвященным лабораторным измерениям теплопроводности образцов пород при раздельном или одновременном воздействии температуры и давления, можно отнести труды П. Бриджмена [2], А. Бэка [15], К. Хорая [17], Д. Прибноу [24], Д. Сасса [25], У. Зейпольда [26], А.А. Курбанова [6], Т.С. Лебедева [7], Е.И. Любимовой [8], И.М. Абдулагатова [14], С.Н. Эмирова [13], В.Г. Попова [21].

Главные недостатки аппаратурно-методической базы, ранее разработанной для подобных измерений [13, 14, 24, 26], следующие: 1) измерения возможны лишь на образцах пород малых размеров, что обусловливает существенное влияние тепловой неоднородности горных пород на получаемые результаты [13, 14, 24, 26]; 2) отсутствуют данные о метрологическом контроле описанных установок [13, 14, 24, 26]; 3) изучение тепловых свойств происходит при раздельном влиянии T и P [26]; 4) измерения возможны лишь при низком уровне давления (не более 40 МПа) [24]; 5) не обеспечиваются измерения температуропроводности [13, 14, 24, 26].

Для изучения тепловых свойств горных пород при нормальных и повышенных термобарических условиях наибольшее распространение получили методы: 1) разделенного стержня [25]; 2) линейного источника тепла [15]; 3) оптического сканирования [9]. Показано [22], что метод разделенного стержня целесообразно применять для метрологического контроля средств измерений, метод оптического сканирования имеет преимущества при неразрушающих измерениях тепловых свойств минералов, пород и руд в нормальных термодинамических условиях. Для измерений при пластовых условиях рекомендуется применять метод линейного источника [22], который и был положен в основу новой разработки. Вместе с тем в ходе новой разработки предстояло устранить серьезный недостаток данного метода, связанный с тем, что при двукратных измерениях на одном образце породы при различной ориентации линейного источника возможно существенное влияние необратимых изменений свойств образца, появившихся во время первого цикла измерений.

Теоретические основы метода измерений

Измерения теплопроводности. Температура линейного источника тепла, находящегося в однородной бесконечной среде, изменяется со временем, согласно формуле [4]:

$$T(t) = \frac{2\alpha^2 Q}{\lambda \pi^3} \int_0^{\pi} \frac{1 - \exp(-\tau u^2)}{u^3 \Delta(u)} du, \qquad (1)$$

где $\alpha = 2 \frac{C_1}{C_2}$, C_1 и C_2 — удельные теплоемкости со-

ответственно среды и линейного источника, $\tau = \frac{at}{r^2}$,

Q — электрическая мощность на единицу длины линейного источника, *a* — температуропроводность среды, *r* — радиус линейного источника, $\Delta(u) = [uJ_0(u) - (\alpha - hu^2)J_1(u)]^2 + [uY_0(u) - (\alpha - hu^2)Y_1(u)]^2$, $h = \frac{\lambda}{rH}$ — контактное термическое сопротивление,

 λ — теплопроводность среды, H — тепловая проводимость контактного слоя между линейным источником и средой.

Формула (1) широко используется для определения теплопроводности среды с учетом аппроксимации интеграла для больших значений параметра т [12]:

$$\lambda = \frac{Q}{4\pi} \cdot \frac{\ln(t_2/t_1)}{T_2 - T_1},$$
 (2)

где Q — электрическая мощность на единицу длины линейного источника, T_1 и T_2 — температура нагревателя, измеряемая соответственно в моменты времени t_1 и t_2 .

Для анизотропных сред теория метода линейного источника предусматривает возможность измерения компонент тензора теплопроводности в соответствии с формулой [22]:

$$\lambda = [\lambda_a \lambda_b \cos^2 \gamma + \lambda_a \lambda_c \cos^2 \beta + \lambda_a \lambda_c \cos^2 \alpha]^{1/2}, \quad (3)$$

где $\lambda_a, \lambda_b, \lambda_c$ — компоненты тензора теплопроводности, α , β и γ — углы между осью источника и главными осями теплопроводности *A*, *B* и *C* соответственно.

Из (3) следует, что в случае двухмерной анизотропии горных пород для измерений компонент тензора теплопроводности достаточно провести два эксперимента: в одном случае линейный источник должен быть ориентирован параллельно, а в другом — перпендикулярно к плоскости слоистости образца [22].

Измерения температуропроводности. Для определения температуропроводности пород нами использован подход, предложенный для измерений в скважинах И. Кукконеном [19], когда методом оптимизации решается обратная задача с определением значений λ , *а* и контактного сопротивления *h*. Для этого минимизируется следующий функционал:

$$\Psi = \sum_{i=1}^{N} \left[\frac{T_{theor}(t_1; \lambda, a, h) - T(t_i)_{exp}}{T(t_i)_{exp}} \right]^2, \tag{4}$$

где $T(t_i)$ _{theor} и $T(t_i)_{exp}$ — соответственно температура, рассчитанная по (1), и температура, измеренная экспериментально в момент времени t_i после начала нагрева, N — количество экспериментальных точек. Минимизация функционала (4) проводится методом нелинейной оптимизации с ограничениями на значения объемной теплоемкости, которые задаются с учетом литологии изучаемого образца по базе данных об объемной теплоемкости горных пород [5].

Аппаратура для измерений тепловых свойств при повышенных давлениях и температурах

Разработанная экспериментальная установка обеспечивает измерения тепло- и температуропроводности осадочных пород при повышенных температурах и трех независимых компонентах давления — вертикальном и всестороннем боковом горном, а также поровом. Конструктивно прибор разработан так, что линейный источник используется одновременно и как распределенный датчик температуры [3]. Исследуемый образец подготавливают в виде цилиндра высотой 50 и диаметром 50 мм. Благодаря представительным (по отношению к предыдущим аналогичным разработкам) размерам образца и применению распределенного датчика температуры уменьшается влияние тепловой неоднородности образца на результаты измерений.

Разработанная экспериментальная установка обеспечивает измерения теплопроводности в интервале (0,2—15) Вт/(м · К) в интервале температур от 20 до 300°С. Каждая компонента давления может независимо задаваться в диапазоне от 0,1 до 250 МПа.

Метрологические исследования экспериментальной установки

Для создания метрологического обеспечения использован набор эталонов тепло- и температуропроводности, состоящий из пяти видов технических стекол (оргстекло, ТФ-1, К-8, ЛК-5, КВ), двух видов металлов (титановый сплав ВТ-6 и нержавеющая сталь 12Х8Н10Т), семи природных материалов (различные виды мрамора, диабаз, филлит), керамики и монокристалла кварца (эталона анизотропии тепло- и температуропроводности [22]). Эталоны прошли поверку в метрологических организациях и перекрывают по тепловым свойствам диапазон свойств пород и минералов [23].

По результатам метрологических испытаний на эталонах полная погрешность измерений теплопроводности на разработанной установке при нормальных *PT* условиях оценена в $\pm 4\%$ (при доверительной вероятности 0,95). Дополнительный метрологический контроль измерений λ при нормальных *PT* условиях осуществлен в результате измерений на 49 образцах осадочных пород и сопоставления этих результатов с данными, полученными на прецизионной установке оптического сканирования (рис. 1). Расхождение данных, полученных с помощью двух методов, не превысило 5%. Несколько более высокую, по сравнению с измерениями на эталонах, погрешность можно объяснить влиянием неоднородности пород.

Метрологические исследования установок для изучения тепловых свойств при одновременном воздействии температуры и давления затруднительны, поскольку, за исключением монокристаллов кварца, не существует достаточно надежных эталонов теплопро-

водности для таких измерений. Монокристаллы кварца обладают стабильной тепловой анизотропией и высокой стабильностью тепловых свойств для всех разновидностей. Теплопроводность кварца при одновременном воздействии давления (до 5,3 ГПа) и температуры (до 350°С) изучена достаточно хорошо [15].

Для одновременного определения компонент тензоров тепло- и температуропроводности при повышенных значениях температуры, вертикального, бокового и порового давления нами разработана измерительная ячейка, позволяющая разместить в образце одновременно два линейных источника, ориентированных во взаимно-перпендикулярных направлениях (рис. 2). Согласно теоретическим основам метода линейного источника [22]. измерения теплопроводности при ориентации источника вдоль главной оптической оси С монокристалла кварца позволяют определить компоненты λ_{а,b} тензора теплопроводности вдоль главных оптических осей А и В. В случае, когда линейный источник ориентирован перпендикулярно к оси С, определяется эффективное значение теплопроводности $\lambda_{3\phi\phi}$, связанное с компонентами тензора формулой $\lambda_{abb} = \sqrt{\lambda_{ab}} \lambda_c$, которая использовалась для определений компоненты тензора теплопроводности λ_c по измеренным значениям $\lambda_{a,b}$ и $\lambda_{a,b}$. Для уменьшения взаимного влияния линейных источников и потенциальных отводов и уменьшения количества электрических выводов из камеры высокого давления линейные источники используются одновременно и как потенциальные отводы.

Для метрологического контроля установки были проведены измерения компонент тензоров тепло- и температуропроводности на образце монокристал-

Рис. 1. Сопоставление результатов измерений теплопроводности методом оптического сканирования (ОС) и линейного источника (ЛИ): 1 – поле корреляции, 2 – расхождение результатов, %

Рис. 2. Схема измерительной ячейки для одновременного измерения компонент тензоров тепло- и температуропроводности при одновременном воздействии температуры, вертикального горного, всестороннего бокового горного и порового давлений

лического кварца при нормальных и повышенных термобарических условиях. Контрольные значения компонент тензоров λ и *а* при нормальных условиях определялись методом оптического сканирования, который можно отнести к прецизионным средствам измерений [10]. Результаты измерений компонент тепло- и температуропроводности монокристаллического кварца при нормальных *PT* условиях и сравнение их с контрольными значениями представлены в табл. 1. Эти данные показали, что систематическое расхождение результатов определения теплопроводности не превышает 3%, а температуропроводности — 10%. Из анализа результатов одновременного

Таблица 1

Метрологические измерения компонент тепло- и температуропроводности монокристаллического кварца при нормальных РТ условиях

Компонента тензора теплопроводности	λ _{эт} , Вт/(м·К)	λ _{им} , Вт/(м·К)	$(\lambda_{m_{3M}} - \lambda_{s_T}) 100 / \lambda_{s_T}, \%$	<i>а</i> _{эт} 10 ⁻⁶ , м²/с	<i>а_{взм} ·</i> 10 ⁻⁶ , м ² /с	(a _{H3} - a _{3T})100/a _{3T} , %
$\lambda_{a,b}$	6,05	5,98	1,2	3,06	2,78	9,2
λ_{c}	10,7	10,4	2,8	5,42	4,95	8,7

Таблица 2

Результаты определения тепловых свойств образцов песчаников

Образец	$\lambda_1, BT/(M \cdot K)$	<i>a</i> ₁ 10 ⁻⁶ , м ² /с	$\lambda_2, BT/(M \cdot K)$	<i>а</i> ² 10 ⁻⁶ , м ² /с	$(\lambda_1 - \lambda_2) 100/((\lambda_1 + \lambda_2)/2), \%$	$(a_1 - a_2)100/((a_1 + a_2)/2), \%$
1	4,25	2,12	4,65	2,43	5	7
2	2,86	1,24	3,00	1,18	3	2
3	2,91	1,44	2,74	1,31	3	5
4	2,85	1,52	2,87	1,30	0,3	7

П р и м е ч а н и е. Индексы: 1 – соответствует измерениям методом линейного источника, 2 – методом оптического сканирования.

измерения компонент тензора теплопроводности монокристаллического кварца при повышенных термобарических условиях и сравнения с аналогичными литературными данными [15] (рис. 3) видно, что различие результатов измерений не превышает суммарной ошибки обоих измерений. Это позволяет сделать вывод о том, что результаты одновременных измерений компонент тензора теплопроводности при повышенных РТ условиях являются корректными. Многочисленные результаты повторных измерений на различных эталонах и образцах горных пород показали, что воспроизводимость экспериментальных данных (характеризующая случайную погрешность) при высоких давлениях и температурах не превышает ±3% для тепло- и ±6% для температуропроводности (при доверительной вероятности 0,95), а полная погрешность не более 5% для тепло- и 10% для температуропроводности.

Разработанная аппаратура протестирована на образцах песчаника (табл. 2). Относительное расхождение результатов, полученных путем измерений методами линейного источника и оптического сканирования, для λ и *а* не превышает соответственно 5 и 7 %.

Выводы

1. Разработанные теоретическая база и экспериментальная установка обеспечивают одновременные измерения компонент тензоров теплопроводности и температуропроводности минералов и горных пород при совместном воздействии температуры в диапазоне 20—300 °С и давления в диапазоне 0,1—250 МПа, при раздельном действии вертикального горного, всестороннего бокового горного и порового давления.

2. Метрологические испытания разработанной экспериментальной установки показали, что случайная погрешность измерений при высоких давлениях и температурах не превышает $\pm 3\%$ для тепло- и $\pm 6\%$ для температуропроводности (при доверительной вероятности 0,95) при полной погрешности не более 5% для тепло- и 10% для температуропроводности.

Работа выполнена при поддержке международной компании Schlumberger Oilfield Services, работающей в нефтегазовой промышленности, и РФФИ (гранты № 00-05-72021, 05-05-64879).

ЛИТЕРАТУРА

- Бабаев В.В., Будимка В.Ф., Сергеева Т.А. Теплофизические свойства горных пород. М.: Недра, 1987. 156 с.
- Бриджмен П.В. Новейшие работы в области высоких давлений. Пер. с англ. А.И. Лихтера / Под ред. Л.Ф. Верещагина. М.: Изд-во иностр. лит, 1948. 296 с.
- 3. В ертоградский В.А., ПоповЮ.А., Миклашевский Д.Е. Методи установка для измерений теплопроводности горных пород при высоких давлениях и температурах // Изв. вузов. Геология и разведка. 2003. № 5. С. 47-51.
- 4. Карслоу Г., Егер Д. Теплопроводность твердых тел. М.: Наука, 1964. 487 с.
- 5. К о р о б к о в Д.А. Исследования тепловых свойств осадочных пород методом оптического сканирования. Дисс. ... канд. тех. наук. М., 2006. 184 с.
- 6. К у р б а н о в А.А. Закономерности изменения теплофизических свойств флюидосодержащих коллекторов в пластовых *P-T* условиях и способы их применения. Махачкала, 2000. 226 с.
- 7. Лебедев Т.С., Корчин В.А., Савенко Б.Я., Шаповал В.И., Шепель С.И., Буртни П.А. Петрофизические исследования при высоких *РТ*-параметрах и их геофизические приложения. Киев: Наук. думка, 1988. 248 с.

- Любимова Е.И., Масленников А.И., Ганиев Ю.А. О теплопроводности горных пород при повышенных температуре и давлении в водо- и нефтенасыщенном состоянии // Изв. АН СССР. Сер. Физика Земли. 1979. № 5. С. 87-93.
- Попов Ю.А. Теоретические модели метода измерения тепловых свойств горных пород на основе подвижных источников тепловой энергии // Изв. вузов. Геология и разведка. 1983. № 9. С. 97-103.
- 10. Попов Ю.А., Пименов В.П., Тертычный В.В. Достижения в области геотермических исследований нефтегазовых месторождений // Нефтегазовое обозрение. 2001. № 6 (1). С. 4–11.
- Чекалюк Е.Б. Термодинамика нефтяного пласта. М.: Недра, 1965. 238 с.
- 12. Шашков А.Г., Волохов Г.М., Абраменко Т.Н., Козлов В.П. Методы определения теплопроводности и температуропроводности / Под. ред. А.В. Лыкова М.: Энергия, 1973. 336 с.
- 13. Эмиров С.Н., Цомаева Т.А., Аскеров С.Я. Теплопроводность песчаников в условиях высоких давлений, температур и флюидонасыщения // Геофизический журнал. 1997. № 2. С. 68-71.
- 14. Abdulagatov, I.M., Emirov, S.N., Tsomaeva, T.A., Gairbekov, KH.A., Askerov, S.Ya., Magomedova N.A. Thermal conductivity of fused quartz and quartz ceramic at high temperatures and high pressures. // Journal of Physics and Chemistry of Solids. 2000. N 61, P. 779-787.
- Beck A. E., Darbha D.M., Schloessin H.H. Lattice conductivities of single-crystal and polycrystalline materials at mantle pressure and temperatures // Physics of the Earth and Planetary Interiors. 1977. N17. P. 35-53.
- 16. Burkhardt H., Honarmand H., Pribnow D. Test measurements with a new thermal conductivity borehole tool // Tectonophysics. 1995. N 224. P. 161-165.
 17. Horai K, Susaki J. The effect of pressure on the thermal
- Horai K, Susaki J. The effect of pressure on the thermal conductivity of silicate rocks up to 12 kbar // Physics of the Earth and Planetary Interions. 1989. N 55. P. 292-305.
- Kiyohashi H., Okumura K., Sakaguchi K., Matsuki K. Development of direct measurement method for thermophysical properties of reservoir rocks in situ by well logging // Proceedings

World Geothermal Congress 2000, 2000, Kyushu-Tohoku, Japan, May 28 – June 10. Japan, 2000. P. 54–61.

- 19. Kukkonen I., and Huotari T. Measurement of thermal conductivity and diffusivity in situ: Literature survey and theoretical modeling of measurements // Working Report 1999 01. Geological Survey of Finland, Posiva OY. Finland 1999. 69 p.
 20. Kukkonen L. Surda L. Surda J. Surda
- 20. Kukkonen I., Suppala I., Sulkanen K., Koskinen T. Measurement of thermal conductivity and diffusivity in situ: measurements and results obtained with a test instrument // Working Report 2000-25, Geological Survey of Finland, Posiva OY. Finland, 2000. 55 p.
- 21. Popov V.G., Petrunin G.I., Ladygin V.M. Interrelation of thermal characteristics and structural-textural performances of basalts // Proceedings of the International Conference «The Earth's Thermal Field and Related Research Methods». Moscow, 2002. P. 211-214.
- Popov Yu., Pribnow D., Sass J., Williams C., Burkhardt H. Characterization of rock thermal conductivity by high-resolution optical scanning // Geothermics. 1999. N 28. P. 253-276.
- 23. Popov Yu.A., Korobkov D.A., Miklashevskiy, D.E. Thermal diffusivity measurements: new experimental and theoretical background and results // Proceedings of the International Conference «The Earth's Thermal Field and Related Research Methods». Moscow, 2002. P. 214-218.
- Pribnow D., Williams C., Sass J.H., Keating R. Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25 to 300 C // Geophysical Research Letters. 1996. N 23 (4). P. 391–394.
- 25. Sass J.H., Stone C., Munroe R.J. Thermal conductivity determinations on solid rock - a comparison between a steady-state divided bar apparatus and a commercial transient line-source device // J. Volcan. Goetherm. Res. 1984. N 20 (1/2). P. 145-153.
- Seipold, U. Depth dependence of thermal transport properties for typical crustal rocks // Phys. Earth Planet. Inter. 1992. N 69. P. 299-303.

Российский государственный геологоразведочный университет Рецензент — В.Б. Свалова

УДК 622.277

В.П. ДРОБАДЕНКО, Н.А. ПУЧКОВ

ИССЛЕДОВАНИЕ ЗАКОНОМЕРНОСТЕЙ НЕЙТРАЛИЗАЦИИ ВЫЩЕЛАЧИВАЮЩИХ РАСТВОРОВ СЕРНОЙ КИСЛОТЫ

Рассмотрено химические взаимодействие выщелачивающих растворов серной кислоты с породообразующими минералами, определяющее в основном расход реагента и солевой состав продуктивных растворов. Для прогнозирования расходов реагента во времени и от удельного объема подачи выщелачивающих растворов предложены соответствующие формулы. Установлено влияние на закономерности протекания процессов нейтрализации выщелачивающих растворов, а также содержания сульфидной серы, концентрации серной кислоты, плотности подачи растворов и реагента, среднего размера рудного материала, коэффициента его фильтрационной анизотропии на нейтрализующую и растворопоглощающую способность руд.

Закономерности нейтрализации технологических растворов определяют не только реагентоемкость, но и кинетику процессов подземного, отвального, кучного выщелачивания, а соответственно и солевой состав продуктивных растворов. Исследования процессов нейтрализации растворов серной кислоты (табл. 1) базировались на результатах выщелачивания смесей урансодержащих руд с различными химическим и литологическим составами. Последний на 64—100% представлен плохо проницаемыми разновидностями пород. При этом учитывали, что 75% и более свободного сульфат-иона в выщелачивающих растворах расходуется на образование сульфатов кальция, магния, железа и алюминия (табл. 2) вследствие протекания следующих химических реакций: