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Abstract

We present a new approach for modelling annealing of fission tracks in apatite, aiming to address various problems with existing
models. We cast the model in a fully Bayesian context, which allows us explicitly to deal with data and parameter uncertainties and cor-
relations, and also to deal with the predictive uncertainties. We focus on a well-known annealing algorithm [Laslett, G.M., Green, P.F.,
Duddy, I.R., Gleadow. A.J.W., 1987. Thermal annealing of fission tracks in apatite. 2. A quantitative-analysis. Chem. Geol., 65 (1),
1-13], and build a hierachical Bayesian model to incorporate both laboratory and geological timescale data as direct constraints. Relative
to the original model calibration, we find a better (in terms of likelihood) model conditioned just on the reported laboratory data. We
then include the uncertainty on the temperatures recorded during the laboratory annealing experiments. We again find a better model,
but the predictive uncertainty when extrapolated to geological timescales is increased due to the uncertainty on the laboratory temper-
atures. Finally, we explictly include a data set [Vrolijk, P., Donelick, R.A., Quenq, J., Cloos. M., 1992. Testing models of fission track
annealing in apatite in a simple thermal setting: site 800, leg 129. In: Larson, R., Lancelet, Y. (Eds.), Proceedings of the Ocean Drilling
Program, Scientific Results, vol. 129, pp. 169-176] which provides low-temperature geological timescale constraints for the model
calibration. When combined with the laboratory data, we find a model which satisfies both the low-temperature and high-temperature
geological timescale benchmarks, although the fit to the original laboratory data is degraded. However, when extrapolated to geological
timescales, this combined model significantly reduces the well-known rapid recent cooling artifact found in many published thermal
models for geological samples.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Fission track analysis is widely used to constrain the
low-temperature thermal history of rocks in the upper part
of the Earth’s crust, relying on the thermally activated
shortening, or annealing, of the meta-stable fission tracks.
Both zircon and apatite are used for analysis, and the latter
is generally considered to be better calibrated in terms of
annealing. To date, these calibrations rely on empirical
model formulations, typically aiming to capture the tem-
perature and time dependence of track shortening in terms
of a linear dependence on time, and exponential in temper-
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ature (or log in time, and linear in temperature). Further-
more, they are generally based on laboratory experiments
which are performed on timescales of less than 1 year,
and typically much less (e.g., Green et al., 1986; Carlson
et al., 1999; Barbarand et al., 2003a). A common criticism
of these empirically calibrated models is the lack of real
physics. However, a more practical problem is the uncer-
tainty introduced through the extrapolation of the labora-
tory-calibrated models (<1 year) to geological timescales
(10°-108 years).

A consequence of this extrapolation when modelling
thermal histories from apatite fission track data with cer-
tain annealing models (e.g., the widely used Laslett et al.,
1987) is the introduction of rapid recent cooling from
around 60 °C to surface temperatures. This apparent arti-
fact is particularly pronounced when dealing with samples
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collected from surface outcrop, showing relatively old ages
(150-250 Ma) and short mean track lengths (11-12 um). A
likely cause of this is that the annealing model does not
adequately capture subtle low-temperature annealing
behaviour over geological timescales.

In this contribution, we address this extrapolation prob-
lem explicitly by calibrating the model with both laborato-
ry and geological timescale data. In doing this, we adopt a
Bayesian approach to quantify the annealing model, and its
uncertainties, focussing on the well-known Laslett et al.
(1987) annealing model for Durango apatite, although
the methodology we present is more generally applicable.
The method takes into account uncertainty in the thermal
history based on the field (geological) data, as well as that
inherent when calibrating the annealing model solely on
laboratory data, including the uncertainty on the laborato-
ry temperature measurements.

The remainder of this paper is structured so that after
briefly describing fission track and Bayesian models in Sec-
tions 2 and 3 we gradually build up the complexity of the
model, conditioning it on an increasing amount of data.
Throughout this work we focus on assessing how well
our models honour the constraints, and in particular,
how applicable the annealing models are when extrapolat-
ed to geological time scales.

2. Fission track annealing models

A typical fission track analysis consists of measuring a
series of confined horizontal track lengths, and counting
the number of surface intersecting tracks in apatite or zir-
con. As the rate of formation of natural or spontaneous
tracks (from >*3U) is effectively constant, and newly formed
tracks are assumed to have a more or less constant initial
length, their length distribution can be used to infer the
thermal history of the host rock if a quantitative annealing
model is used, e.g., Gallagher (1995).

In order to quantify the annealing behaviour, the ap-
proach to date has been to anneal artificial, or induced,
tracks (from 2*U) over a range of different temperature
and time conditions (Green et al., 1986; Carlson et al.,
1999; Barbarand et al., 2003a). Wendt et al. (2002) under-
took a series of experiments to assess the role of pressure.
They inferred some pressure and stress influence on anneal-
ing, although this influence remains controversial (e.g.,
Kohn et al., 2003) and we do not consider this further.

When considering fission track length data and a ther-
mally activated annealing process, the model has typically
been formulated in terms of the reduced track length ratio,

(2.1)

where / is the measured track length on an annealed sam-
ple, and /; is the length of an unannealed track. Although
there is some evidence of very short term room temperature
annealing from around 17 pm over 2-3 weeks (Donelick

et al., 1990), the effective value of [ is inferred to be stable
at around 16-16.3 pm (Green et al., 1986), with some
dependence on the observer and sample preparation condi-
tions, as well as the track orientation (Barbarand et al.,
2003b).

To model annealing under different temperature and
time conditions, we need some annealing function A4, to re-
late time and temperature to the observed reduced track
length, i.e.,

r=A(T,1,B), (22)

where T refers to isothermal temperature in kelvin, 7 is the
time in seconds at temperature 7, and f is a vector of
parameters to be inferred from observations.

Historically, the most popular annealing model is the
fanning model of Laslett et al. (1987), which we shall refer
to as the Laslett model in this paper. There are other
annealing models which are based on the same general for-
mulation (i.e., annealing has a linear dependence on time
and exponential on temperature), with a set of empirical
parameters to be determined from laboratory annealing
experiments, i.e., f as mentioned above (e.g., Crowley
et al., 1991; Laslett and Galbraith, 1996; Ketcham et al.,
1999). The model presented by Carlson (1990) was formu-
lated in a more obvious chemical kinetic way in terms of
the unknown parameters, in the hope that some of these
would be amenable to direct measurement to provide more
insight into the mechanisms of annealing. The various
models have been reviewed in detail by Ketcham et al.
(1999), who also discuss the relevance of the empirical
models in providing insights into the underlying physical
processes. Briefly, they suggest that the observed annealing
behaviour may reflect defect elimination via a distribution
of activity energies, rather than a single value as proposed
by Carlson (1990). The detail of the distribution changes as
annealing progresses and also is likely to be a function of
composition. However, the calibration of a multiple activa-
tion energy model is a non-trivial task, requiring knowl-
edge of the distribution of defects, or the positions and
nature of atoms along a track. If the positions of all atoms
in a newly formed track could be specified, then some form
of molecular dynamics simulation may be a feasible way
forward (e.g., Chartier et al., 2001).

The original Laslett model is formulated in two basic
functions, given as

g(r) =co+ a1 T(In(t) + c2), (2.3)
where the transformation of r is given by

1 —r)/b)" -1
o(r) = (( )/b)" — 1 (2.4)

a

Thus, the vector of unknown annealing parameters in (2.2)
is given by B = {co,c1,¢2,a,b}, whose order we shall retain
for the remainder of this paper, to facilitate comparison to
the original work of Laslett et al. (1987). The first of the
functions (RHS of (2.3)) captures the common Arrhenius
type relationship between temperature, time and the degree
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or rate of reaction, whilst the second is a variation on the
Box—Cox transform, used in this case under the assumption
that the transformed data will have a constant residual var-
iance (Box and Cox, 1964). The Laslett model and the asso-
ciated parameters were originally constrained using a series
of laboratory annealing experiments on the Durango apa-
tite, performed on newly formed (i.e., induced) fission
tracks, under different time-temperature conditions (see
Green et al. (1986) for a description of the experiments
and data). The model parameters were subsequently esti-
mated using a maximum likelihood optimisation tech-
nique. The final model parameters, f.,, reported in
Laslett et al. (1987) are given in Table 1, and the initial
track length used in the model was fixed at 16.3 um. These
values will be used as a performance benchmark for evalu-
ating the Bayesian approach we present in this paper.
This model produces non-linear behaviour in the rate of
annealing, which increases with the degree of annealing.
When extrapolated to geological timescales (Green et al.,
1989), the model predicts that total annealing (equivalent
to a reduced track length of around 0.4-0.5) will occur
around 100-120 °C, depending on the heating duration.
This behaviour is broadly similar to the high-temperature
sensitivity observed in geological samples from exploration
wells in the Otway Basin, SE Australia (Green et al., 1989).
However, when used to model cooling histories for rock
samples currently on the Earth’s surface, a variety of stud-
ies have inferred that the model does not capture the
low-temperature, long timescale annealing behaviour well.
Perhaps the most convincing demonstration of this is based
on the data of Vrolijk et al. (1992), who used volcanogenic
sediments from an Ocean Drilling Program (ODP) well
which have a maximum burial depth of a few 100 m. Using
a well-constrained forward thermal history simulation, the
Laslett model predicts mean track lengths up to 1 um long-
er than observed. This seems to be a result of the Laslett
model underpredicting the degree of annealing at low tem-
peratures (60 °C) for geological timescales. A corollary of
this is that when using the model to constrain thermal his-
tories directly from observed data (e.g., Gallagher, 1995),
the inferred thermal histories tend to reside at tempera-
tures > 60 °C until very recently. This is particularly acute
for geological samples with old apatite fission track ages

Table 1

(200 m.y.) and short mean track lengths (<12 pm). This is
the rapid recent cooling mentioned earlier.

One recent approach to dealing with this problem is to
introduce a shorter initial track length [, of around 14.5—
15 um into the model formulation (e.g., Allen et al., 2002;
Kohn et al., 2002; Gunnell et al., 2003). This is justified
heuristically, in that the inferred thermal histories that lack
the rapid recent cooling are more in accord with indepen-
dent geological and geomorphological evidence. Further-
more, Green (1988) effectively invoked an initial track
length of around 14.5-15 um for natural (or spontaneous
tracks) to reconcile the relationship between track length
and track density observations for laboratory and geolog-
ical data sets. This rescaling was invoked to account for
natural long-term annealing. Laslett and Galbraith (1996)
proposed a revised model formulation in which the initial
track length was estimated from the data. However, the
validity of this approach has been questioned by Ketcham
et al. (1999) in that it is not clear what this estimated ‘in-
stantaneous’ initial length represents in terms of a measur-
able parameter even over short laboratory timescales.

In experimental rock deformation, it has been pointed
out (Paterson and Wong, 2005) that, when extrapolating
laboratory data to geological timescales, the rate determin-
ing deformation mechanism may change depending on the
timescale of interest. Given the very rapid low-temperature
annealing observed by Donelick et al. (1990) over 2-3
weeks, then a period of longer term (at least 10 years) sta-
bility where the mean track length is around 16.3 pm (A.J.
Hurford, pers. comm., 2006), this may also be the case for
fission track annealing over such timescales. Unfortunate-
ly, at the moment, the physical mechanism of annealing
of fission tracks in natural samples is not well understood
at any timescale.

Therefore, the current situation is that we have labora-
tory timescale annealing data, and limited geological con-
straints. However, we do not know the mechanism of
annealing nor whether it changes depending on the time-
scale. Given that all previous studies have assumed a com-
mon model over all timescales, we will follow that
assumption and retain the form of the original model from
Egs. (2.3) and (2.4). However, we develop a formal proba-
bilistic approach, allowing us to include explicitly all of the

Values for the parameters, B, for the Laslett et al. (1987) model, the ranges used for the uniform distribution prior on each parameters, and the Bayesian
models conditioned only on the laboratory annealing data (MAP1), conditioned on the laboratory annealing and allowing for uncertainty in the
laboratory temperature data (MAP2), and conditioned on laboratory and geological data (Vrolijk et al., 1992), and allowing for uncertainty in the

laboratory temperature data (MAP3)

Model Co c [ a b LL
Laslett —4.87 0.000168 28.12 0.35 2.7 133.3
Prior upper limit —2.83 0.0005 32.61 0.61 44 —
Prior lower limit —12.05 0.0001 23.81 -0.27 -1.1 —
MAPI —4.20 0.000140 27.90 0.42 3.1 137.9
MAP2 —3.38 0.000103 28.24 0.52 35 138.2
MAP3 —4.30 0.000164 24.46 0.46 2.1 129.4

LL is the negative log-likelihood as defined in Laslett et al. (1987).
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available data when inferring the model parameters. Thus,
we will use constraints from both laboratory and geological
studies in the model estimation process. In this case, we
might expect to compromise the quality of the fit to the lab-
oratory data when including geological data. This may re-
flect a change in the annealing mechanism, or merely the
statistical uncertainty arising from the data acquisition
and fitting processes.

3. A Bayesian formulation for annealing models

In this paper, we have opted for a Bayesian approach,
allowing us to incorporate a range of model parameters
as well as data from a variety of sources within a fully
probabilistic framework. This allows us to access the level
of uncertainty directly in our approach, something which
previously has only been advanced in a relatively ad hoc
fashion.

For example, in an earlier study, Jones and Dokka
(1990) have considered the influence of uncertainties in
the model parameters, ¢, and c¢; (see Eq. (2.3)). They
implemented a simple Monte-Carlo simulation, and used
normal distributions with a standard deviation equal to
the standard error on the mean estimates of the two
parameters. Also, they adopted a normal distribution
(with an unspecified variance) on g(r), 7 and Tln(z), thus
estimating a perturbed value for ¢j. It is not clear from
their paper whether they allow for covariance between
the model parameters, nor is there a robust estimate of
the quality of the data fit for the simulations. However,
they conclude that a relative uncertainty of 8% is appro-
priate for the reduced track length from two laboratory
timescale simulations, equivalent to about twice the typi-
cal measurement error.

Laslett and Galbraith (1996) used a revised formula-
tion of the original Laslett model, but applied to different
laboratory data. The revised model allows for the initial
track length to be estimated, and explicitly deals with
the variance in the observed data (rather than assuming
a constant variance on a transform of the data). They
used a maximum likelihood approach and constructed
profile likelihoods and confidence regions for some of
the parameters. Unfortunately, they did not consider the
original data of Green et al. (1986), and so a direct com-
parison to the original model of Laslett et al. (1987) is not
possible.

Our new approach differs significantly from these stud-
ies. Here, we use Markov chain Monte Carlo (MCMC)
to sample the parameter space, and deal directly with the
appropriate data likelihood as a measure of the data fit
for both laboratory and field (geological timescale) data.
This approach of sampling the model parameter space al-
lows us to readily estimate probability distributions on
the estimated parameters. One of our aims is to compare
the results of this probabilistic approach to the results of
Laslett et al. (1987), and so we use the same basic model
formulation, and the same Durango dataset.

3.1. Bayes’ theory

We shall now give some brief background to the Bayesian
approach and how it can be implemented using MCMC. For
more discussion on the Bayesian approach, we refer the read-
er to Lee (1989), Bernardo and Smith (1994), and Gilks et al.
(1996), and to Denison et al. (2002) for a detailed description
of the Bayesian approach to regression problems. A detailed
exposition of the philosophical distinctions between Bayes-
ian and the traditionally more familiar Frequentist
approaches is beyond the scope of this paper, but Bernardo
and Smith (1994) give a useful overview. However, a key dif-
ference between Bayesian and Frequentist methods is that in
the Bayesian framework we assume there is a range of plau-
sible model parameterisations, rather than a single ‘true’ set
of parameters 0. Then, we condition our inference on the ob-
served data, rather than on a single model. The Bayesian ap-
proach then allows us to directly characterise the uncertainty
in our models, and their resultant predictive densities.

Fundamental to Bayes’ theory is the updating of our be-
lief in (or prior knowledge of) the model parameters using
observed data. The updated knowledge, conditional on the
data likelihood, is then referred to as the posterior. Quali-
tatively this can be written as

Posterior o< Likelihood x Prior (3.1
or formally
p(0|2) < p(Z]0)p(0), (3.2)

where & represents the set of available data, § a vector of
unknown model parameters to be determined (e.g., the
annealing model parameters or an unknown thermal histo-
ry) and a|b means a conditional on b, so p(a|b) implies the
probability of a given b.

In our case, the prior knowledge can take the form of
geological or physical constraints on the thermal history
(e.g., the present day current temperature, the surface tem-
perature at the time of deposition) or information from
previous analyses (e.g., ranges of permissible parameters
in the annealing model). The priors may also express our
intuitive belief in the uncertainty in a set of parameters.
The choice of prior distribution is necessarily subjective,
but is based on the belief regarding the likely values of
the parameter in question. One issue that commonly arises
is the assumption of a relatively uninformative prior, e.g.,
defining a maximum and minimum range and assuming
the all values in this range are equally likely. Often this
assumption is fine, but it is important to bear in mind that
a uniform prior does not remain uniform if we transform
the parameter. Thus, assuming a uniform distribution on
x certainly does not imply a uniform distribution on log(x).
Finally, the form of the likelihood is determined by
assumptions on the model in question, e.g., Gaussian resid-
uals or Poissonian counting statistics.

In this study, we will consider three different structures
for the Bayesian formulation, increasing the complexity
with each structure to allow for three different types of
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data, laboratory timescale track length data, laboratory
timescale temperature data, and finally geological timescale
track length and thermal history data. The relationship be-
tween the data and the unknown parameters in the Bayes-
ian approach can be represented graphically, and in
Appendix A, we give a graphical representation for the for-
mulation of the probability models discussed subsequently.

3.2. Markov chain Monte Carlo

Unfortunately, due to the intractability of the constant
of proportionality (or normalisation) and the high number
of parameters, we cannot solve Eq. (3.2) directly. This leads
us to consider Markov chain Monte Carlo, a technique
synonymous with Bayesian statistics, which allows us to
draw samples from any density up to the proportionality
constant. In practice, we deal with ratios of probabilities
to draw samples, and so the constant of proportionality
cancels out. A key advantage of MCMC sampling is the
immediate access to the level of uncertainty, both in the
parameters (directly given by the range of parameters we
have sampled) and in any predictions we make based on
these parameters.

Although there are a variety of MCMC algorithms, they
are essentially refinements of the Metropolis—Hastings
algorithm, which is the simplest and most general. Here,
we give a brief overview, and more detail on MCMC algo-
rithms, we refer the reader to Gilks et al. (1996) and Den-
ison et al. (2002).

Algorithms proceed iteratively from an initial set of
parameters 60,, and probabilistically propose a transition
or update from samples 6; to 6, ;. We require a pre-defined
proposal function ¢(0,+1]0;), which is itself a probability
density function. We can see that the new model parameter
set, 6,11, is then conditional on the current state of the
parameter set, 0;. These proposed updates are then accept-
ed or rejected according to a transition probability de-
signed to guarantee that those accepted samples are from
the desired stationary distribution p(8|2), i.e., we can sam-
ple from the posterior distribution, without needing to
specify its form.

For example, if § comprised a single parameter 6, we
could choose a normal distribution for the proposal func-
tion, centred on 0,, such that p(0,.1|0;) ~ A"(0;,v) where
v is a variance set at the start of the run.

Once a proposal is made, the step is accepted if

1 P(9i+1)P(9|9i+1)4(0i|9i+1)}

" p(0:)p(210:)9(0::110,)
where u is a random number drawn from uniform distribu-
tion between 0 and 1, and p(0) and p(2|0) are the prior and
data likelihood, respectively, which are proportional to the
posterior, p(0|2), as defined in Eq. (3.2). As we take the ra-
tios of these probabilities, we do not need to know the con-
stant of proportionality (or normalising constant) as it is
the same for both 6, and 0,,, and cancels out. If the pro-
posal function is symmetrical (i.e., ¢(010,+1) = q(0:11]0,)),

u < min { (3.3)

these terms also cancel and we can write the acceptance cri-
terion in terms of just the ratio of the posterior distribu-
tions, p(0;11|2)/p(0:|2). In practice, we always accept
0,4 if it fits the data better than 0,, otherwise, it is accepted
with a probability depending on the posterior ratio, i.e.,

u < min {I,M}.

p(0:|2)

The choice for the proposal functions is arbitrary, in that
the theoretical application of algorithm does not depend
on it. However, the performance, in terms of computation-
al efficiency, does depend on it, and generally some explor-
atory runs are made to tune the proposal functions
appropriately. For example, we need to specify a suitable
value of v in the example above to ensure that proposed
transitions are neither too small so that movement between
different parameter sets is slow, nor too large where few
proposed parameter sets are accepted. The choice of pro-
posal density is typically made by trying to keep the num-
ber of accepted transitions to around 25%.

As 0 is generally a vector of parameters, we have the op-
tion of either proposing and updating each member indi-
vidually in turn using univariate proposal densities
(whilst keeping all other parameters the same, and condi-
tioning on already updated parameters), or ‘blocking’
together groups of parameters and updating each group
in turn. In practice, we are able to combine the transition
stage into a hybrid sampler, so that different parameter
groups are updated with different proposal schemes. The
choice of updating scheme is again largely heuristic.

(3.4)

3.2.1. Maximum a posterior (MAP) samples and credible
intervals

While we will consider the range of possible values for 0,
in order to compare our derived parameters to those of the
original parameters, we will generally make use of the max-
imum a posterior (MAP) sample. This is simply the sample
which has the highest posterior probability (from Eq.
(3.2)). It is analogous to the maximum likelihood estimate
if prior belief is not taken into account. At various stages,
we will be able to integrate analytically over some param-
eters, a process known as marginalisation. In this case
the MAP will be the sample which maximises this margina-
lised posterior probability.

Bayesian methodology additionally allows us to define
95% credible intervals. These will be used throughout our
explanation to demonstrate the level of uncertainty of
our annealing and thermal history model predictions. In
general, the credible intervals should not be confused with
the more frequently used confidence intervals. In certain
circumstances, these can be numerically equivalent but
the interpretation of their meaning is different. For exam-
ple, when estimating a mean, the 95% confidence interval
represents the interval in which the true value will fall
95% of the time, if we could run many repetitions of the
data collection process. In contrast, given the mean esti-
mate (from one realisation of the data), the 95% credible
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interval represents the region in which we have a probabil-
ity of 0.95 of containing the true mean value (see Appendix
B, Bernardo and Smith, 1994).

4. Constraining the model with laboratory data

We now establish the formal framework for our Bayes-
ian model of fission track analysis. We use the annealing
model formulation of Laslett et al. (1987) as described in
Section (2), and also the laboratory data of Green et al.
(1986), on which the original annealing model was calibrat-
ed. Here, we want to demonstrate how the Bayesian ap-
proach allows us to quantify the uncertainty in model
parameters, and how this influences the uncertainty in the
model predictions. We will begin by describing the calibra-
tion data and how they were obtained, followed by appro-
priate likelihood and prior densities (as required by Eq.
(3.2)).

The data set described in Green et al. (1986) consists of
ny = 77 measurements of reduced track lengths, r, for Dur-
ango apatite maintained at different isothermal tempera-
tures (95-398 °C) for different periods of time from
20 min to 500 days. Our aim at this stage is to calibrate
the parameterised annealing model A(¢, T, p) using these
data and to assess the uncertainty in the modelling process.
We shall refer to this data set as L= {L”, L'D, [}, refer-
ring to the time, temperature, and track length reduction,
respectively, for the original data set of Green et al. (1986).

At this point, we note the reported possible measure-
ment error in the laboratory temperatures L'”), which is
estimated by Green et al., 1986 to be between +1 and
43 °C. We shall build this information into the model sub-
sequently. For the moment, we fix L'” to the the reported
temperature values. For all subsequent discussion, we fix
L' to the reported laboratory times.

4.1. Bayesian formulation for the annealing model

Initially, therefore we are only concerned with the
annealing model parameters f and the laboratory track
length data L"), The first task is to construct a valid likeli-
hood function for this model and then specify the prior dis-
tributions on the unknown parameters.

As described earlier, the Laslett annealing model formu-
lation has two steps. The first is a generalised Box—Cox
transform of the annealed lengths g(r) (see Eq. 2.4 and
Box and Cox, 1964), followed by the fitting of a second,
function of time and temperature, B(T,¢,co,c1,c>), which
is linear in the unknown parameters (see Eq. (2.3)). The
key assumption is that the errors on the transformed
lengths g(r) are independently normally distributed, with
a constant variance, o> (Laslett et al., 1987). However, we
note that later work by Laslett and Galbraith, 1996 al-
lowed for the observed variance to be included in the model
formulation. Furthermore, the validity of this assumption
has been questioned by Ketcham et al. (1999), who pointed
out that the observations are not consistent with a constant

variance (of the transformed data). Standard error propa-
gation gives the ratio of the transformed variance to the
variance of the reduced track length as

Gé(r) . dg(r)

0 ‘dr7 (4.1)
where

B =y (42)

This shows that the variance ratio increases as r increases
(or g(r)decreases). As stated by Ketcham et al. (1999), this
implies that the longer track lengths potentially contain rel-
atively little information or resolution on the model
parameters.

Accepting there are limitations to the assumption of
constant variance of the transformed data, we make this
to allow direct comparison to the original model of Laslett
et al. (1987). Then the posterior distribution is written as

p(B,a*IL) o< p(L")|B,0*)p(B, o) (4.3)

and as g and ¢° are a priori independent, we can write this
as

p(B,a*|L") oc p(L"|B, a*)p(B)p(). (4.4)
Considering now the terms to the right of the proportion-
ality sign, we can write the full likelihood of the data, using
independent normal distributions on the transformed
lengths, as,

£oipe) = [ (o (20

k 7COaCl;CZ) )J(a7b7L(r))

(4.5)

where J(a,b, L") is a Jacobian term, introduced to account
for the Box—Cox transformation of the data, and is given

by
(L,(c ,a b)

J(a,b, L") = , (4.6)

_.’:1"c

which can be readily calculated for different values of .

The next requirement in the Bayesian formulation is the
definition of the prior distribution over the annealing mod-
el parameters  and o, p(B) and p(¢?). Initially, we choose
uniform priors over the components of f, so that
P(B) = U(Pmin, Pmax), and thus have constant probability
for each parameter existing between some upper and lower
boundary. The uniform distributions are selected using the
parameters of Laslett et al. (1987) as a guideline with a
broad range (see Table 1).

For the prior on the regression variance, 2, we take an
inverse gamma distribution so that

P(Gz) =1G(ny,1,) eXP(_ﬂ2/02) (4.7)

with the fixed parameters n; = #, = 0.01. This distribution
guarantees a positive value, and also provides a diffuse pri-

(0_2)*071“)



Bayesian fission track annealing models 5189

or, expressing our uncertainty in the value of ¢>. The in-
verse gamma is chosen as it is the conjugate prior for the
normal distribution (see Appendix B for a brief discussion
of conjugate priors). This choice enables us to later inte-
grate out, or marginalise (see Bernardo and Smith (1994)
for more details on marginalising parameters), o> from
the expression of the posterior distribution (see below).
In practice, we do not need to sample o, so we can effec-
tively ignore it, treating it as a nuisance parameter, leading
to more efficient sampling algorithms. We now have all we
require to begin sampling the posterior distribution from
Eq. (4.4).

4.2. Sampling strategy

We now describe how we generate new samples from the
desired stationary posterior distribution p (B, ¢?|L") using
MCMC. Fortunately, as all subsequent work does not re-
quire samples of ¢° for predictions and, we can integrate
it out from the posterior, giving

p(BILO) = / (B, |L%) do?

oc (SSP /2 + my) """ D p(B)T (a,b, L),

(4.8)
(4.9)

where SSP is the residual sum of squares given by
gLy = BLY L"), ¢y, ¢1,¢,)]. For more details on
the derivation of these expressions, see Appendix B.

After numerous attempts using Metropolis—Hastings
MCMC with single parameter updates, it became clear that
there is a high level of correlation between the annealing
model parameters. Consequently, we chose to design a pro-
posal function to account for these correlations directly
and used a block update to state f,1, so that all parame-
ters were updated simultaneously and more efficiently.
We used a multivariate normal distribution, centred on
B, with a full (positive definite) covariance matrix, X,
giving

q(Bii1 1B;) = N (B X),

where ./, is a p X p dimension multivariate normal distri-
bution (in the Laslett model p = 5).

The fixed values contained in the 5 X 5 matrix X, were
derived by taking the empirical covariance of the indepen-
dently sampled parameters (using a individual parameter
updating scheme). This matrix was then scaled until a pro-
posal acceptance rate of around 25% was achieved.

The MCMC sampler was then used to draw 10° samples
from p(B|L), before taking every 10th sample to encourage
sample independence. We experimented with longer sam-
pling runs, but it was clear the chain was effectively station-
ary after 10° samples. The annealing model samples and
posterior distributions can be found in Fig. 1. For compar-
ison purposes, we have summarised the Laslett annealing
model parameters fy .5, along with the values fyap;, from
the MAP model sampled during the MCMC runs in Table
1. The MAP model has a slightly higher log-likelihood than

(4.10)

the original Laslett model, ;. although the parameterisa-
tion is the same. As can be inferred from Fig. 1, parameter
¢, 1s relatively uncorrelated with the others, but we show
examples of the strong correlation between the other
parameters in Fig. 2. These parameters have absolute cor-
relation coefficients greater than 0.87. The regions plotted
in this figure broadly correspond to the 95% credible re-
gions for each pair of parameters.

We show the quality of fit to the laboratory annealing
data, L™, in Fig. 3, which shows no significant outliers
or trends in the residuals. The 95% credible intervals (as
indicated by the displayed error bars in Fig. 3(a)), demon-
strate increasing levels of uncertainty as track length re-
duce, whilst still generally capturing the desired 1:1
relationship. Although a wide range of parameters have
been sampled (see Fig. 1), the quality of fit to the data re-
mains consistent and is effectively the same as that obtain
by Laslett et al. (1987).

5. Incorporating uncertainty in the laboratory temperature
data

Given there were errors in the recorded laboratory tem-
peratures of +1 to +3 °C (Green et al., 1986), it is desirable
to include this knowledge in the model calibration. This is
straightforward in the Bayesian framework by using a hier-
archal model (see Appendix A). We then have three sets of
parameters; f which as before is the vector of annealing
model parameters; T as the n;x 1 vector of true (but un-
known) laboratory temperatures, and 4 as a parameter
used to estimate the error in temperature measurements.

Having integrated out the regression variance, o°, as de-
scribed earlier, we can write the posterior distribution for
the laboratory data (cf. (4.4)) as

p(B. T,21L") o< p(L|B, T)p(B)p(T|2)p(4), (5.1)

where we have opted for a hierarchal prior over p(T, 1). As
we can simply substitute T for L'”) in the laboratory data
likelihood, all that remains is to define a suitable form
for the prior density p(T—/2)p(4). The temperature data
may have both random and systematic errors, reflected in
the precision and accuracy, respectively. Here, we do not
deal with systematic errors, which may arise if a thermistor
is incorrectly calibrated for example. In principle, it would
not be difficult to deal with systematic errors, in that we
could specify a prior on the magnitude of this, relative to
the observed temperature. In the absence of information
concerning such errors, we do not pursue this. Here, we
make the assumption that the errors arise in the precision
of the temperature measurements and are normally distrib-
uted. We assume the distributions are centred on the
originally measured temperatures L7, with constant
variance /.

For p(A) we opt for a prior conjugate to the normal dis-
tribution, i.e., the inverse gamma with p(1) = IG(€y,¢,).
This gives up to a constant of proportionality (which we
do not need to know for MCMC sampling)
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Fig. 2. Correlations between a selection of annealing model parameters f, inferred from MCMC sampling. The MAP model is identified for each

parameter pair by the white circle.

ny
p(TIAp(A) o 27V exp(—ea/2) [ JV(L,@, ,1). (5.2)
k=1

The values of ¢; and ¢, are set to values of 0.5 and 6, respec-
tively. These values produce a distribution for /1 with a
mode of 4 and so provide a realistic constraint over the
sampling range of temperature error permitted, assumed
to be up to +10 °C. This range is somewhat larger than
that quoted by Green et al. (1986), but allows for a greater
flexibility in the sampling.

5.1. Sampling the laboratory temperatures

Having added T and 4 to our model, we must now deter-
mine how these will be sampled. As for ¢° previously, we
choose a conjugate form for the prior distribution on A
and so can integrate it out analytically. We then obtain,

p(TIL), B) o p(LY|. T) / (T p(2)d2

ocp(L(’)|[f, T)(SS(T) + 62)_(€1+"L/2)’

(5.3)

(5.4)
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Fig. 3. (a) Length reduction prediction compared with measurements for
Pmapi (based on laboratory annealing data) and Laslett parameters sets,
with error bars representing 95% credible intervals. The inset shows the
distribution of residuals (predicted — observed) for the reduced tack
lengths. The vertical line in the inset indicates a residual of zero. (b)
Arrhenius plot showing the observed data and predicted contours of
constant track length (indicated by the number at the top in pm) for Byapi
(solid line) and Laslett (dashed line) models. The circles indicate those
values where the predicted length is less than the observed value, and the
crosses indicate where the predicted length is greater than the observed
value.

where SS7) = Z‘Zl(L,ET) — Tk)z, i.e., the residual sum of
squares over our temperature predictions (see Section B.2).

Furthermore, as Eq. (2.3) can be written as a linear basis
function model, with a matrix having n; rows, so that the
kth row is given by E; = [1, T 1n L,(f), Ty], we can also mar-
ginalise ¢y, ¢; and ¢; (see Section B.2). As the p(f) term is
constant, it can been dropped and we still maintain the pro-
portionality. This gives a final density of

p(T\L(’),a,b) - \V|_1/2(;7;)7("/2*k/2+"‘>(SSW + 62)—(€1+n/2)
(5.5)

with the terms as defined below

V=(EE)", (5.6)
mh=m+f—ev'e))2, (5.7)
¢=(E'E)'EY, (5.8)

where frefers to a (nz X 1) vector, containing the Box—Cox
transforms g(a, b, L"").

Using the marginalised density p(T]L",a,b), we are in a
position to use Metropolis—Hastings MCMC to sample T.
To maintain simplicity and algorithm efficiency, we choose
to use a full block update on the temperature parameters
(but note these are independent). We draw new values via

Ty ~ N (T;,vel), (5.9)

where Iis a (ny X ny) identity matrix, and vy a scalar param-
eter controlling the size of each Metropolis—Hastings step.
This was again tuned through multiple runs choosing differ-
ent values of vy to provide an acceptance rate of around 25—
30%.

Using this sampling strategy, we ran the algorithm for 10°
iterations, before thinning the chain by taking every 100 sam-
ples. The values for the MAP model, fyiaps, are summarised
in Table 1. In Fig. 4, we plot a histogram of the lab temper-
ature residuals 7% — L*, for each of the 77 measurements.
These are centred around 0 with an average standard devia-
tion of 7.8 °C, and have a 95% credible interval spanning
—16.2 to 16.7°C and a 90% interval spanning —11.3 to
11.6 °C. This range could be reduced by changing the prior
values €; and ¢, if required. However, the sampled tempera-
ture values ( T) for the MAP model are also plotted in Fig. 4.
These are generally within 3 °C of the reported values, simi-
lar to the resolution cited by Green et al. (1986).

Having incorporated the uncertainties in the laboratory
temperatures, we can see the increase in predictive uncer-
tainty by looking at the credible intervals over the predict-
ed reduced track lengths in Fig. 5a. As before, however, the

0.12

Probability density

Residual temperature ('C)

Fig. 4. Distribution of the residuals from the MCMC temperature
sampling. The individual residuals for the MAP2 model are also shown
on the x-axis.
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distribution of the predictions is still centred over the
expected 1:1 relationship. Despite the large increase in
uncertainty, the MAP and Laslett predictions are still close
together and show strong correlation to the original mea-
surements. Thus, despite greatly increasing the parameter
space by adding 7, our sampling methodology over f re-
mains consistent with the observed data.

6. Extrapolation of revised laboratory models to geological
times

Having looked at the consistency of the Bayesian
annealing models with the laboratory data, we will now

a 1 T T T T T
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x  MAP2 1
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os | } {
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Fig. 5. (a) Length reduction prediction compared with measurements for
Pmapz (based on laboratory annealing and laboratory temperature data)
and Laslett parameters sets, with error bars representing 95% credible
intervals. The inset shows the distribution of residuals (predict-
ed — observed) for the reduced tack lengths. The vertical line in the inset
indicates a residual of zero. (b) Arrhenius plot showing the observed data
and predicted contours of constant track length (indicated by the number
at the top in pm) for Bymaps (solid line) and Laslett (dashed line) models.
The circles indicate those values where the predicted length is less than the
observed value, and the crosses indicate where the predicted length is
greater than the observed value.

analyse how well the new f samples extrapolate to geolog-
ical timescales. In Ketcham et al. (1999), a high-tempera-
ture benchmark is given, based on reported fission track
data from volcanogenic sediments in the Otway Basin,
SE Australia. Citing an article by Paul Green in an infor-
mal publication (OnTrack newsletter, No. 11) from 1995,
they state that Durango apatite (0.4wt% Cl) are close to
being fully annealed for (present day) temperatures in the
range 95-100 °C. From Green’s article, it seems also that
by 111 °C, apatites with 0.7% weight Cl are totally an-
nealed (have zero fission track age). The total annealing
temperature depends on the definition of the length at
which the age goes to zero. Ketcham et al. (1999) define
the total annealing temperature (7F) as that required to re-
duce the track length to below r = 0.41, the shortest ob-
served reduced track length over a given time interval.
We have not formally used this information in the anneal-
ing model calibration process, as the thermal histories of
the Otway Basin samples are not particularly well con-
strained. However, to demonstrate the behaviour of these
models relative to this high-temperature benchmark, we
show in Fig. 6 the 95% credible intervals for the amount
of annealing tracks experience over 30 Ma, at different tem-
peratures, for the Byap (the parameters maximising Eq.
(4.9) and also Byap using the parameters maximising
Egs. (4.9) and (5.5) (Fig. 6, i.e., the laboratory annealing
data neglecting and including the uncertainty on the labo-
ratory temperatures, respectively)). We also show the pre-
dicted curve using the Laslett parameters f .

Fig. 6 shows the wide variety of solutions that exist
within the credible intervals, giving a range of 96-115
and 96-133 °C for the 95% credible intervals. These over-
lap the range of temperatures described in Ketcham

Reduced length (r)

0.2 . . . AN
20 40 60 80 100 120 140

Temperature (°C)

Fig. 6. Predictions and 95% credible intervals of the reduced track lengths
with Laslett, MAP1 and MAP2 models extrapolated to geological
timescale (30 Ma), and compared to expected range of results (shaded
box, after Ketcham et al., 1999). MAPI ignores the temperature
uncertainties while they have been explicitly included for MAP2. The
credible intervals for the MAP2 model are broader than for MAPI1.
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Fig. 7. (a) Simple thermal history used in forward model, (b) 95% credible intervals of annealing model predictions using thermal history in (a), with
Laslett (dotted line) and MAPI1 predictions, (c) as (b), but with MAP2 predictions

et al., 1999 although are on the higher end of their range.
Also, the predictions from Laslett and MAP samples are
fairly similar, particularly when we consider the tempera-
ture uncertainties.

With the uncertainty measures available from the Bayes-
ian models, we can also use the posterior samples of the
model parameters to predict the range in track length dis-
tributions using the simple thermal history shown in
Fig. 7(a). The 95% credible intervals for this posterior pre-
dictive density are found in Fig. 7(b) and (c), with the pre-
dicted distribution using the Laslett and MAP models
overlain.

This clearly demonstrates that the range of f samples
permitted by the laboratory data provide a broad range
of track length distributions. All of this added variability
implies greater flexibility in the annealing model parame-
ters than previously considered, and therefore greater
uncertainty in the predictive modelling of fission track
data.

7. Bayesian annealing model calibrated from laboratory and
geological data

In order to assess the influence of including low-temper-
ature geological constraints when estimating the model
parameters with the laboratory annealing data, we use
the data given in Vrolijk et al. (1992), from sample MB7,
obtained courtesy of Ray Donelick. This data set compris-
es an analysis of a deep-sea drill core, which include volca-
nogenic sediments with apatite similar in composition to
Durango apatite, and appears to have experienced an
exclusively low-temperature (<25 °C) history since deposi-
tion some 120 Ma. It is these data that Ketcham et al.,
1999 refer to as their low-temperature benchmark and were
used by Ketcham et al. (1999) to test whether laboratory
defined annealing models could be extrapolated to geolog-
ical time scales, though they did not formally use this infor-
mation in the estimation of the annealing model
parameters. The data are summarised in Fig. 8, showing
the geologically derived thermal history discussed by Vro-

lijk et al. (1992) in (a), and the measured track length dis-
tribution in (b). The data are high quality, consisting of 195
track length (TINT) measurements, yielding an average
track length of 14.5 um, and 45 single grain counts, giving
a central age of 125 Ma. We refer to these new data as V,
and include this dataset into our Bayesian model (see
Appendix A), modifying our posterior predictions of the
annealing model parameters, and sampling the range of
possible thermal histories shown in Fig. 8(a).

7.1. Adpating the laboratory-based Bayesian model

To incorporate the geological timescale data of Vrolijk
et al. (1992), V and the associated thermal history, we write
the full posterior distribution for the new model as

p(L’ V|p7 ¢7 )\’7 T? 0—2)
o p(V19, B)p(LIB. T,a*)p(T|2)p(2p(B)p(¢)p(c?), (7.1)

where we have added p(V]¢, ), which is the likelihood of
the Vrolijk data, conditioned on the annealing model
parameters, and the geological thermal history ¢ for these
data, which requires a new prior term p(¢). The remainder
of the terms have not changed. In the sections to follow we
shall describe these terms, and how we sample from them.
The remaining terms are as previously described.

The likelihood term for the geological data, p(V]¢, B), is
fully described in Gallagher (1995), and takes into account
the observed individual crystal spontaneous and induced
track counts, and how well the annealing model,
A(t, T, B), describes the observed track lengths. It is amend-
ed slightly to allow dependence on the annealing parame-
ters which we allow to change during the sampling.

We parameterise the thermal history, ¢, in terms of
time—temperature nodes, joined with linear segments as de-
scribed in Stephenson et al. (2006) (using a Bayesian ap-
proach) and Gallagher (19995) (using optimised maximum
likelihoods), Although other parameterisations are avail-
able (e.g., splines), by using nodes we can easily include a
priori knowledge, e.g., the temperature or temperature
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Fig. 8. (a) Geologically constrained thermal history, with uniform prior
boundaries. (b) The observed track length distribution, together with the
predictions from the Laslett and MAP3 models. Both taken from Vrolijk
et al. (1992).

range at a given time. This is also the method used in the
majority of work published on thermal histories, allowing
easy comparisons. Here, we fix the number of nodes to
be 6, and place uniform priors on each time and tempera-
ture node, with widths driven by any priori geological
knowledge. This includes uncertainty on whether the ob-
served rifting was Jurassic or Cretaceous, consistent with
the thermal histories described by Vrolijk et al. (1992)
(see Fig. 8(a)). In this case the prior information we have
is relatively well defined, and will therefore influence the
posterior distribution, leading to more geologically rele-
vant samples from f.

We note in passing that the Bayesian framework allows
us to have the number of nodes as another parameter,
using Reversible-Jump MCMC (Green, 1995) to sample
across this variable dimensional parameter space. This
would provide a fully parsimonious thermal history to be
derived, with its complexity governed by the data, rather
than subjective opinion or iterative solutions.

7.2. Sampling the geological timescale models

Again, we use Metropolis—Hastings sampling and the re-
quired marginal distribution, after removing terms that do
not directly influence the geological data (and their predic-
tion), is given by

p(¢|l‘(r)7 V,B, Tv)“vo-z) :p<¢|Vaﬁ> (72)
xp(V|¢,B)p(¢) (7.3)

and this forms the acceptance probability in the MCMC
sampler. Although correlations are likely to exist for indi-
vidual time—temperature nodes, in practice it was not nec-
essary to include these specifically in the sampling strategy.
As such we initially use a univariate normal proposal distri-
bution for each parameter in ¢, centred on the current val-
ue for the parameter and one value of the variance (v) for
time parameters, and another for temperature parameters.
From repeated experiments, it was found that a value of
Viime = 2 Ma and viemp = 1 °C provide reasonable proposal
acceptance rates. In subsequent runs, we used a block up-
date over all of the available thermal history parameters.

After a run of 10° iterations, we use our sampled values
of B and ¢, to run the forward model and compare these to
the observed data, as in Fig. 8(b). Along with the 95% cred-
ible intervals, we plot the the MAP result, and the distribu-
tion produced using fy ... The values of Byapz are given in
Table 1. The MAP result has clearly improved on the track
length density prediction made by fy .. With this result we
can see an MAP mean length of 14.77, with 95% credible
intervals giving a range of 14.56-14.86, compared to the
observed mean of 14.5 um. B, predicts a longer mean
length of 15.14 um, as noted previously by Ketcham
et al. (1999).

An additional check on this model is to examine the
quality of fit to the laboratory data as described in Section
4. In Fig. 9 we compare laboratory measured annealed
lengths, with those predicted using the samples from
and ¢. The numerical fit to the observed lengths is not as
good as the original Laslett model based solely on the lab-
oratory data, and there is a perhaps a tendency to under-
predict the degree of annealing for shorter lengths, and
the two sets of model predictions diverge at the longest
lengths more than the earlier results. There are no lengths
less than 11.3 um (or reduced length of 0.69) in the geolog-
ical dataset. The predictions of the two models in the
Arrhenius plot (Fig. 9(b)) crossover in the range of the
data. However, the general trend of the residuals is still
fairly symmetrical, particularly when the 95% credible
interval range is considered relative to the 1:1 line. As we
are deal with probabilities, there is no need to specify an
explicit weighting between the geological and laboratory
timescale datafits. The degraded quality of the fit to shorter
lengths relative to the earlier models (MAP1, MAP2) re-
flects the information mapped probabilistically from the
geological timescale data into the model parameter esti-
mates. However, the now degraded fit to the laboratory
data implies that the 2 datasets may be inconsistent. Clear-
ly, we need to consider more datasets (both laboratory and
geological), with a greater range in the track length mea-
surements to assess this appropriately.

Finally, the residuals of the temperature data (L,(f) —Ty)
for the 77 laboratory temperature measurements have a
95% credible interval of about 413 °C, and exhibit no obvi-
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Fig. 9. (a) Length reduction prediction compared with measurements for
Pvars (based on laboratory annealing and temperature data, and the
geological timescale fission track data of Vrolijk et al., 1992) and Laslett
parameters sets, with error bars representing 95% credible intervals. The
inset shows the distribution of residuals (predicted — observed) for the
reduced tack lengths. The vertical line in the inset indicates a residual of
zero. (b) Arrhenius plot showing the observed data and predicted contours
of constant track length (indicated by the number at the top in um) for
Pumaps (solid line) and Laslett (dashed line) models. The circles indicate
those values where the predicted length is less than the observed value, and
the crosses indicate where the predicted length is greater than the observed
value.

ous bias. The distributions of these residuals are not
shown, but are similar to those shown in Fig. 4. Again
the majority of the residuals for the MAP model were
<43 °C.

7.3. Extrapolation to geological times

When we extend the track length prediction out to geo-
logical times (as described in Section 6), we can compare
the new MAP and credible range with the temperature
range for the high-temperature benchmark given by Ket-
cham et al. (1999). The MAP fully annealed temperature

lies at 96 °C, as compared to original Laslett model predic-
tion of 104 °C. The reduction in uncertainty is also clearly
apparent on comparing Fig. 6 with that of Fig. 10, with
new 95% credible intervals of 88—112 °C. Having increased
the amount of data that the model is conditioned on, the
level of uncertainty, and range of credible models in the
forward prediction is greatly reduced.

Finally, we return to the problem of rapid recent cooling
mentioned in the introduction. As an example, we use sam-
ple (94-70) from northeast Brazil (Harman, 2000). This
sample has the characteristics of those which, when mod-
elled with the original Laslett model, tend to imply recent
cooling, typically from around 60 °C. This sample has an
apatite fission track age of nearly 200 Ma (based on 20
crystals), and a mean track length of 11.6 um (based on
65 track length measurements). Similar data and thermal
history features have been described from Australia (Kohn
et al., 2002), Ireland (Allen et al., 2002), and India (Gunnell
et al., 2003). Their approach to alleviate this rapid cooling
was to reduce the initial track length in the Laslett model.

Here, we have used the approach described by Gallagher
(1995), sampling 5000 thermal histories, with a genetic
algorithm, using both the original Laslett model, and the
MAP model parameters determined from both the labora-
tory and geological data, as described above, using an ini-
tial track length of 16.3 um in both cases. We show the
results of this exercise in Fig. 11. Here, we can clearly see
the rapid, recent cooling in the inferred thermal histories
using the Laslett model. This cooling starts from around
60 °C at 10 m.y. (the youngest time allowed by the bounds
specified on the input thermal history). The revised model
parameters imply a cooling history in which the rate also
increases. However, the change in rate starts around 50—
70 Ma, and is <0.5 °C per m.y. The cooling rates at higher
temperatures are similar for both models. Therefore, the
incorporation of the low-temperature, geological timescale

Reduced length (r)

“20 40 60 80 100 120 140
Temperature ("C)

Fig. 10. Predicted reduced track length and 95% credible intervals, for
MAP3 extrapolated to geological times (30 Ma).
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Fig. 11. Inferred thermal histories from sample 94-70 from northern Brazil using (a) the Laslett et al. (1987) model, and (b) MAP3 model. The grey boxes
indicate the range of time-temperature parameters sampled. The maximum likelihood thermal history is shown as a heavy line, and the other thermal
histories are effectively within the 95% confidence interval, as defined by the difference in the log likelihoods from the best model (see Gallagher, 1995).

constraints appears to result in an annealing model (if we
choose the MAP sample) that reduces this apparent artifact
considerably. Of course, we do not know the ‘true’ geolog-
ical thermal history in this case, but the lower rate of cool-
ing intuitively seems more reasonable.

8. Conclusions

In this paper, we have presented a fully Bayesian frame-
work and methodology for analysing fission track data and
thermal history models on both laboratory and geological
timescales. Rather than accept a single fixed set of anneal-
ing model parameters, we opt to continually sample from
their posterior densities whilst also sampling the thermal
history. This allows us to guide our choice of annealing
model using all the available conditioning data, rather than
solely base our results on the fit to laboratory derived data.

To this end, we have gradually built up a hierarchal
model, increasing the amount of data and constraints that
it is conditioned on. The most complete model we present-
ed incorporates uncertainty in the annealing model and
laboratory track length dat and temperature measure-
ments, whilst also conditioning on a geologically con-
strained low-temperature data set. Using a methodology
incorporating MCMC, we have been able to access the true
uncertainty in the modelling procedure, and assess the
quality of our results. This is clearly shown in the decrease
of uncertainty, as the amount of data included in the model
increases.

The results of this study demonstrate that by using all of
the available data, we are able to extend the model robustly

out to geological time scales, maintaining a good fit to the
expected range of laboratory temperatures, while also
improving the fit to a low-temperature benchmark. The
fit to the original laboratory track length data is degraded
when we condition jointly on the laboratory and geological
timescale data. This may indicate that these two datasets
are incompatible, and/or that the nature of the annealing
process is different over these two timescales. However,
when we applied the final MAP model to geological data
whose thermal history is unknown, the apparent rapid re-
cent cooling seen in many thermal history models is signif-
icantly reduced, without the need to reduce the initial track
length.

In principle, it is straightforward to incorporate the un-
known thermal history of a geological sample in the Bayes-
ian model formulation rather than using just the MAP
model. However, given the low quality of prior informa-
tion, this may not be such a useful approach unless the
other prior information (e.g., on the annealing model is
fairly tight). The general Bayesian approach as presented
here does readily provide a framework for the predictive
uncertainty when modelling geological data, by allowing
for the uncertainty inherent in the laboratory calibration
(e.g., see Fig. 7). In modelling more than one geological
data set, we can use the same general formulation, sample
the same annealing model for all data, or alternatively we
could allow the annealing model to vary between samples.
This reflects the underlying philosophy of the Bayesian ap-
proach, i.e., that we condition on the data, rather than a
single model. Given that the output of this approach can
be in terms of the probability distributions on all unknown
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parameters, including the annealing model and the labora-
tory and geological thermal histories, then this allows a ful-
ly probabilistic assessment of the model results.

Although we have focussed on the Laslett et al. (1987)
model, the general approach is readily applicable to other
data sets (e.g., Carlson et al., 1999; Barbarand et al.,
2003a), and model formulations (e.g., Ketcham et al.,
1999). Furthermore, well-designed geological case studies
over a range of time and temperature scales would provide
more constraints for the extrapolation process, and we ful-
ly concur with the statement of Ketcham et al. (1999) that
there is a great need for a more extensive database of reli-
able geological case studies. Low-temperature studies are
of particular interest for understanding long-term denuda-
tion and landscape evolution, and also for improving our
understanding of low-temperature helium diffusion in apa-
tite over geological timescales. In future work, we also plan
to extend the Bayesian methodology to allow uncertainty
in the number of control points when defining the thermal
history. This will be achieved using reversible-jump
MCMC, which allows trans-dimensional jumps in model
space (Green, 1995). Additionally, this work can be fully
incorporated into the Bayesian methodology described in
Stephenson et al., 2006 for incorporating multiple samples
in three dimensions.
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Appendix A. Graphical representation for the Bayesian
model formulation

The relationships between the data and the unknown
parameters can be represented using a graphical model,
constructed using probability theory (see Jordan, 2004;
Spiegelhalter et al., 1996). A directed acyclic graph
(DAG) for the models we consider in this paper is shown
in Fig. A.1 (note that here we have ignored the data rele-
vant to the duration of the laboratory experiments, L").
In this representation the quantities in the model are repre-
sented as nodes on the graph which interact in different
ways. These quantities can be data (shown as a square),
or variables (shown as a circle). The interactions between
the different quantities are shown as arrows, and the direc-
tion of an arrow indicates the conditional dependence of
one element on another. The node from which the arrow
starts is known as the parent, while the node at the end
of the arrowhead is the descendant. If there is no direct
connection between two nodes then they are independent
or conditionally independent (that is, they may be indirect-
ly linked by dependence on an intermediate node). Thus, if

Fig. A.l. Graphical representation of the model structure used in this
paper. Data are represented by squares, and variables by circles, and the
arrows indicate dependence (with a parent influencing a descendant in the
direction of the arrow). The terms in boxes and circles directly represent
those defined in the main text. The dashed lines define the groups of data/
variables used at different stages of the Bayesian model formulation, as
indicated by the numbers in the bottom right of each region. See text in
Appendix A for further explanation.

we know the values of the parents of a given node, n, then
no other node except the descendants of n can provide
information on the value of the variable at n. Quantities
that act only as parents have no conditional dependence,
except (if appropriate) through the prior distribution. This
let us readily write down the full joint distribution of the
quantities. Then we can express this in terms of the condi-
tional probabilities and then derive the appropriate form of
Bayes theorem for the parameters and data.

The first model we consider in Section 4.1 is shown in
the DAG by the sub-region on the graph identified by 1,
and we do not need to consider any arrows that cross the
boundary of this region. Here, the quantities are f, o>
and the laboratory track length data, L. Using the arrows
to infer the dependence, we can write the full joint distribu-
tion in terms of the conditional and prior distributions, i.e.,

p(L", B,0%) = p(L"|B, s*)p(B)p(”). (A1)

The first term on the righthand side is just the data likeli-
hood, and from Bayes theorem, we can write the posterior
for the unknown parameters as

p(B,a*IL") < p(L")|B,0*)p(B)p(a?). (A2)

The second model we consider in Section 5 is represented
by the subregions identified by 2. Here, we see that the un-
known laboratory temperatures (7) are conditional on the
reported laboratory temperature data and the unknown
variance, 4. Again we can write the full joint distribution
of all quantities, and this is

p(L'D T, 5,1 B,6%) = p(T|L'", 2)p(2)p(L")|B, 6> )p(B)p(c?).
(A.3)

Again, we use Bayes theorem (and note we use the ob-
served temperatures, L'”, in the prior for T) to obtain

p(B,a* T,2L") < p(L|B, >, T, 2)p(B)p(c*)p(T|A)p(2).
(A4)
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The final model we considered in Section 7 incorporates the
geological timescale data, V, with a relatively well-specified
thermal history, ¢. Again, we write the joint distribution in
terms of the conditional and prior distributions,

p(L<r)7 V> ﬁ7 0-27 ¢7 Ta /“)

=p(V|B, )p(LIB, o*, T, 2)p(B)p(a*)p(T|2)p(2)p(¢)

(A.5)
and following the same procedure as above, we have

p(B,a* T, 2, $|L"., V)

o p(L7|B, 6>, T, )p(V|B, $)p(B)p(*)p(T|2)p(2)p(d).

(A.6)

As described in the text, under the assumption of an
appropriate form for the priors of ¢ and 4, we can
integrate out these parameters to simplify the sampling
procedure.

If we wished to model uncertainty in the laboratory
times, L'”, this is readily achieved by inserting nodes to a
new region similar to those in region 2,3.

Finally, if we wanted to include additional geological
data from additional well-constrained studies, or directly
model some geological data for which we do not a well-
constrained thermal history, then the DAG is readily
expanded by adding additional regions with nodes similar
to, but independent of, region 3.

Appendix B. Marginalising conditional posteriors for
efficient sampling

In this appendix, we will give some more details on how
parameters are marginalised to increase efficiency, as well
as more information on the likelihood function for the field
data.

For several of the parameters in the posterior density
(Eq. (5.1)), we are able to marginalise out various nui-
sance parameters making the sampling algorithm far
more efficient. This is made possible by choosing an
appropriate form for the prior, i.e., one that is conju-
gate to the likelihood. Then the posterior distribution
has the same form as the prior and the integrals become
analytically solvable up to proportionality (see Bernardo
and Smith, 1994). For the normally distributed likeli-
hood function, the conjugate prior is the inverse gamma
distribution, as found over both /. and o2, which enables
us to remove both of these parameters from our condi-
tional posterior densities.

B.1. Conditional posterior over B

With B, we are able to marginalise the constant variance
parameter o”. This is also performed in Laslett et al. (1987)
using a result from Box and Cox (1964), though they do
not consider prior densities, so the form of the posterior
will be slightly different. Note that we do not need to con-

p(TIL, 2) o< p(o?

sider the later dependence of f on the field collected data,
as we assume independence between these likelihoods. In
the following, we use L for the data in general, and distin-
guish {LY, LD L} only where it is required. We begin by
expanding the model so that,

p(ﬂ|L,02, Tvﬂ") :p(va TO-Z) (Bl)
o p(L|B, >, T)p(B)p(a*) (B.2)
X p(f|02 T)J(a, b,L<r))p(02)p(ﬂ), (B3)

where f is the (n; x 1) vector, containing the Box—Cox
transformed data, g(a,b, L""). As p(¢?) is given by an in-
verse gamma distribution, we can also represent the depen-
dence of p(f|o?, T)p(c?) on ¢ as following the form of an
inverse gamma distribution. This allows us to easily mar-
ginalise it as a nuisance parameter

PBILT) = [ p(BIL.T. ) 0o -
o p(B)J (a,b, L") /(62)7(m+1+n£/2)
B
e <_ w?#) do® (B.5)
o p(B)J (@, b, L") (SSP /2 4 y)~ (12
: /IG(’“ +n./2,55P /24 1,)do” (B.6)

o p(B)J (a, b, L) (SSP) /2 4 y,) "2 - (B.7)

where SS = S [g(ri) — B(LY, L") ¢y, ¢1, ¢»)]? is the resid-
ual sum of squares for the fit to the transformed data.

B.2. Conditional posterior over T

As T is of such high dimension (n; = 77), it is essential
that we remove as many parameters as possible to maintain
sampling efficiency. After removing non-relevant terms
from the full posterior distribution, the conditional poster-
ior for T becomes

p(TIL, B, 0%, %) o p(L|B, a*, T)p(a*)p(L|)p(2) (B.8)
o p(f Wo*, T)p(a®)p(L|2)p(2), (B.9)
we can marginalise both ¢ = {c¢, ¢y, ¢} and o2 so that

(LI / D(TIL, B, 0%, 7)deds®  (B.10)

x plLI2)p(2) / (o)~
X eXp {_(f — Ec)'(f — Ec) + 21

202

}dcdoz, (B.11)

where we have collected terms from the inverse gamma and
normal distributions. This latter integral can be solved ana-
Iytically, provided we rearrange terms using the following

identity,
(f — Ee)(f — Ec) + 2, = (¢ — &)V (c — &) + 21},

(B.12)
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where ¢ = (E'E)”"'E/fis the ordinary least squares estimate
of ¢ and ¥V = (E'E)"". The term 15 captures the terms not
comprising ¢ and so

m=m A f-¢vie)2

This allows us to write (up to proportionality)

p(T|L,7) o p(L|2)p(4) / (¢%) "/ 2m ) exp (Zg) de’> (B.14)

(B.13)

< p{v{#}d -
o p(LIDp(A)| V[

* / (o) PP exp @) do® (B.16)
x p(LIA)p(4)] V|—1/2(n*)—<nL/2_k/2+,“)

x /IG(nL/z—lc/2+m,n§)d<r2 B.17)
x p(L|A)p(2)] V|—1/2 (773) 7(nL/27k/2+n1)' B15)

The final step is to note that we can also marginalise 4 in
exactly the same manner, so that

_ o\ —(nL/2—k/2+n, )
P(TIL,a,b) o V|72 (gs) /2424 / p(LDp(2)di

(B.19)
x |V|71/2 (n*)*(’lL/sz/zJFVll)
2
< //111|+1+”L/2
L-TY(L-T 2
X exXp _( It )+ 2, (B.20)
24
- |V|—l/2(n;)—(nL/2—k/2+'ll)(Ss(/l) +2]72)_(’7I+HL/2)’
(B.21)

where SS¥ = (L — T) (L — T), and is the residual sum of
squares between the observed and predicted temperatures.
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