

Available online at www.sciencedirect.com

Geochimica et Cosmochimica Acta 70 (2006) 2990-3010

Geochimica

www.elsevier.com/locate/gca

Characterization of a major refractory component of marine dissolved organic matter

Norbert Hertkorn^{a,*}, Ronald Benner^b, Moritz Frommberger^a, Philippe Schmitt-Kopplin^a, Matthias Witt^c, Karl Kaiser^b, Antonius Kettrup^a, John I. Hedges^{*}

^a Institute of Ecological Chemistry, GSF Research Center for Environment and Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany ^b Department of Biological Sciences and Marine Science Program, University of South Carolina, Columbia, SC 29208, USA ^c Bruker Daltonics, Fahrenheitstrasse 4, D-28359 Bremen, Germany

Received 5 December 2005; accepted in revised form 14 March 2006

Abstract

Refractory carboxyl-rich alicyclic molecules (CRAM) are characterized in marine dissolved organic matter (DOM) using nuclear magnetic resonance spectroscopy and ultrahigh resolution mass spectrometry. CRAM are distributed throughout the water column and are the most abundant components of deep ocean DOM ever characterized. CRAM are comprised of a complex mixture of carboxylated and fused alicyclic structures with a carboxyl-C:aliphatic-C ratio of 1:2 to 1:7. CRAM are expected to constitute a strong ligand for metal binding, and multiple coordination across cations could promote aggregation and marine gel formation thereby affecting CRAM reactivity and the bioavailability of nutrients and trace metals. It appears CRAM are ultimately derived from biomolecules with structural similarities to sterols and hopanoids. The occurrence of CRAM in freshwater and terrestrial environments seems likely, considering the global distribution of biomolecules and the similarities of biogeochemical processes among environments.

1. Introduction

The oceans are a major global reservoir of reduced carbon (700 Pg), most of which occurs as dissolved organic matter (DOM) (Hedges, 1992). Much of the DOM in the ocean is refractory and has an average radiocarbon age of several millennia (Druffel et al., 1992). Little is known about the chemical composition of DOM and the reason for its refractory nature (Hedges et al., 2000; Benner, 2002). At present, in-depth knowledge about the origin, structure and function of DOM in the global carbon cycle remains elusive. Molecular analyses combined with degradative techniques have identified specific carbohydrates, amino acids and lipids in marine DOM, but these compounds only account for a small fraction of dissolved

organic carbon (DOC) (Benner, 2002). The concentration and isolation of DOM from seawater by ultrafiltration facilitates its characterization by spectroscopic techniques. This approach, in combination with molecular analyses, has identified complex heteropolysaccharides (HPS) as major constituents of marine ultrafiltered DOM (UDOM) (Benner et al., 1992; Vernonclark et al., 1994; Aluwihare et al., 1997). A diverse suite of neutral, amino and acidic carbohydrates is found in HPS (McCarthy et al., 1996; Boon et al., 1998; Benner and Kaiser, 2003). The abundance of HPS is maximal in surface waters and declines sharply with depth, indicating HPS are a rapidly cycling component of DOM in the upper ocean. However, the most prominent contributors to the total ¹³C and ¹H nuclear magnetic resonance (NMR) integral in UDOM from deep water remain undefined and have been recognized only as a humic-like background in ¹H NMR spectra (Aluwihare et al., 2002). Tentative assignments derived from cross polarization/magic angle spinning ¹³C NMR spectra

^{*} Corresponding author. Fax: +1149 89 3187 2713.

E-mail address: hertkorn@gsf.de (N. Hertkorn).

[✤] Deceased: Inspiring us from heaven.

^{0016-7037/\$ -} see front matter @ 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.gca.2006.03.021

of marine dissolved humic substances indicated extensively branched, interlinked and possibly cyclic aliphatic carbon (Hedges et al., 1992).

Two previously characterized UDOM samples collected from surface (2 m) and deep (4000 m) waters of the mid Pacific Ocean were selected for this study (Benner et al., 1997). Additional samples from other locations were analyzed (data not shown), and all of the major structural features presented herein are generally representative of marine DOM and UDOM. The novel combination of ¹H NMR, ¹³C NMR and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) reveals the structural details of a major refractory constituent of marine UDOM. This newly characterized component is referred to as carboxyl-rich alicyclic molecules (CRAM). CRAM are slowly cycling components of marine UDOM, and they are the most abundant, identified components of DOM in the deep ocean.

2. Materials and methods

2.1. Sample collection

Surface (2 m) and deep (4000 m) water samples were collected from the Pacific Ocean (6°N, 140°W and 2°N, 140°W) using Niskin bottles. Samples were passed through a Nitex sieve (60 µm mesh size) and a 0.1 µm pore-size filter before tangential-flow ultrafiltration with a 1 kDa molecular-weight cutoff membrane to isolate ultrafiltered dissolved organic matter (UDOM; Benner et al., 1997). Ultrafiltered concentrates were diafiltered with deionized water to remove sea salts and freeze dried. The concentrations of dissolved organic carbon (DOC) in surface and deep waters were 72 and 44 µM, respectively. Ultrafiltration retained 26% of the DOC from surface water and 20% from deep water (Benner et al., 1997). The molar C:N ratios of the UDOM samples were 16.1 and 18.4, and the stable carbon isotopic compositions were -21.4% and -21.8% indicating a predominantly marine origin (Benner et al., 1997). Samples were also analyzed for hydrolysable amino acids (McCarthy et al., 1996), neutral sugars (McCarthy et al., 1996; Skoog and Benner, 1997) and amino sugars (Benner and Kaiser, 2003) by high performance liquid chromatography.

2.2. NMR spectroscopy

All experiments in this study were performed with a Bruker DMX 500 spectrometer at 303 K. The samples were dissolved in 0.1 N NaOD for ¹H NMR, ¹³C NMR and 2D NMR spectroscopy. No fractionation was observed in the samples. The reference for ¹H NMR was $(H_3C)_3Si-CD_2-CD_2-COONa (-0.14 \text{ ppm})$, and for ¹³C an external reference (CH₃OH in D₂O: 49.00 ppm) was used. All proton detected NMR spectra were acquired with a 5 mm *z*-gradient ¹H/¹³C/¹⁵N TXI cryogenic probe using 90° excitation pulses (90°(¹H) = 8.3 µs;

90° (¹³C) = 19 μ s). 1D ¹H NMR spectra were recorded using the first increment of the presat-NOESY sequence (solvent suppression with presaturation and spin-lock, 4.7 s acquisition time, 15.3 s relaxation delay, 320 scans, 1 ms mixing time, 1 Hz exponential line broadening). ¹³C NMR spectra were acquired with a 5 mm broad-band probe (90°(¹³C) = 9.2 μ s), using inverse gated WALTZ-16 decoupling (8 s relaxation delay; 49,152 scans for surface UDOM, 68,542 scans for deep UDOM) with an acquisition time of 263 ms and an exponential line broadening of 35 Hz.

The one bond coupling constant ${}^{1}J(CH)$ used in 1D ${}^{13}C$ DEPT and 2D ¹H,¹³C DEPT-HSQC spectra was set to 145 Hz [DEPT-HSOC NMR spectra were acquired with 320 scans and 312 increments (Willker et al., 1992)]. Carbon decoupled ¹H, ¹³C HSQC NMR spectra were acquired under the following conditions: ¹³C-90-deg decoupling pulse, GARP (70 μ s); F2 (¹H): acquisition time: 183 ms at spectral width of 5482 Hz, ${}^{1}J(CH) = 150$ Hz, 1.82 s relaxation delay; F1 (13 C): SW = 22637 Hz (180 ppm); number of scans(F2)/F1-increments (13 C frequency) for surface UDOM (1920/800) and deep UDOM (238/191), respectively. HSQC and DEPT-HSQC spectra were calculated to a 2048×512 matrix with exponential line broadening of 30 Hz in F2 and a shifted sine bell ($\pi/6$) in F1 (Figs. 5) and 6). Gradient, but not sensitivity-enhanced, sequences (1 ms length, 450 µs recovery) were used for all proton detected spectra.

2.2.1. Analysis of NMR spectra

NMR integrals were measured manually from printed spectra. Difference NMR spectra were obtained using XWinNMR 3.0 software from spectra rather than from FIDs. In ¹³C NMR, subtraction (d_UDOM – x_n .' s_UDOM) was performed to attempt removal of the F1_C-component (i.e. the *N*-acetyl group, which is supposedly a substituent of HPS) to result in CRAM (CRAM: $x_1 = 0.76$). Removal of the F2_C-component (supposedly the carboxylic acid group of CRAM) resulted in HPS (with negative amplitude at $x_2 = 2.22$). Conversely, the manual subtraction (s_UDOM – $x_n \cdot d_UDOM$) removed the F2_C component to result in HPS ($x_3 = 0.44$) or, alternatively, the C_C component (carbohydrate methine carbon atoms and HOCH₂-groups) to result in CRAM ($x_4 = 1.17$; initial negative amplitude).

Bucket analysis (Brindle et al., 2002) was performed on the experimental ¹³C NMR spectra of surface and deep UDOM, and of the computed difference NMR spectra, representing HPS and CRAM (Fig. 1); these were decomposed into 47 equidistant integral segments with 5 ppm bandwidth, ranging from 0 to 235 ppm (Fig. 1). Using the composition of a typical marine surface UDOM amino acid hydrolysate (with an average number of 2.83 side chain carbon atoms per CONH unit, which resulted, in conjunction with the atomic C/N ratio of 16.1, in 23.6% peptide carbon content in surface UDOM; Kaiser and Benner, 2006) and a typical marine deep UDOM amino

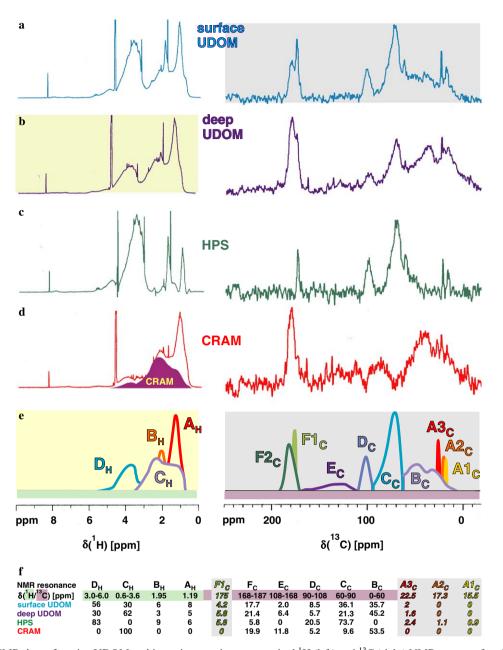


Fig. 1. ¹H- and ¹³C NMR data of marine UDOM and its major constituents: acquired ¹H (left) and ¹³C (right) NMR spectra of surface (a) and deep (b) marine UDOM and, calculated from difference NMR spectra, of its two major constituents HPS (c) and CRAM (d). The ¹H NMR line spectrum (d) represents CRAM plus contributing genuine peptides; the purple area indicates the CRAM component as obtained from difference NMR spectra after subtraction of peptides (artificial mixture of polypeptides, which is representative of marine UDOM hydrolysates); (e) modeled spectra of deep UDOM (¹H NMR) and surface UDOM (¹³C NMR) to indicate the NMR integral regions given in (f): ¹H NMR integrals (left) of four major resonances A_H-D_H A_H , methyl bound to purely aliphatic carbon; B_H , acetyl; C_H , functionalized CRAM and peptide aliphatics; D_H , heteroatom substituted protons (mostly carbohydrates and CH- α of peptides). $A_H + B_H + C_H + D_H$ are normalized to 100%, the total aromatic proton NMR integral for all materials is less than 1.5% (Fig. 2). ¹³C NMR integrals of nine major resonances $A_C-F_C A 1_C$, (poly)alanine-CH₃; A_{2_C} , methylated carbohydrates; A_{3_C} , *N*-acetyl carbohydrate; B_C , all aliphatics, aliphatic side chains of CRAM and peptides, including $C\alpha$; C_C , single oxygen substituted carbon; D_C , anomeric and other doubly oxygenated carbon; E_C , aromatics; F_C , carbonyl derivative (carboxylic, amide, ester) carbon, with $F1_C$, carboxylic acids and *N*-acetyl from HPS; $F2_C$, carboxylic acids and peptides from CRAM (with $F_C = F1_C + F2_C$). $B_C + C_C + D_C + E_C + F_C$ are normalized to 100%; grey underlined resonances $A_{1_C}-A3_C$ and $F1_C$ (italics) are parts of aliphatic (B_C) and carbonyl derivative carbons (F_C), respectively.

acid hydrolysate (average number of 2.98 side chain carbon atoms per CONH unit, C/N atomic ratio: 18.4; resulting in 21.7% peptide carbon in deep UDOM; Kaiser and Benner, 2006), data reduced ¹³C NMR spectra were computed via ACD CNMR predictor software, version 5.0 (Fig. 3). From a combination of these data-reduced ¹³C NMR spectra (Fig. 3), a rather conservative estimate for the minimum content of CRAM in UDOM was calculated, by use of a basic 3-component reverse mixing model (Nelson and Baldock, 2005) "UDOM = $n_1 \cdot \text{HPS} + n_2 \cdot \text{CRAM}$

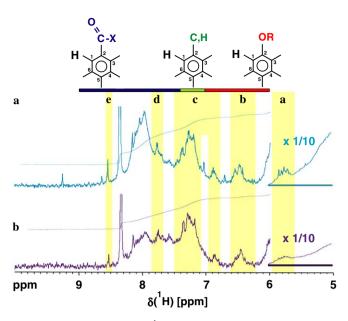


Fig. 2. Low field section of the ¹H NMR spectra of (a) surface (top) and (b) deep (bottom) UDOM expansion of Fig. 1a and b, indicating resonances of non-exchangeable protons (solvent: 0.1 N NaOD) occurring in both UDOM spectra (yellow boxes a–e), suggesting conformity of five-membered heterocyclic ring (a), phenolic (b), C-substituted (c), and carbonyl-substituted (d and e) aromatic protons in both environments. In contrast, low field (δ (¹H) >7.8 ppm) aromatic carbonyl derivatives are much more abundant in surface than in deep UDOM. Small amounts of formiate (δ (¹H) = 8.31 ppm), methanol (δ (¹H) = 3.24 ppm; Fig. 1) and acetate (δ (¹H) = 1.82 ppm; Fig. 1) are formed by hydrolysis of UDOM in NaOD.

 $+ n_3 \cdot$ peptides," based on the assumption that all nitrogen in UDOM is proteinaceous; linear regression analysis with equal weighting factors for all buckets provided the respective coefficients n_i for the computed 3-component surface and deep UDOM shown in Fig. 3. That procedure does not recognize inorganic nitrogen, nucleic acids and other heterocyclic nitrogen, amino- and *N*-acetyl sugars, which certainly are constituents of marine UDOM, and therefore provides an upper limit for the content of peptides.

2.2.2. Computer generation and computing of NMR chemical shift data of an aliphatic model polycarboxylic acid $C_{644}H_{1142}O_{146}$

The computer generation of an aliphatic model polycarboxylic acid $C_{644}H_{1142}O_{146}$ was initiated with a long straight chain aliphatic carbon backbone (polymethylene), carboxylic groups were then introduced, and the spacing in between those was varied from one (like in polyacrylic acid) to four carbon atoms (like in polyamylic acid) in increasing order. A systematic pattern of increasing methylation throughout the entire chain was then applied to account for a variable degree of branching, resulting in 83 aliphatic methylene carbon (with no methyl attached), 83 methine carbon (with a single methyl attached), and 83 quaternary carbon (doubly methylated) atoms; in total, 249 methyl groups have been placed between the terminal carboxylic groups. The chemical environment of the 73 carboxylic groups necessary to accomplish all feasible substitution patterns (cf. Fig. 7) was defined as H–C–COOH (resulting in another 73 methine carbon atoms), which act as spacers in between the methylated aliphatic chain units. The entire assembly results in a molecular formula $C_{644}H_{1142}O_{146}$ (excluding two terminal methyl groups), corresponding to a H/C atomic ratio of 1.773 and a O/C atomic ratio of 0.227 (cf. Figs. 7 and 11).

The individual proton and carbon chemical shifts of $C_{644}H_{1142}O_{146}$ were then computed [by means of Advanced Chemistry Development HNMR and CNMR predictor software (version 5.0)] from three sections ($C_{154}H_{310}O_{31}$; $C_{164}H_{330}O_{25}$; $C_{216}H_{434}O_{24}$, cf. Fig. 7) with sufficient overlap to avoid effects of chain termination on the proton and/or carbon NMR chemical shifts for any given atom position.

2.3. Capillary electrophoresis

Capillary zone electrophoresis (CZE) was performed using a PA/CE 5000 Beckman–Coulter instrument with a 57 cm fused silica capillary (50 cm length to the detector) and UV-detection (214 nm) as well as electrospray ionization negative mode MS detection (LCQ-Duo Finnigan ion trap mass spectrometer under conditions analogous to those in Schmitt-Kopplin and Kettrup, 2003). CZE separations were carried out at 30 °C in 25 mM ammonium carbonate buffers at pH 9.3 and 11.4 under 25 kV. For capillary gel electrophoresis (CGE), 0.3% methylcellulose was added to the pH 9.3 carbonate buffer.

2.4. FTICR mass spectrometry

High-resolution mass spectra for molecular formula assignment were performed with a Bruker APEX-Q III Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) equipped with a 7 Tesla superconducting magnet using the electrospray positive ion mode of the ESI/MALDI combine source. The sample solution (1 mg UDOM in 1 ml methanol) was diluted 1:1 with aqueous 0.2% formic acid and introduced into the electrospray source by infusion with a flow of 120 μ L h⁻¹. The spectra were externally calibrated with the collision induced dissociation spectrum of the peptide luteinizing hormone-releasing hormone (Sigma, [35263-73-1]). The spectra were acquired with a time domain of 1 megaword with a mass range of 200–2000 m/z. The spectra were zero filled to a processing size of 2 megawords. Before Fourier transformation of the time-domain transient, a sine apodization was performed. The ions were mass selected between ion source and FTICR-MS analyzer with a quadrupole using a setting for ion selection of about 100 mass units. The ion accumulation time in the ion source was set to 3 s for each scan. Sixty scans were added for each mass spectrum.

Standard CH₂-based Kendrick mass defect analysis has been performed on 613 CRAM molecular compositions $C_nH_mO_q$ derived from positive ions $C_nH_{m+1}O_q^+$ as obtained

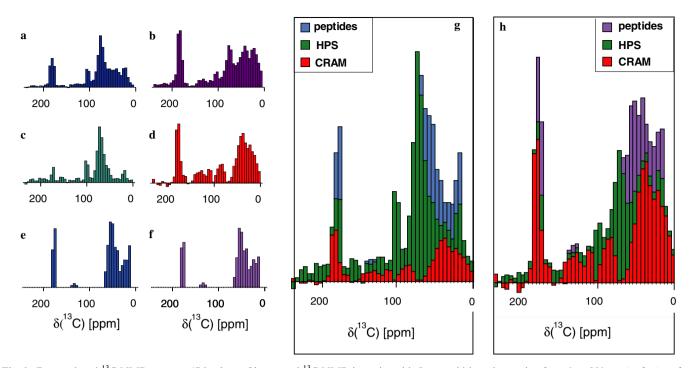


Fig. 3. Data reduced ¹³C NMR spectra (47 buckets of integrated ¹³C NMR intensity with 5 ppm width each, ranging from 0 to 230 ppm) of (a) surface and (b) deep UDOM, as computed from the experimental NMR spectra, and of the main UDOM constituents (c) HPS and (d) CRAM, as computed from the difference NMR spectra (cf. Fig. 1). The histogram spectra of the proteins in surface UDOM (e) and deep UDOM (f) were computed from chemical shifts of a protein with the composition of a surface and deep marine NOM hydrolysate via ACD software (cf. experimental). From these data-reduced ¹³C NMR spectra, a very conservative estimate for the minimum content of CRAM in UDOM was computed, by use of a basic 3-component reverse mixing model "UDOM = $n_1 \cdot \text{HPS} + n_2 \cdot \text{CRAM} + n_3 \cdot \text{peptides}$," based on the assumption that all nitrogen in UDOM is proteinaceous, resulting in a (g) data-reduced ¹³C NMR spectrum of a 3-component surface UDOM ($n_1 = 0.601$, $n_2 = 0.229$, $n_3 = 0.236$) and a (h) data-reduced ¹³C NMR spectrum of a 3-component deep UDOM ($n_1 = 0.271$, $n_2 = 0.509$, $n_3 = 0.217$). A better conformity of experimental and computed, data reduced, ¹³C NMR spectra of surface and deep UDOM was obtained at smaller values of n_3 , suggesting the occurrence of some nitrogen in UDOM in non-protein/peptide chemical environments.

in 7 Tesla FTICR mass spectra. The CO₂-based Kendrick mass has been computed by multiplying the IUPAC mass of CRAM by the factor (44/43.989828). In order to keep the nominal Kendrick masses for given molecular compositions identical for both CH₂- and CO₂-based Kendrick mass analyses (Fig. 10), we have subtracted one mass unit from the computed nominal CO₂-based Kendrick mass.

3. Results and discussion

3.1. Analysis of one-dimensional ¹H and ¹³C NMR spectra

Four major functional forms of non-exchangeable hydrogen were recognizable in ¹H NMR spectra of surface and deep UDOM acquired in NaOD (Fig. 1a and b). Strong resonances were observed in the 0.6–1.6 ppm region, which is characteristic of hydrogens bound to saturated carbon with heteroatoms three or more bonds away. Resonances in the 1.8–2.8 ppm region, which are characteristic of hydrogens bound to saturated carbon with heteroatoms three or more bonds away. Resonances in the 1.8–2.8 ppm region, which are characteristic of hydrogens bound to saturated carbon with heteroatoms two bonds away, and those in the 3.0–5.5 ppm region, which are characteristic of H—C bound to oxygen, were also prevalent. In contrast, only weak resonances (<1.5% of total ¹H NMR integral) were found in the olefinic and aromatic regions (6–9 ppm; Fig. 2).

Four major functional forms of carbon were recognizable in the ¹³C NMR spectra (Fig. 1a and b). In the 0–60 ppm region (A_C , B_C in Fig. 1) carbon is mainly bound to carbon and hydrogen atoms only; however, aliphatic carbon of amines, amides (C- α of peptides; cf. Fig. 5) and methoxyl groups also contribute. The 60–108 ppm region (C_C and D_C in Fig. 1) is characteristic of carbon bound to one or more heteroatoms, and the 108–168 ppm region (E_C in Fig. 1) is characteristic of olefinic and aromatic carbon. Carbonyl derivatives (esters, amides and carboxylic acids) resonate from 168 to 225 ppm (F_C in Fig. 1). Strong resonances were observed in all these regions except that of olefinic and aromatic C.

The NMR spectra of surface and deep UDOM closely resembled each other in the positions of their relative intensity minima and maxima, but differ vastly in their relative amplitudes (Fig. 1a and b). This indicated surface and deep UDOM were composed of variable amounts of preserved substructures, which can be visualized by difference NMR spectra (Fig. 1c and d). Two major UDOM constituents were observed in difference spectra. A complex mixture of heteropolysaccharides (HPS) was represented by surface minus deep UDOM (Fig. 1c), with major resonances in D_H and C_C + D_C (Fig. 1e). A mixture, we refer to as carboxyl-rich alicyclic molecules (CRAM) was represented by deep minus surface UDOM (Fig. 1d), with major resonances in C_H , B_C , and $F2_C$ (Fig. 1e).

The larger peak capacity of ¹³C NMR spectroscopy (ratio of total bandwidth/individual linewidth) relative to that of ¹H NMR, in conjunction with the capability to directly observe quaternary carbon atoms, allows to detect finer resolved structural detail in ¹³C NMR spectra of UDOM (Fig. 1e), albeit at a lower signal to noise ratio (at natural abundance, the NMR receptivity of ¹³C nuclei is 1/5682 compared with that of proton nuclei). Alternatively, the very high sensitivity of high-field proton NMR spectra allows to determine rather tiny variations in UDOM composition in minute detail (Fig. 2), providing crucial (and quantitative) structural information not available by any other means at present.

Difference NMR spectra emphasize components that have varying concentrations. In the spectra (Fig. 1c and d), they describe HPS and CRAM, because peptides comprise a similar fraction of carbon in surface and deep UDOM (McCarthy et al., 1996; Hedges et al., 2001).

3.1.1. Computation of the CRAM content in UDOM from difference NMR spectra

The main UDOM constituents HPS and CRAM were visualized by difference NMR spectra (cf. Fig. 1), which were created manually from spectra rather than from FIDs (free induction decays). Poor resolution and S/N ratio (¹³C NMR) of UDOM NMR spectra, even after extended acquisition time, made it advisable to avoid negative signal amplitudes in the difference NMR spectra (realized by manual adjustment of the relative multiplication factors; cf. experimental section).

Difference NMR spectra, derived from poorly resolved spectra of complex unknowns should be regarded as rather qualitative guidance tools. Hence, they emphasize UDOM constituents with variable concentration (like HPS and CRAM, respectively) and tend to attenuate or even ignore constituents with a more uniform distribution (like, e.g. proteins/peptides; McCarthy et al., 1996; Hedges et al., 2001). In addition, the S/N-ratio of difference spectra is intrinsically rather poor, and noisy sections are insufficiently defined. More importantly, global weighting factors employed across the entire spectral bandwidth do not recognize the specific distribution of NMR resonances of the individual molecular NOM constituents. Regarding the level of amino acid composition and protein content, surface and deep UDOM appear remarkably similar, if the amino acid composition of hydrolyzates (and its amino sugar content/composition), their C/N ratio, and NMR properties are considered.

Data reduction schemes decrease the dimensionality of spectral data to a more readily interpretable form, and they are also useful to illustrate the compositional relationships of a marine surface and deep UDOM with respect to its two major non-protein constituents, namely CRAM and HPS. Here, the ¹³C NMR spectra of UDOM and its main

constituents were first decomposed into 47 equidistant integral segments with 5 ppm bandwidth, ranging from 0 to 235 ppm; the resulting histograms are in essence very low resolution NMR spectra (Fig. 3).

From these data-reduced ¹³C NMR spectra (Fig. 3), a conservative estimate for the minimum content of CRAM in UDOM was computed by use of a basic 3-component reverse mixing model (Nelson and Baldock, 2005) UDOM = $n_1 \cdot \text{HPS} + n_2 \cdot \text{CRAM} + n_3 \cdot \text{peptides}$, based on the assumption that all nitrogen in UDOM is proteinaceous. The resulting histogram ¹³C NMR spectra of a 3-component surface UDOM $(n_1 = 0.601, n_2 = 0.229,$ $n_3 = 0.236$) and а 3-component deep UDOM $(n_1 = 0.271, n_2 = 0.509, n_3 = 0.217)$ demonstrated that CRAM is a major constituent of both surface and deep UDOM. A better conformity of experimental and computed, data reduced, ¹³C NMR spectra of surface and deep UDOM was obtained at smaller values of n_3 , suggesting the occurrence of some nitrogen in UDOM in non-protein/peptide chemical environments (Benner and Kaiser, 2003).

3.1.2. Key NMR data to establish the existence of CRAM in UDOM

Two key observations were critical for establishing the existence of CRAM in UDOM. The first observation was based on the nitrogen content of UDOM relative to the quantity of the carbonyl derivative (i.e. carboxylic acid, ester, amide) resonance F_C. The C/N atomic ratios of surface and deep UDOM were 16.1 and 18.4, respectively. Assuming all nitrogen is amide, the N/C atomic ratio defines the fraction of the total ¹³C NMR integral in amide form. Calculations indicated 6.2% and 5.4% of the total ^{13}C NMR resonances of surface and deep UDOM were represented by amides; i.e. a C/N atomic ratio of (16.1 s UDOM/18.4 d UDOM) corresponds to a percent N/C ratio of 6.4 for s UDOM and 5.7 for d UDOM, respectively (cf. Fig. 1). This is considerable less carbon NMR resonance integral than found in F2_C of s_UDOM (17.7%) and d_UDOM (21.4%), respectively. Amide only accounted for about one third of the F2_C resonance in surface UDOM and one fourth of it in deep UDOM. Consequently, a substantial excess of carboxyl (ester or acid) resonance was present in the ¹³C NMR spectra of both surface and deep UDOM.

The second key observation came from ¹H NMR spectra of deep UDOM acquired under conditions of slow chemical exchange in dry DMSO- d_6 under total exclusion of moisture, using vacuum-line techniques. Here both non-exchangeable (typically protons attached to carbon atoms) and exchangeable protons (typically protons attached to heteroatoms, like O, N, S) produce recognizable NMR resonances. Under these conditions, NMR peaks of exchangeable protons show appreciable line-broadening (10–200 Hz). Accordingly, the direct observation of a sizeable carboxylic acid resonance (Fig. 4) demonstrated the presence of carboxylic acids rather than esters in deep UDOM.

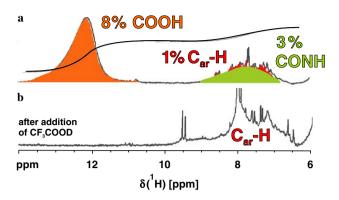


Fig. 4. The chemical exchange of labile protons in deep UDOM is slowed down sufficiently in DMSO- d_6 under total exclusion of moisture to allow the observation (a) of both exchangeable [carboxyl, 8% of total ¹H NMR integral (orange); peptide, 3% of total ¹H NMR integral (green)] and non-exchangeable [C_{ar} - 1% of total ¹H NMR integral (red)] protons. Consecutive addition of CF₃COOD combines all labile proton NMR resonances into a single far downfield signal (b; here: δ (¹H) = 14.7 ppm). The chemical shift of non-exchangeable aromatic protons in deep UDOM is affected by pH variation, which causes alterations in charge, conformation and relative orientation of UDOM constituent molecules.

3.1.3. Comparative analysis of one- and two-dimensional NMR spectra of UDOM

Cross peaks in two-dimensional heteronuclear single quantum coherence (HSQC) NMR spectra relate directly bound carbon and hydrogen atoms. In analogy to procedures established in 1D NMR spectra of NOM and UDOM (Fig. 1), chemical shift ranges (areas) corresponding to fundamental UDOM substructures can be also defined in HSQC NMR spectra (Hertkorn et al., 2002). Seven areas of chemical shift were used to define major UDOM substructures (Fig. 5). In order of increasing chemical shift, area 1 defined methyl bound to carbon and sulfur (dotted circle), and in its lower left corner, branched purely aliphatic CH pairs and polymethylene ($\delta_{H/C} = 1.2/$ 29 ppm). Area 2 represented a complex set of methylene and methine cross peaks without direct bonds to heteroatoms (except purely aliphatic amines, which are considered as rather elusive constituents of UDOM). Low intensity methoxyl cross peaks occur in area 3, and cross peaks representative mainly of CH- α in proteins and vicinal dicarboxylic acids occurred in area 4. Very highly superimposed carbohydrate methylene cross peaks in area 5, carbohydrate methine cross peaks in area 6 and better resolved, but still strongly overlapping anomeric CH cross peaks in area 7 all indicated the complex structure of HPS.

This analysis is corroborated by one and two dimensional multiplicity edited ¹³C NMR spectra of deep UDOM, in which the superposition of the ¹³C DEPT NMR spectra provided a ratio of methyl:methylene:methine:quaternary C of 7:20:46:27 (Fig. 6). The large chemical shift ranges of methyl, methylene and methine in surface and deep UDOM provided further indications of the diverse chemical environments within CRAM.

Aliphatic branching imparts predictable chemical shifts in ¹³C NMR spectra useful for structural interpre-

tation. Methylation in α - and β -positions induces a downfield ¹³C NMR chemical shift of $\sim 8 \text{ ppm}$ each, while γ -methylation induces an upfield chemical shift of $\sim 4 \text{ ppm}$ (Kalinowski et al., 1984). δ - and more remote alkylation has marginal effects and can be neglected (Kalinowski et al., 1984). In contrast, the effects of aliphatic branching on proton chemical shifts are considerably less pronounced and less regular. In general, steric crowding in aliphatic compounds induces downfield proton chemical shift. A substantial degree of branching can be deduced from the considerable range (>25 ppm) of methyl chemical shifts in the edited one dimensional ¹³C NMR spectrum of deep marine UDOM (Fig. 6). A similar reasoning applies to methylene and methine chemical environments in both one and two dimensional NMR spectra. The near Gaussian distribution of the ¹³C NMR chemical shifts within the HSQC cross peak area 2 (Fig. 5) indicated broad substitution patterns in CRAM.

Another indication of the high variability of chemical environments in CRAM was the considerable range of chemical shift (~20 ppm) and the near Gaussian distribution of intensity of the carboxyl resonance F2_C in one-dimensional ¹³C NMR spectra of UDOM (Fig. 1). Extensively α - and β -methylated chemical environments in aliphatic carboxylic acids were not common in CRAM, as indicated by the absence of extreme ¹³C NMR downfield HSQC cross peaks which would fall outside the boundaries observed for HSQC area 2 in Fig. 5. It appeared that moderate branching and a fairly even distribution of carboxyl groups most accurately described the chemical environment in CRAM.

The positions and amplitudes of HSQC cross peaks allowed discrimination between peptide and aliphatic polycarboxylic acid chemical environments, both of which contributed to the considerable expansion of HSQC area 2 and methylene cross peaks (Figs. 5, 6, and 8a). The HSQC cross peaks of peptides occupied only the ¹³C NMR upfield part of area 2 HSQC cross peaks (Figs. 5 and 8b; Hertkorn et al., 2002). Therefore, another component was required to complement the remaining downfield ¹³C NMR area 2 HSQC cross peaks in UDOM. This component was consistent with an aliphatic, polycarboxylic-acid structure, such as CRAM.

3.1.4. Assessment of the proton and carbon NMR chemical shift space of a computer-generated aliphatic model polycarboxylic acid $C_{644}H_{1142}O_{146}$, a necessary prerequisite to evaluate the chemical environments of CRAM within UDOM

A trustworthy resonance assignment in NMR spectra of complex unknowns typically requires a comparative assessment of experimental and calculated NMR data, based on judiciously selected model structures. Nowadays, proton and carbon NMR spectra of extended spin systems can be computed, based on empirical correlations, with reasonable accuracy on desktop computers. An iterative analysis

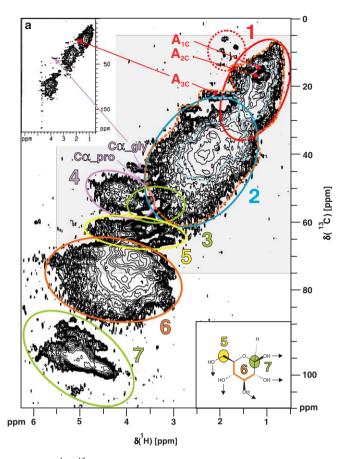


Fig. 5. Two dimensional NMR spectra of UDOM: ¹H, ¹³C HSQC NMR spectra of surface UDOM with seven groups of major constituents (cf. text) and of deep UDOM (insert a) top left: the relative cross peak amplitudes within surface- and deep UDOM HSQC NMR spectra reflect both the variable relative fractions and NMR relaxation characteristics of UDOM constituents. A faster transverse relaxation of CRAM as compared to HPS is observed as well as a faster transverse relaxation of the HPS and peptide components in deep UDOM compared to that in surface UDOM (e.g. disappearance of areas 4 and 7 cross peaks in deep UDOM). That indicates a restricted flexibility and possibly an enhanced contribution of cross linkage at depth as observed with recent mass spectrometric results (Boon et al., 1998). The grey shaded section corresponds to the spectral range shown in Fig. 8.

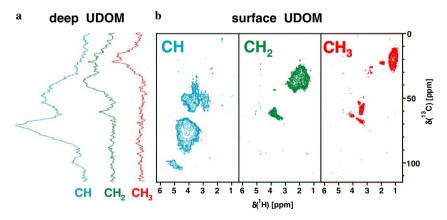


Fig. 6. Scaled multiplicity edited one dimensional (DEPT) 13 C NMR subspectra of deep UDOM with methyl (red; 7% of total carbon), methylene (green; 20% of total carbon) and methine (blue; 46% of total carbon) carbon shown. Two dimensional (1 H, 13 C DEPT-HSQC) NMR spectra of surface UDOM (surface UDOM exhibits slower NMR transverse relaxation as compared with deep UDOM, Fig. 5): methyl (red), methylene (green) and methine (blue).

of model and experimental NMR spectra, corroborated by the current understanding of NOM bio- and geosynthetic pathways, can be used to propose model structures conforming to spectral data and to discriminate among several proposed NOM substructures (cf. Fig. 13). Although this initial procedure requires verification by independent and complementary analytical data, it nevertheless provides very significant structural detail at atomic resolution, which is not available by any other analytical technique at present. The very low resolution NMR signature of CRAM, which covers a substantial chemical shift range in both ¹H and ¹³C NMR spectra (Figs. 1, 5, and 6), already indicates a fairly complex aliphatic polycarboxylic acid structure with considerable intrinsic heterogeneity. For the evaluation of ¹H and ¹³C NMR properties of CRAM, a model open chain aliphatic polycarboxylic acid C₆₄₄H₁₁₄₂O₁₄₆ with no unsaturation other than derived from carboxylic groups was computergenerated in a way to allow for systematic increase in aliphatic branching as well as increase in the spatial separation of carboxylic groups (Fig. 7).

That modeled molecule $C_{644}H_{1142}O_{146}$ defines a NMR chemical shift space for open chain branched polycarboxylic acids at the level of connectivities (i.e. definition of chemical bonds) and serves to evaluate the NMR features of UDOM, which are attributed to CRAM (cf. Fig. 7). The absence of *model* acid HSQC cross peaks in the HSQC NMR spectra of surface and deep UDOM indicates non-occurrence or non-significance of respective *model* acid partial structures in the respective NOM material (see caption of Fig. 5). Full methylation (m = 2) in C₆₄₄H₁₁₄₂O₁₄₆ leads to the disappearance of HSQC cross peaks for the respective chain positions, but induces strong deshielding on $\delta(^{13}C)$ and minor effects on $\delta(^{1}H)$ to neighboring positions up to three bonds away.

Accordingly, multiply methylated α - and β -carbon atoms (representing extensively branched non-functionalized aliphatics) with characteristic downfield carbon chemical shift and highly shielded protons, can be discarded as prominent constituents of CRAM (cf. Figs. 5 and 8). Extensive branching is also not consistent with the low abundance of purely aliphatic (i.e. non-carboxylated) carbon atoms in CRAM and with the limited occurrence of methyl groups (Fig. 6).

Instead, carboxylic groups appear to be not more than 2–3 positions distant from aliphatic carbon (i.e. in α -, β -, γ -positions, respectively). A near random occurrence of

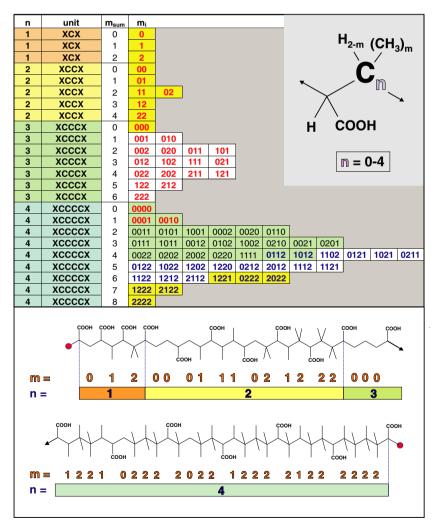


Fig. 7. Model open chain aliphatic polycarboxylic acid $C_{644}H_{1142}O_{146}$, with a variable spacing between H–C–COOH groups, XC_nX , X = H-C–COOH, n = 1-4 (left column) and variable patterns of methylation ($m_i = 0, 1, 2; m_{sum}$ equals sum of methyl groups between adjacent X). ¹H and ¹³C chemical shifts were computed from three overlapping sections (red, $C_{214}H_{366}O_{62}$; green, $C_{212}H_{374}O_{50}$; blue, $C_{262}H_{476}O_{48}$); since the entire molecule was too large for direct calculation. The two terminal sections of the molecule, which have been highlighted in yellow, are shown in the bottom part for better visualization and understanding.

aliphatic branching in CRAM accounts most appropriately for the observed ~ 25 ppm carbon chemical shift range within the methylene trace of the multiplicity-edited 1D and 2D NMR spectra (Fig. 6) and a similarly large spread of $\delta(^{13}C)$ across the entire area 2 HSQC cross peaks in surface and deep UDOM; respectively (Fig. 5). The relatively minor content of methyl carbon in deep UDOM (7%, Fig. 6) relative to the substantial fractions of methylene and methine carbon (20% and 40%, respectively) already suggests the presence of cyclic structures, because alicyclic ring topology stipulates removal of methyl groups compared with open chain analogues. However, the overall complexity of CRAM chemical structures, and the presence of other key structures in UDOM (peptides and carbohydrates in particular) precludes overly quantitative statements at this stage of NMR analysis. However, peptides are in average characterized by a rather large proportion of methyl groups. According to the amino acid composition of a marine UDOM hydrolysate, the ratio of Cq/CH/ CH_2/CH_3 in the peptide fraction is 30/32/22/16 in surface UDOM, and 30/33/23/14 in deep UDOM, respectively (see also Section 3.4).

3.2. Capillary electrophoretic separation of UDOM

NMR provides quantitative information about the composition of CRAM, indicating the near absence of double bond and aromatic hydrogen atoms. However, it cannot unequivocally discriminate between alicyclic and open chain aliphatic environments (cf. Fig. 8). The NMR-derived structural information about short range molecular order in CRAM is complemented by electrospray ionization (ESI) mass spectrometry data, which provide ultra-high resolution and mass accuracy, leading to the assignment of molecular formulae for hundreds to thousands of UDOM constituent molecules. However, the variable ionization efficiency of UDOM molecules, which is a crucial and structure-dependent parameter in the generation of UDOM ions in a mass spectrometer, has the potential to severely bias mass spectra-derived data about UDOM composition and structure towards efficiently ionisable UDOM constituents.

Here, highly complementary data from capillary electrophoretic separation of UDOM offer genuine options to validate mass spectral data of UDOM ion composition and structure against NMR derived molecular-level structural information. The detection of a molecule after chromatographic or electrophoretic separation offers intrinsic structural information, since the electrophoretic mobility as well as the chromatographic retention time depend on molecular properties.

The surface and deep UDOM samples showed structure-specific bimodal capillary zone electrophoretic (CZE) mobility profiles in both CZE/UV hyphenation with short wavelength (214 nm) detection, which is considered as rather unselective to structural details, and in CZE/ESI-MS with mass spectrometric detection (Fig. 9). A larger fraction of highly charged aliphatic molecules was observed in deep UDOM (Schmitt-Kopplin and Junkers, 2003; Schmitt-Kopplin and Kettrup, 2003). The effective mobilities for deep UDOM fell in the range

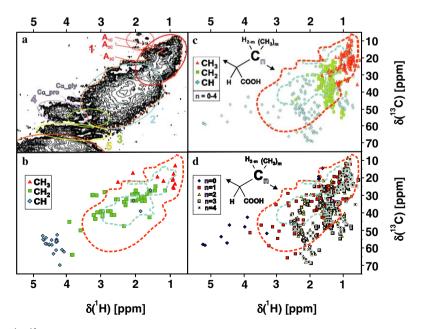


Fig. 8. (a) Upfield section of the ¹H, ¹³C HSQC NMR spectrum of surface UDOM (partial plot of Fig. 5) (b)*, multiplicity edited chemical shifts of ¹H, ¹³C HSQC cross peaks of all 20 proteinaceous amino acids in peptides, following alanine (Hertkorn et al., 2002); (c)*, HSQC cross peaks of a randomly branched model aliphatic polycarboxylic acid $C_{644}H_{1142}O_{146}$ ({-[(CH₃)₁-C-COOH]- C_n (CH₃)_m-} with 1 = 0, 1; *m* = 0-2, and *n* = 0-4, cf. text below), displayed according to (c) carbon multiplicity and (d) according to the separation of carboxylic substituents. (* contour lines indicate aliphatic HSQC cross peaks of surface UDOM at unit and at fivefold intensity; Fig. 5).

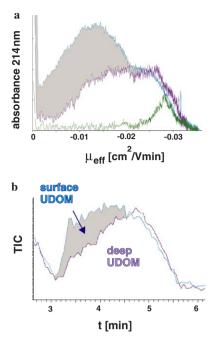


Fig. 9. Electropherograms of surface and deep marine UDOM: (a) Capillary zone electropherogram (CZE; UV detection at 214 nm; effective mobility scale in cm² V⁻¹ min⁻¹) of surface and deep UDOM and a polyacrylic acid standard (2 kDa); (b) superimposed CE-ESI/MS electropherograms of surface and deep UDOM (migration time in min). The congruence of (a) and (b) indicates near uniform ionization efficiency of NOM constituents in marine UDOM.

observed for aliphatic polycarboxylic acids and were consistent with its higher content of CRAM, as indicated by NMR data. The close similarities of the electropherograms obtained at pH 9.4 and 11.4 confirmed the near absence of phenols in UDOM (cf. Fig. 2) and other weakly acidic compounds in both surface and deep UDOM (data not shown). The congruence of electrophoretic mobility profiles in non-selective CZE/UV and mass selective CZE/ MS hyphenation indicated only slight variance of electrospray ionization efficiencies within UDOM constituents (Fig. 9). Low mobility constituents, like carbohydrates, showed somewhat lower ionization efficiencies than carboxvlic acids, as indicated by the lesser relative intensity of these constituents in surface UDOM compared with deep UDOM. Nevertheless, owing to the overall correspondence of CZE/UV and CZE/MS electropherograms, the mass spectra obtained from marine UDOM were considered representative of UDOM composition.

3.3. FTICR mass spectrometry of UDOM

Electrospray ionization (ESI) mass spectra of UDOM indicated, depending on resolution, hundreds to thousands of individual signals and a conspicuous series of mass spacing patterns separated by 2 and 14 Da (Fig. 10). These patterns are most pronounced in deep UDOM at negative ion ESI with both ion trap (data not shown) and Fourier transformation ion cyclotron

resonance (FTICR) mass spectrometry systems. Based on accurate mass measurements obtained from ultrahigh-resolution FTICR mass spectra, the most prominent recurring mass differences between these ions were defined as 14.0156 Da [variation in methylene count $(CH_2)_n$], 2.0157 Da (variation in double bond equivalents/ H_2), 1.0034 Da (mass difference between ${}^{13}C$ and ${}^{12}C$), and 0.0364 Da (formal exchange of CH₄ versus oxygen) (Stenson et al., 2003). A representative subset of the most intense peaks, which were observable as prominent members of these mass spacing patterns in both positive and negative ionization modi, was attributed to CRAM, based on the finding (cf. above), that prominent NMR-detectable features of CRAM would produce strong mass spectroscopic signatures as well. For an in-depth analysis; 613 positive ions XH⁺ were selected and the molecular formulae X were determined. These were found to be most accurately represented by the composition $C_n H_m O_a$, indicating the absence of nitrogen in CRAM and a substantial degree of unsaturation in excess of carboxyl groups. The CH₂-specific Kendrick mass defect analysis (Hughey et al., 2001; Hsu et al., 1992) of CRAM showed classes of compounds varying only in the number of methylene groups and, almost exclusively, relative Kendrick mass defects (Δm) corresponding to variance in (double unsaturation bond equivalents (DBE), $\Delta m = -0.013 \text{ Da}$) and exchange of oxygen vs. CH₄ $(\Delta m = -0.0364 \text{ Da}; \text{ Fig. 12}).$

In a van Krevelen diagram (Visser, 1983; Kim et al., 2003), the area of CRAM-derived elemental compositions was centered along the line connecting the virtual end members CH₂ and CO, respectively, and was clearly distanced from the region of peptides (Fig. 11). CRAM exhibited an O/C ratio in excess of 0.25 and was devoid of extended aromatic systems and carboxylated, saturated hydrocarbons. Lower-molecular-weight CRAM exhibited a higher degree of oxidation than higher-molecular-weight molecules (Fig. 11), suggesting a size-reactivity continuum similar to that observed previously in marine DOM (Amon and Benner, 1996; Benner, 2002). All molecular formulas derived from these ions exhibited a higher degree of unsaturation than could be introduced by carboxyl groups alone, even if all oxygen was assumed in carboxyl groups (cf. purple line in Fig. 11). NMR data confirm the very low abundance of hydrogen in aromatics and double bonds in both surface and deep UDOM (<1.5% of total ¹H NMR integral; Figs. 1 and 2).

3.3.1. CH₂ and CO₂ based Kendrick mass analysis of CRAM

Kendrick mass defect analyses of complex mixtures are not restricted to CH_2 units, but are also applicable to any other fragment (Kim et al., 2003). Based on the large amplitude of the F2_C resonance in ¹³C NMR spectra of UDOM and CRAM (which has been established to represent mainly carboxylic acids, cf. NMR discussion, Section 3.1, Figs. 1 and 2), CO₂ is another key building block of CRAM. It is therefore reasonable to expand the Kendrick

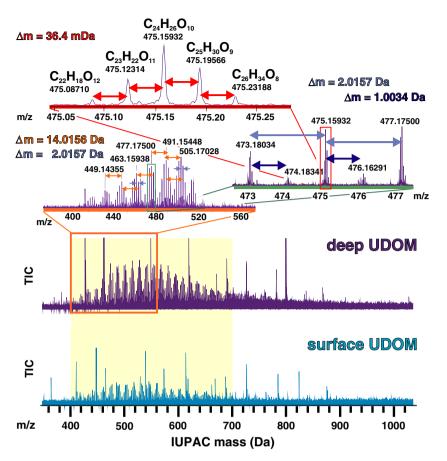


Fig. 10. ESI positive ion 7 Tesla FTICR mass spectra of (bottom, left) surface and (middle left) deep UDOM with selected expanded sections (top left), given to demonstrate the very high resolution in these spectra; the most significant recurring mass differences ($\Delta m = 14.0156, 2.0157, 1.0034$ Da, 36.4 mDa) have been explained in the text. In the uppermost expansion, molecular formulae $C_n H_m O_q$ are given for prominent peaks. The yellow shaded mass section equals the mass range used for the Kendrick mass analysis (Fig. 11).

mass defect sorting scheme (Fig. 12) to both key fragments of CRAM, namely CH_2 and CO_2 . Since the IUPAC mass scale is based on ^{12}C (IUPAC mass: 12.00000), the presence of hydrogen (¹H) induces positive mass defects and the presence of ^{16}O causes negative mass defects in both IUPAC and Kendrick systems, respectively.

CRAM, that belong to identical CH₂-based Kendrick mass defect classes, produce linear patterns of CO₂-based Kendrick mass defects. Conversely, CRAM with identical CO₂-based Kendrick mass defects, which represent molecules belonging to the same CO2-based class, produce analogous linear patterns in the CH₂-based Kendrick mass analysis (Fig. 12). However, the significantly larger mass spacing (44 Da for CO₂ instead of 14 Da for CH₂) precludes the occurrence of very extended CO2-based series within the observed mass range of CRAM. Nevertheless, the importance of CO₂ as a fundamental building block of CRAM is well established by this CO₂-based Kendrick mass analysis, which specifically indicates four series of common CO₂-based Kendrick mass defects (KMD CO₂: 0.73303, 0.69663, 0.67774, 0.67219 Da, respectively; cf. Fig. 12, and experimental section) with five members (Fig. 12) each.

However, while the occurrence of certain molecular backbones with variable degrees of carboxylation is certainly a realistic option for CRAM, it has to be emphasized that many isomers may contribute to a given molecular composition; these are not resolved by any Kendrick mass sorting scheme.

The Kendrick mass analysis solely relies on molecular formulae (i.e. it is insensitive to isomeric composition) and accordingly, the Kendrick mass defect analysis is governed by the nature and abundance of different atoms present in a molecule. A considerable regularity of CRAM can be deduced as more than 95% of the CH₂based Kendrick mass defect differences are defined by 13.6 mDa (variation in double bond equivalents DBE) and 36.4 mDa (formal exchange of oxygen and methane in the molecular formula) mass differences.

3.4. NMR properties and prominent structures of CRAM

For any given $C_nH_mO_q$ molecular formula, isomers will produce different NMR signatures, thereby providing extremely useful and indispensable guidance for a molecular-level structural analysis of CRAM. For illustration of this point, the molecular formula $C_{28}H_{32}O_{13}$ has been

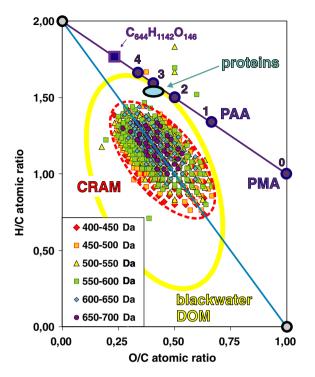


Fig. 11. Mass sorted van Krevelen diagram of 613 ions attributed to CRAM (red ellipsoid, broken line) with region of proteins indicated in blue. The purple line refers to any fully saturated open chain aliphatic carboxylic acid, with aliphatic polycarboxylic acids indicated according to spacing between carboxyl groups (cf. Fig. 7); e.g. polymaleic acid (PMA; n = 0) polyacrylic acid (PAA; n = 1), higher polycarboxylic acids (n = 2-4) and model aliphatic polycarboxylic acid C₆₄₄H₁₁₄₂O₁₄₆ (Fig. 7). The proportion of unsaturation and oxidation in CRAM increases slightly with decreasing mass of the molecular ions. The total area occupied by the 50 Da mass increments shown decreases with increasing mass, indicating an increased diversity of molecular compositions at lower masses. The blue line connects the virtual endmembers CH2 and CO and bisects the compositional space of CRAM nearly in half. That positioning of CRAM within the van Krevelen diagram is the consequence of a complex relationship between the number of feasible isomers, which can be assembled from molecular formulae $C_n H_m O_a$, the occurrence of these isomers in UDOM, and the ionization efficiency of any single isomer under the given experimental conditions (Hertkorn and Frommberger, 2006). CRAM occupies a minor section of elemental compositions as compared to a blackwater DOM (Hughey et al., 2001).

selected to represent CRAM. This molecule exhibits a H/C and O/C elemental ratio (H/C = 1.15; O/C = 0.42) close to the locus of all 613 CRAM molecules identified (cf. Fig. 11). Furthermore, $C_{28}H_{32}O_{13}$ represents the center molecule of the singular seven membered CH₄/O isobaric series identified within the FTICR mass spectrum of CRAM.

Analogous considerations as described below would apply for all 613 CRAM molecular compositions identified. These have been found to occupy a certain, however restricted area of compositional space (DBE/C = 0.30-0.68; DBE/H = 0.20-0.95; DBE/O = 0.77-1.75) within the van Krevelen diagram (Fig. 11).

Based on the proton NMR spectra of surface and deep marine UDOM (Figs. 1 and 2), the selected three isomeric molecules of $C_{28}H_{32}O_{13}$ with a IUPAC mass of 576.546 do not contain aromatic or olefinic protons.

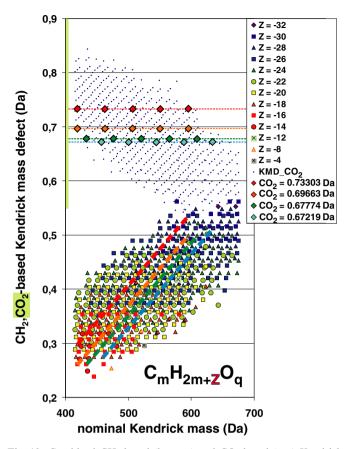


Fig. 12. Combined CH₂-based (bottom) and CO₂-based (top) Kendrick mass defect analysis of 613 CRAM ions in deep UDOM in the mass range of 415-675 Da. The CH2-based analysis is displayed according to Z-values of the molecular formulae $C_m H_{2m+Z} O_q$, resulting in 13 series of Z-values $(Z = -32 \text{ to } 4: Z \text{ (type): } C_c H_{2c+Z} O_o)$ in 156 homologous series $C_c H_h O_o$ (c = 19-37, h = 14-50, o = 6-16, DBE = 3-21). In the CO₂-based Kendrick mass effect analysis, several series of related CRAM with identity in CO₂-based Kendrick mass defects are recognizable, each showing a mass difference of the key unit CO₂ (44 Da). Caused by the larger mass spacing compared with CH₂ (14 Da), the CO₂-based series in CRAM are more truncated than the CH2-based series. CRAM are composed of four fivemembered series of molecular compositions C_nH_mO_q with identical CO₂based Kendrick mass defects, indicated by coloured diamonds (cf. text), 27 series with four members each, 70 series with three members each, and shorter series, respectively, which all are represented by dots. Molecules with identical CO2-based Kendrick mass defects differ in CH2-based mass defects, and vice versa; this has been indicated by the four pairs of dotted lines, that represent the four five-membered CO2-based KMD-series indicated.

Isomer I represents a terpenoid-derived assortment of condensed alicyclic six- and five-membered rings with rather evenly distributed carboxylic acid units (to fulfil the restraints defined by Figs. 6-8). Such a topology corresponds to a minimum occurrence of methyl groups which would terminate any branched alkane unit.

Isomer II contains a fully substituted aromatic ring with no hydrogen atom attached. This feature fulfils the key NMR requirement of the absence of aromatic protons in marine UDOM (Fig. 2), while allowing for some aromatic carbon NMR integral. A characteristic NMR feature of *isomer II* is the considerable amount of aromatic carbon

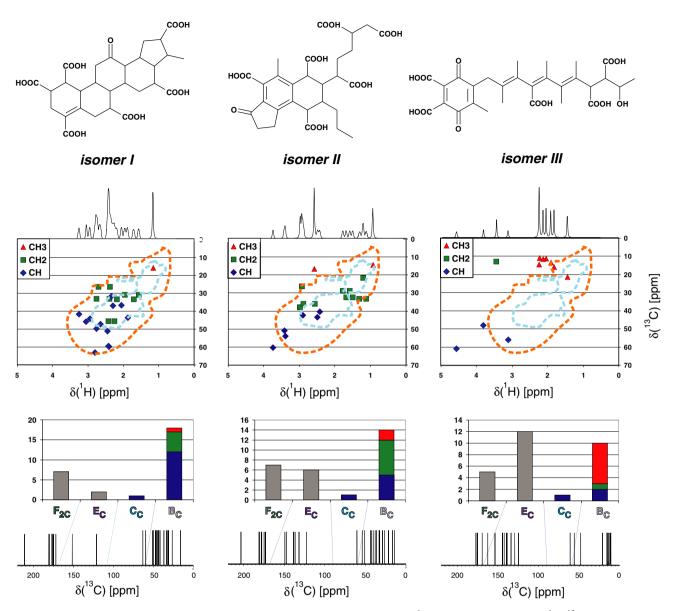


Fig. 13. Three $C_{28}H_{32}O_{13}$ isomers (top row; IUPAC mass 576.546) together with computed ¹H NMR (linewidth 10 Hz), ¹H, ¹³C HSQC-spectra (middle row with HSQC contour lines as given in Fig. 5: cross peaks are labelled according to carbon multiplicity) and computed carbon NMR spectra (bottom) with numbers of methyl (red), methylene (green), methane (blue) and quaternary (grey) carbon atoms provided, according to chemical shift ranges given in Fig. 1 (cf. text). *Isomer I* and *isomer II* conform much better to the NMR characteristics of UDOM than *isomer III* [in one-dimensional ¹H (Fig. 1), non-edited (Fig. 1) and multiplicity-edited ¹³C NMR spectra (Fig. 6) and in the ¹H, ¹³C HSQC NMR spectra (Fig. 5)].

NMR resonances (section E_c , Fig. 1) as opposed to *isomer I*. The fraction of methyl groups can be adjusted by a variable degree of branching more easily than in molecules like *isomer I*. However, in molecules resembling *isomer II*, the maximum feasible fraction of methyl carbon still remains rather limited.

Isomer III, which is assembled with partial structures that resembe carotenoids, is almost exclusively composed of methyl and quaternary carbon atoms and exhibits NMR properties, which all are very divergent from those observed in UDOM.

An interesting consequence of the considerable degree of unsaturation and oxygenation in $C_{28}H_{32}O_{13}$ molecules is a relative downfield proton NMR shift

of the methyl resonances, especially in structures related to *isomer III*, compared to methyl resonances found in peptides and proteins or other alkane environments. This observation, which refers also to other conceivable structures derived from the 613 CRAM ions, implies a sizable proportion of the methyl resonances in UDOM being derived from peptides rather than from CRAM. Thus, CRAM structures related to *isomers I* and *II* are likely to be more common than those derived from *isomers III*. Both *isomers I* and *II* also conform better to the ¹H, ¹³C HSQC NMR cross peak pattern observed in marine UDOM than does *isomer III* (areas 1 and 2; Fig. 5).

4. Conclusions

Based on all these data, it appears the overwhelming majority of CRAM-ions is represented by carboxylated and fused alicyclic rings with very few hydrogen atoms in double bonds. The biochemical origins and mechanisms of formation of CRAM are unclear, but CRAM shares some structural characteristics found in terpenoids, a diverse class of biochemicals (e.g. isoprenoids, sterols, hopanoids, crenarchaeols) occurring as membrane constituents and secondary metabolites in a wide range of prokaryotic and eukaryotic organisms (Ourisson et al., 1987). Several studies have noted the occurrence of prokaryotic cell wall and membrane components in marine DOM (Tanoue et al., 1995; McCarthy et al., 1998; Benner and Kaiser, 2003; Wakeham et al., 2003), so they are likely sources of CRAM as well. The molecular formulae determined from the FTICR mass spectra data indicated the occurrence of polycarboxylated fused-ring systems rather than open chain isomers. These polycarboxylated fused-ring systems form the general structures of sterols and hopanoids with oxidized side chains.

Similar structures could also be derived from other biochemical precursors that have undergone more extensive alterations. Acrylic acid is a decomposition product of dimethylsulphoproprionate, which is produced by several abundant marine phytoplankton (Dacey and Wakeham, 1986). Acrylic acid is susceptible to addition reactions and photo-polymerization in seawater and could also be a precursor of CRAM. Furthermore, radical mediated photo-oxidation of any functionalized organic molecule in oxygenated surface ocean waters is expected to produce oxidation products with non-repetitive structures (Schmitt-Kopplin et al., 1998).

CRAM are the most abundant identified component of DOM in the deep ocean. Previous studies characterized only $\sim 3\%$ of DOC as specific biochemicals in the deep ocean (Benner, 2002) whereas CRAM accounts for $\sim 8\%$ of the DOC. The structural diversity found within CRAM and its substantial content of alicyclic rings and branching contribute to its resistance to biodegradation and refractory nature. It appears CRAM are largely comprised of the decomposition products of biomolecules, as indicated by its prevalence of carboxyl groups and pattern of increasing oxidation with decreasing molecular size. CRAM are expected to constitute a strong ligand for metal binding, and multiple coordination across calcium cations could promote aggregation and gel formation (Chin et al., 1998), thereby affecting the reactivity of organic matter and the bioavailability of associated nutrients and trace metals.

The occurrence of CRAM in freshwater and terrestrial environments seems likely, considering the global distribution of biomolecules and the similarities of biogeochemical processes among environments. In addition to its abundance in the ultrafiltered fraction of DOM in the ocean, CRAM also appears to be an important component of the humic fraction of marine (Hedges et al., 1992) and freshwater DOM (Leenheer et al., 2003).

The very low resolution signature of CRAM in both separation and spectroscopic techniques has precluded so far its recognition as a relevant constituent of natural organic matter, although the occurrence of sizable amounts of branched aliphatic structures in marine (Hatcher et al., 1979; Hatcher et al., 1981; Hedges et al., 1992; Sardessai and Wahidullah, 1998) and freshwater (Wilson et al., 1981; Buddrus and Lambert, 1995; Lambert and Buddrus, 1996) NOM materials has been proposed in numerous earlier NMR studies. Terpenoid structures have been characterized in fossil organic matter, such as kerogen and petroleum, indicating their ubiquitous and refractory nature (Ourisson et al., 1987; Summons, 1993). Unraveling the mysteries about its formation and cycling will provide critical insights into the global carbon cycle.

Acknowledgments

The authors gratefully acknowledge a Humboldt research award for J.I.H., funding from the U.S. NSF for R.B. and K.K., and valuable discussions with K. Whitehead, Th. Dittmar, B. Koch, E. M. Perdue and Y. Gelinas. We thank H. Neumeir, E. Holzmann and S. Thaller (GSF) for skillful technical assistance during measurements and preparation of the manuscript.

Associate editor: H. Rodger Harvey

Appendix A

Experimentally determined and theoretical mass numbers from positive ion 7 Tesla Fourier transform ion cyclotron mass spectra of deep marine UDOM together with molecular formula $C_cH_hO_o$, representing the minimal deviation from the theoretical mass values with the options $C_{0-50}H_{0-100}O_{0-50}N_{0-50}S_{0-10}$ provided prior to calculation

Count	А	В	С	D	E	F
	Exp	Theory	Error	С	H(M)	0
			(ppm)			
1	415,10141	415,10236	2,29	21	18	9
2	415,13797	415,13874	1,85	22	22	8
3	415,17405	415,17513	2,6	23	26	7
4	417,08070	417,08162	2,21	20	16	10
5	417,11720	417,11801	1,94	21	20	9
6	417,15349	417,15439	2,16	22	24	8
7	417,19014	417,19078	1,53	23	28	7
8	419,09650	419,09727	1,84	20	18	10
9	419,13277	419,13366	2,12	21	22	9
10	419,16910	419,17004	2,24	22	26	8
11	419,20525	419,20643	2,81	23	30	7
12	421,07604	421,07654	1,19	19	16	11
13	421,11206	421,11292	2,04	20	20	10
14	421,14848	421,14931	1,97	21	24	9
15	421,18488	421,18569	1,92	22	28	8
16	423,09139	423,09219	1,89	19	18	11
17	423,12766	423,12857	2,15	20	22	10

Appendix A (continued)

Appendix A (continued)

19 423 20 425 21 425 22 425 23 427 24 427 25 427 26 427 27 429 28 429 29 429 29 429 30 431 31 431 33 431 34 433 35 433 36 433 37 433 38 433 39 435 40 435 41 435 42 435 43 435 44 435 45 437 46 437 47 437 48 437 50 439 51 439 52 439 53 439 54 441 55 441 56 441 57 441 60 443 61 443 62 443 63 443 64 445 65 445 66 445 66 445 67 445	Exp 423,16415 423,20011 425,10680 425,14331 425,17971 427,12243 427,13816 427,15946 427,17417	B Theory 423,16496 423,20194 425,10784 425,14422 425,14422	C Error (ppm) 1,91 4,32	D C 21	E H (M)	F O	Count	A Exp	B Theory	C Error (ppm)	D C	E H (M)	F O
18 423 19 423 20 425 21 425 22 425 22 425 23 427 24 427 25 427 26 427 27 429 29 429 29 429 29 429 30 431 31 431 32 431 33 433 36 433 37 433 38 433 39 435 40 435 41 435 42 435 41 435 44 435 45 437 46 437 47 437 48 437 49 437 50 439 51 439 52 439 53 439 54 441 55 441 56 441 57 441 59 441 63 443 64 445 65 445 66 445 66 445 67 445	423,16415 423,20011 425,10680 425,14331 425,17971 427,12243 427,13816 427,15946 427,17417	423,16496 423,20194 425,10784 425,14422	(ppm) 1,91		H (M)	0		Exp	Theory		С	H(M)	0
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	423,20011 425,10680 425,14331 425,17971 427,12243 427,13816 427,15946 427,17417	423,20194 425,10784 425,14422	1,91	21									0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	425,10680 425,14331 425,17971 427,12243 427,13816 427,15946 427,17417	425,10784 425,14422	4,32		26	9	81	451,19554	451,19626	1,6	23	30	ç
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	425,14331 425,17971 427,12243 427,13816 427,15946 427,17417	425,14422		22	30	8	82	453,10227	453,10275	1,06	20	20	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	425,17971 427,12243 427,13816 427,15946 427,17417	· · · · · · · · · · · · · · · · · · ·	2,45	19	20	11	83	453,13847	453,13914	1,48	21	24	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	427,12243 427,13816 427,15946 427,17417	435 100 (1	2,14	20	24	10	84	453,15372	453,15439	1,48	25	24	8
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	427,13816 427,15946 427,17417	425,18061	2,12	21	28	9	85	453,17438	453,17552	2,52	22	28	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	427,15946 427,17417	427,12349	2,48	19	22	11	86	455,08099	455,08217	2,59	19	18	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	427,17417	427,13874	1,36	23	22	8	87	455,11765	455,11840	1,65	20	22	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/	427,15987	0,96	20	26	10	88	455,13374	455,13366	-0,18	24	22	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		427,17513	2,25	24	26	7	89	455,15374	455,15479	2,31	21	26	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	429,11749	429,11801	1,21	22	20	9	90	455,16949	455,17004	1,21	25	26	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	429,15372	429,15493	2,82	23	24	8	91	455,19091	455,19117	0,57	22	30	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	429,18993	429,19078	1,98	24	28	7	92	455,20547	455,20643	2,11	26	30	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	431,09658	431,09727	1,6	21	18	10	93	457,11283	457,11292	0,2	23	20	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	431,13293	431,13366	1,69	22	22	9	94	457,14887	457,14931	0,96	24	24	9
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	431,16917	431,17004	2,02	23	26	8	95	457,18514	457,18569	1,2	25	28	8
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	431,20541	431,20643	2,37	24	30	7	96	457,22123	457,22208	1,86	26	32	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	433,07524	433,07654	3	20	16	11	97	459,09207	459,09219	0,26	22	18	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	433,11211	433,11292	1,87	21	20	10	98	459,12820	459,12857	0,81	23	22	10
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	433,14847	433,14931	1,94	22	24	9	99	459,16443	459,16496	1,15	24	26	9
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	433,18493	433,18569	1,75	23	28	8	100	459,20082	459,20134	1,13	25	30	8
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	433,22145	433,22208	1,45	24	32	7	101	459,23688	459,23773	1,85	26	34	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	435,05420	435,05580	3,68	19	14	12	102	461,07133	461,07145	0,26	21	16	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	435,09141	435,09219	1,79	20	18	11	103	461,10744	461,10784	0,87	22	20	11
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	435,12783	435,12857	1,7	21	22	10	104	461,14364	461,14422	1,26	23	24	10
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	435,16413	435,16496	1,91	22	26	9	105	461,18001	461,18061	1,3	24	28	9
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	435,20050	435,20134	1,93	23	30	8	106	461,21627	461,21699	1,56	25	32	8
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	435,23671	435,23773	2,34	24	34	7	107	461,25225	461,25338	2,45	26	36	7
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	437,07072	437,07145	1,67	19	16	12	108	463,08673	463,08710	0,8	21	18	12
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	437,10700	437,10784	1,92	20	20	11	109	463,12301	463,12349	1,04	22	22	11
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	437,14342	437,14422	1,83	21	24	10	110	463,15938	463,15987	1,06	23	26	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	437,17964	437,18061	2,22	22	28	9	111	463,19570	463,19626	1,21	24	30	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	437,21682	437,21699	0,39	23	32	8	112	463,23195	463,23264	1,49	25	34	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139,08647	439,08710	1,43	19	18	12	113	465,10212	465,10275	1,35	21	20	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	439,12268	439,12349	1,84	20	22	11	114	465,13850	465,13914	1,38	22	24	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	439,15890	439,15987	2,21	21	26	10	115	465,17489	465,17552	1,35	23	28	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	439,19500	439,19626	2,87	22	30	9	116	465,21126	465,21191	1,4	24	32	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	441,10196	441,10275	1,79	19	20	12	117	467,08175	467,08202	0,58	20	18	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	141,11771	441,11801	0,68	23	20	9	118	467,11797	467,11840	0,92	21	22	12
58 441 59 441 60 443 61 443 62 443 63 443 64 445 65 445 66 445 67 445	441,13824	441,13914	2,04	20	24	11	119	467,15428	467,15479	1,09	22	26	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	441,15386	441,15439	1,2	24	24	8	120	467,19052	467,19117	1,39	23	30	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	141,17399	441,17552	3,47	21	28	10	121	469,09644	469,09767	2,62	20	20	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	141,18987	441,19078	2,06	25	28	7	122	469,13354	469,13405	1,09	21	24	12
62 443 63 443 64 445 65 445 66 445 67 445	143,09775	443,09727	-1,08	22	18	10	123	469,14928	469,14931	0,06	25	24	9
63 443 64 445 65 445 66 445 67 445	143,13321	443,13366	1,02	23	22	9	124	469,16973	469,17044	1,51	22	28	11
64445654456644567445	143,16940	443,17004	1,44	24	26	8	125	469,18540	469,18569	0,62	26	28	8
654456644567445	143,20580	443,20643	1,42	25	30	7	126	469,20560	469,20682	2,6	23	32	10
6644567445	445,11250	445,11292	0,94	22	20	10	127	469,22126	469,22208	1,75	27	32	7
6644567445	145,14867	445,14931	1,44	23	24	9	128	471,12867	471,12857	-0,21	24	22	10
	445,18507	445,18569	1,39	24	28	8	129	471,16454	471,16496	0,89	25	26	9
68 445	145,22147	445,22208	1,37	25	32	7	130	471,20077	471,20134	1,21	26	30	8
	145,25768	445,25846	1,75	26	36	6	131	471,23708	471,23773	1,38	27	34	7
69 447	147,09165	447,09219	1,21	21	18	11	132	473,10800	473,10784	-0,34	23	20	11
	447,12791	447,12857	1,48	22	22	10	133	473,14410	473,14422	0,25	24	24	10
	447,16426	447,16496	1,57	23	26	9	134	473,18034	473,18061	0,57	25	28	9
	147,20056	447,20134	1,74	24	30	8	135	473,21658	473,21699	0,87	26	32	8
	449,07084	449,07145	1,36	20	16	12	136	473,25286	473,25338	1,1	27	36	7
	449,10727	449,10784	1,27	21	20	11	137	473,27433	473,27451	0,38	24	40	9
	49,14355	449,14422	1,49	22	24	10	138	475,08710	475,08712	0,04	22	18	12
	TT,ITJJJ	449,18061	1,51	23	28	9	139	475,12314	475,12349	0,74	23	22	11
	149,14333 149,17993	449,21699	2,25	24	32	8	140	475,15932	475,15984	1,09	24	26	10
	449,17993	451,08710	1,06	20	18	12	141	475,19566	475,19626	1,26	25	30	9
	149,17993 149,21598	· · · · · ·	1,50	20	22	11	142	475,23188	475,23265	1,62	26	34	8
80 451	449,17993	451,12349		22	26	10				,			t page)

Appendix A (continued)

Appendix A (continued)

Appendix	$\mathbf{x} \in \mathbf{A}$ (continued)						Appendix	$\mathbf{x} \mathbf{A}$ (continued)					
Count	A Exp	B Theory	C Error (ppm)	D C	E H (M)	F O	Count	A Exp	B Theory	C Error (ppm)	D C	E H (M)	F O
143	477,06688	477,06637	-1,07	21	16	13	206	501,10332	501,10275	-1,14	24	20	12
144	477,10250	477,10275	0,52	22	20	12	207	501,13913	501,13918	0,1	25	24	11
145	477,13876	477,13914	0,8	23	24	11	208	501,17535	501,17552	0,34	26	28	10
146	477,17500	477,17552	1,09	24	28	10	209	501,21164	501,21191	0,54	27	32	9
147	477,21150	477,21191	0,86	25	32	9	210	501,24796	501,24830	0,68	28	36	8
148	477,24772	477,24829	1,19	26	36	8	211	503,11856	503,11840	-0,32	24	22	12
149	479,08156	479,08202	0,96	21	18	13	212	503,15462	503,15479	0,34	25	26	11
150	479,11793	479,11840	0,98	22	22	12	213	503,19086	503,19117	0,62	26	30	10
151	479,15439	479,15479	0,83	23	26	11	214	503,22729	503,22756	0,54	27	34	9
152	479,19070	479,19117	0,98	24	30	10	215	503,26311	503,26395	1,67	28	38	8
153	479,22700	479,22756	1,17	25	34	9	216	505,09796	505,09757	-0,77	23	20	13
154	481,09746	481,09767	0,44	21	20	13	217	505,13399	505,13405	0,12	24	24	12
155	481,13374	481,13405	0,64	22	24	12	218	505,17028	505,17044	0,32	25	28	11
156 157	481,17007	481,17044	0,77	23 24	28 32	11 10	219 220	505,20659	505,20682 505,24321	0,46	26	32 36	10 9
157	481,20644	481,20682	0,79	24 25	32	9	220	505,24287 505,27948	505,24521 505,27960	0,67	27 28	30 40	8
158	481,24250 483,11270	481,24321 483,11332	1,48 1,28	23 21	22	13	221	507,07665	507,07693	0,24 0,55	28 22	40 18	ہ 14
160	483,11270	483,11332	0,56	21	22	13	222	507,11334	507,11332	-0.04	22	22	13
161	483,16505	483,16496	-0.19	26	20 26	9	223	507,14965	507,14970	-0,04 0,1	23	26	12
162	483,18572	483,18609	0,77	23	30	11	224	507,18589	507,18609	0,39	25	30	11
163	483,20090	483,20134	0,91	27	30	8	225	507,22222	507,22247	0,39	26	34	10
164	483,23722	483,23773	1,06	28	34	7	220	507,25851	507,25886	0,69	20	38	9
165	485,14441	485,14422	-0,39	25	24	10	228	509,09263	509,09258	-0,1	22	20	14
166	485,18052	485,18061	0,19	26	28	9	229	509,12912	509,12897	-0,29	23	24	13
167	485,21664	485,21699	0,72	27	32	8	230	509,16541	509,16535	-0,12	24	28	12
168	485,25280	485,25388	2,23	28	36	7	231	509,20169	509,20174	0,1	25	32	11
169	487,12357	487,12349	-0,16	24	22	11	232	509,23797	509,23812	0,29	26	36	10
170	487,15954	487,15987	0,68	25	26	10	233	511,10839	511,10823	-0,31	22	22	14
171	487,19590	487,19626	0,74	26	30	9	234	511,14460	511,14462	0,04	23	26	13
172	487,23223	487,23264	0,84	27	34	8	235	511,16061	511,15987	-1,45	27	26	10
173	487,26770	487,26903	2,73	28	38	7	236	511,18096	511,18100	0,08	24	30	12
174	489,10270	489,10275	0,1	23	20	12	237	511,19629	511,19626	-0,06	28	30	9
175	489,13898	489,13914	0,33	24	24	11	238	511,21697	511,21739	0,82	25	34	11
176	489,17533	489,17552	0,39	25	28	10	239	511,23274	511,23265	-0,18	29	34	8
177	489,21167	489,21191	0,49	26	32	9	240	511,26817	511,26903	1,68	30	38	7
178	489,24807	489,24830	0,47	27	36	8	241	513,12388	513,12388	0	22	24	14
179	491,08234	491,08202	-0,65	22	18	13	242	513,13960	513,13914	-0,9	26	24	11
180	491,11814	491,11840	0,53	23	22	12	243	513,16024	513,16027	0,06	23	28	13
181 182	491,15448 491,19085	491,15479	0,63	24 25	26 30	11 10	244 245	513,17546	513,17552	0,12 0,39	27 28	28 32	10 9
182	491,19085	491,19117 491,22756	0,65 0,92	23 26	30 34	9	243 246	513,21171 513,24792	513,21191 513,24830	0,39 0,74	28 29	32	8
185	491,22711	491,22730	0,92	20 27	34 38	8	240 247	513,24792	513,24850	1,03	29 30	30 40	o 7
184	491,20377	491,20394	0,33	27	20	13	247	515,28415	515,28408	-0,37	25	40 22	12
186	493,13379	493,13405	0,14	23	20 24	12	248	515,15491	515,15479	-0,37 -0,23	26	26	11
187	493,17006	493,17044	0,33	24	28	11	250	515,19116	515,19117	0,02	20	30	10
188	493,20635	493,20682	0,95	25	32	10	251	515,22746	515,22756	0,19	28	34	9
189	493,24234	493,24321	1,76	26	36	9	252	515,26413	515,26395	-0,35	29	38	8
190	495,07700	495,07693	-0,14	21	18	14	253	517,13427	517,13405	-0,43	25	24	12
191	495,11324	495,11332	0,16	22	22	13	254	517,17047	517,17044	-0,06	26	28	11
192	495,14951	495,14970	0,38	23	26	12	255	517,20683	517,20682	-0,02	27	32	10
193	495,18578	495,18609	0,63	24	30	11	256	517,24318	517,24321	0,06	28	36	9
194	495,22194	495,22247	1,07	25	34	10	257	517,27953	517,27960	0,14	29	40	8
195	497,09269	497,09258	-0,22	21	20	14	258	519,11368	519,11332	-0,69	24	22	13
196	497,12865	497,12897	0,64	22	24	13	259	519,14982	519,14970	-0,23	25	26	12
197	497,16495	497,16535	0,8	23	28	12	260	519,18606	519,18609	0,06	26	30	11
198	497,18045	497,18061	0,32	27	28	9	261	519,22248	519,22247	-0,02	27	34	10
199	497,20120	497,20174	1,09	24	32	11	262	519,25884	519,25886	0,04	28	38	9
200	497,21671	497,21699	0,56	28	32	8	263	521,09248	521,09258	0,19	23	20	14
201	497,25254	497,25338	1,69	29	36	7	264	521,12896	521,12897	0,02	24	24	13
202	499,16013	499,15984	-0,58	26	26	10	265	521,16586	521,16535	-0,98	25	28	12
203	499,19612	499,19626	0,28	27	30	9	266	521,20209	521,20174	-0,67	26	32	11
	100 22215	100 000 15	0.07		24	~	265	501 000 41	501 00010	0	~ ~	26	
203 204 205	499,23217 499,26879	499,23265 499,26903	0,96 0,48	28 29	34 38	8 7	267 268	521,23841 521,25915	521,23812 521,25925	-0,56 0,19	27 24	36 40	10 12

Appendix A (continued)

Appendix A (continued)

Аррении	A (commune)						Аррспил	A (communed)					
Count	A Exp	B Theory	C Error (ppm)	D C	E H (M)	F O	Count	A Exp	B Theory	C Error (ppm)	D C	E H (M)	F O
269	523,10951	523,10823	-2,45	23	22	14	332	547,25477	547,25377	-1,83	29	38	10
209	523,10951	523,10823	-2,43 -0,92	23 24	22	14	332	547,25477	547,29016	-1,83 -1,55	30	38 42	9
270	523,18113	523,18100	-0,25	25	30	12	334	549,08862	549,08750	-2,04	24	20	15
272	523,21757	523,21739	-0,34	26	34	11	335	549,12464	549,12388	-1,38	25	24	14
273	525,12430	525,12388	-0,8	23	24	14	336	549,16067	549,16027	-0,73	26	28	13
274	525,16078	525,16027	-0,97	24	28	13	337	549,19750	549,19665	-1,55	27	32	12
275	525,19827	525,19665	-3,08	25	32	12	338	549,23387	549,23304	-1,51	28	36	11
276	525,21333	525,21191	-2,7	29	32	9	339	549,26958	549,26942	-0,29	29	40	10
277	525,24989	525,24830	-3,03	30	36	8	340	551,10194	551,10315	2,2	24	22	15
278	525,29167	525,29055	-2,13	24	44	12	341	551,13953	551,13953	0	25	26	14
279	527,15534	527,15479	-1,04	27	26	11	342	551,17638	551,17592	-0,83	26	30	13
280	527,19211	527,19117	-1,78	28	30	10	343	551,21312	551,21230	-1,49	27	34	12
281	527,22854	527,22756	-1,86	29	34	9	344	551,25021	551,24869	-2,76	28	38	11
282	527,26300	527,26395	1,8	30	38	8	345	553,11897	553,11880	-0,31	24	24	15
283	529,13376	529,13405	0,55	26	24	12	346	553,15550	553,15518	-0,58	25	28	14
284	529,17101	529,17044	-1,08	27	28	11	347	553,19217	553,19157	-1,08	26	32	13
285	529,20730	529,20682	-0,91	28	32	10	348	553,20730	553,20682	-0,87	30	32	10
286	529,24323	529,24321	-0,04	29	36	9	349	553,22778 553,24354	553,22795	0,31	27	36	12 9
287	529,27869	529,27960	1,72	30 25	40	8	350	,	553,24321	-0,6	31	36	
288 289	531,11442 531,15010	531,11332 531,14970	$-2,07 \\ -0,75$	25 26	22 26	13 12	351 352	553,26390 553,28027	553,26434 553,27960	0,8 -1,21	28 32	40 40	11 8
289 290	531,13010	531,14970	-0,73 -1,04	26 27	30	12	353	555,14861	555,14970	-1,21 1,96	52 28	40 26	12
290 291	531,18004	531,18009	-0,92	27	30	10	353	555,14801	555,14970	-1,1	28 29	20 30	12
291	531,22290	531,25886	-2,37	28 29	38	9	355	555,22287	555,22247	-0,72	30	34	10
292	533,13024	533,12897	-2,37	25	24	13	356	555,25934	555,25886	-0,86	31	38	9
294	533,16628	533,16535	-1,74	26	28	12	357	555,29546	555,29524	-0,00	32	42	8
295	533,20258	533,20174	-1,58	27	32	11	358	557,16619	557,16535	-1,51	28	28	12
296	533,23918	533,23812	-1,99	28	36	10	359	557,20252	557,20174	-1,4	29	32	11
297	533,27459	533,27451	-0,15	29	40	9	360	557,23876	557,23812	-1,15	30	36	10
298	535,10793	535,10823	0,56	24	22	14	361	557,27509	557,27451	-1,04	31	40	9
299	535,14548	535,14462	-1,61	25	26	13	362	557,31059	557,31090	0,56	32	44	8
300	535,18169	535,18100	-1,29	26	30	12	363	559,14624	559,14462	-2,9	27	26	13
301	535,21832	535,21739	-1,74	27	34	11	364	559,18204	559,18100	-1,86	28	30	12
302	535,25532	535,25377	-2,9	28	38	10	365	559,21890	559,21739	-2,7	29	34	11
303	537,12430	537,12388	-0,78	24	24	14	366	559,25526	559,25377	-2,66	30	38	10
304	537,16085	537,16027	-1,08	25	28	13	367	559,29190	559,29016	-3,11	31	42	9
305	537,19693	537,19665	-0,52	26	32	12	368	561,12579	561,12388	-3,4	26	24	14
306	537,23294	537,23304	0,19	27	36	11	369	561,16193	561,16027	-2,96	27	28	13
307	539,10272	539,10315	0,8	23	22	15	370	561,19840	561,19665	-3,12	28	32	12
308	539,13962	539,13953	-0,17	24	26	14	371	561,23516	561,23304	-3,78	29	36 40	11 10
309 310	539,17695	539,17592 539,21230	$-1,91 \\ -3,41$	25 26	30 24	13	372 373	561,27149 563,10396	561,26942 563,10315	$-3,69 \\ -1,44$	30 25		
311	539,21414 539,22775	539,21250	-0,35	26 30	34 34	12 9	373	563,10390	563,10515	-1,44 -1,39	25 26	22 26	15 14
312	539,22775	539,22750	0,39	31	38	8	375	563,17699	563,17592	-1,39 -1,9	20	30	13
312	541,17032	541,17044	0,39	28	28	11	376	563,21347	563,21230	-2,08	28	34	12
314	541,20747	541,20682	-1,2	29	32	10	377	563,25054	563,24869	-3,28	29	38	11
315	541,24339	541,24321	-0,33	30	36	9	378	563,28464	563,28507	0,76	30	42	10
316	541,28011	541,27960	-0,94	31	40	8	379	565,11782	565,11880	1,73	25	24	15
317	543,15041	543,14970	-1,31	27	26	12	380	565,15630	565,15516	-2,02	26	28	14
318	543,18662	543,18609	-0,98	28	30	11	381	565,19280	565,19157	-2,18	27	32	13
319	543,22312	543,22247	-1,2	29	34	10	382	565,22903	565,22795	-1,91	28	36	12
320	543,25982	543,25886	-1,77	30	38	9	383	565,26533	565,26434	-1,75	26	44	13
321	543,29657	543,29524	-2,45	31	42	8	384	565,28679	565,28547	-2,34	29	40	11
322	545,13033	545,12897	-2,49	26	24	13	385	567,09784	567,09806	0,39	24	22	16
323	545,16683	545,16535	-2,71	27	28	12	386	567,13473	567,13445	-0,49	25	26	15
324	545,20296	545,20174	-2,24	28	32	11	387	567,17112	567,17083	-0,51	26	30	14
325	545,23951	545,23812	-2,55	29	36	10	388	567,20802	567,20722	-1,41	27	34	13
326	545,27471	545,27451	-0,37	30	40	9	389	567,22236	567,22247	0,19	31	34	10
327	545,29011	545,28976	-0,64	34	40	6	390	567,24435	567,24360	-1,32	28	38	12
328	547,11005	547,10823	-3,33	25	22	14	391	567,25812	567,25886	1,3	32	38	9
329	547,14564	547,14462	-1,86	26	26	13	392	569,16570	569,16535	-0,61	29	28	12
330	547,18189	547,18100	-1,63	27	30 24	12	393	569,20197	569,20174	-0,4	30	32	11
331	547,21781	547,21739	-0,77	28	34	11					(contini	ied on next	page)

Appendix A (continued)

Appendix A (continued)

Appendix	\mathbf{A} (continued)						Appendix	\mathbf{A} (continued)					
Count	А	В	С	D	Е	F	Count	Α	В	С	D	Е	F
	Exp	Theory	Error	С	H (M)	0		Exp	Theory	Error	С	H (M)	0
204	5(0.22002	5(0.22912	(ppm)	21	26	10	457	501 12(25	501 12445	(ppm)	27	26	1.4
394 395	569,23903 569,27504	569,23812 569,27451	-1,6 -0,93	31 32	36 40	9	457 458	591,13625 591,17221	591,13445 591,17083	-3,04 -2,33	27 28	26 30	15 14
396	571,14362	571,14462	1,75	28	26	13	459	591,20852	591,20722	-2,33 -2,2	28 29	34	13
397	571,18162	571,18100	-1.09	29	30	12	460	591,24503	591,24360	-2,2	30	38	12
398	571,21806	571,21739	-1,17	30	34	11	461	591,28141	591,27999	-2,4	31	42	11
399	571,25458	571,25377	-1,42	31	38	10	462	591,31638	591,31637	-0,02	32	46	10
400	571,29089	571,29016	-1,28	32	42	9	463	593,15127	593,15010	-1,97	27	28	15
401	573,12262	573,12388	2,2	27	24	14	464	593,18780	593,18648	-2,23	28	32	14
402	573,16101	573,16027	-1,29	28	28	13	465	593,22372	593,22287	-1,43	29	36	13
403	573,19766	573,19665	-1,76	29	32	12	466	593,26065	593,25925	-2,36	30	40	12
404	573,23382	573,23304	-1,36	30	36	11	467	595,12838	595,12936	1,65	26	26	16
405	573,26983	573,26942	-0,72	31	40	10	468	595,16610	595,16575	-0,59	27	30	15
406 407	573,30635 575,13984	573,30581 575,13953	$-0,94 \\ -0,54$	32 27	44 26	9 14	469 470	595,20296 595,24011	595,20213 595,23852	-1,39 -2,67	28 29	34 38	14 13
407	575,13984	575,15955	-0,34 -2,4	27	30	14	470 471	595,24011 595,25475	595,25852 595,25377	-2,07 -1,65	33	38	10
409	575,21358	575,21230	-2,-2,-23	20	34	12	472	595,29106	595,29016	-1,51	34	42	9
410	575,25001	575,24869	-2,29	30	38	11	473	597,14508	597,14501	-0,12	26	28	16
411	575,28617	575,28507	-1,91	31	42	10	474	597,18310	597,18140	-2,85	27	32	15
412	575,32184	575,32146	-0,66	32	46	9	475	597,19761	597,19665	-1,61	31	32	12
413	577,08381	577,08241	-2,43	25	20	16	476	597,21819	597,21778	-0,69	28	36	14
414	577,11871	577,11880	0,16	26	24	15	477	597,23416	597,23304	-1,88	32	36	11
415	577,15671	577,15518	-2,65	27	28	14	478	597,26880	597,26942	1,04	33	40	10
416	577,19275	577,19157	-2,04	28	32	13	479	597,30616	597,30581	-0,59	34	44	9
417	577,22946	577,22795	-2,62	29	36	12	480	599,17644	599,17592	-0,87	30	30	13
418	577,26537	577,26434	-1,78	30	40	11	481	599,21351	599,21230	-2,02	31	34	12
419	577,30022	577,30072	0,87	31	44	10	482	599,24976	599,24869	-1,79	32	38	11 10
420 421	579,13479 579,17217	579,13445 579,17083	-0,59 -2,31	26 27	26 30	15 14	483 484	599,28603 601,19331	599,28507 601,19157	-1,6 -2,89	33 30	42 32	10
421	579,20901	579,20722	-2,31 -3,09	28	30 34	14	485	601,22963	601,22795	-2,89 -2,79	31	36	12
423	579,22957	579,22835	-2,11	25	38	15	486	601,26624	601,26434	-3,16	32	40	11
424	579,24544	579,24360	-3,18	29	38	12	487	603,13578	603,13445	-2,21	28	26	15
425	581,14974	581,15010	0,62	26	28	15	488	603,17236	603,17083	-2,54	29	30	14
426	581,18616	581,18648	0,55	27	32	14	489	603,20866	603,20722	-2,39	30	34	13
427	581,20139	581,20174	0,6	31	32	11	490	603,24512	603,24360	-2,52	31	38	12
428	581,22408	581,22287	-2,08	28	36	13	491	603,28114	603,27999	-1,91	32	40	11
429	581,23839	581,23812	-0,46	32	36	10	492	603,31841	603,31637	-3,38	33	44	10
430	581,25875	581,25925	0,86	29	40	12	493	605,15160	605,15010	-2,48	28	28	15
431	581,27367	581,27451	1,45	33	40	9	494	605,18814	605,18648	-2,74	29	32	14
432 433	581,29416 583,14535	581,29564 583,14462	2,55 -1,25	30 29	44 26	11 13	495 496	605,22446 605,26105	605,22287 605,25925	$-2,63 \\ -2,97$	30 31	36 40	13 12
433	583,14555	583,14402 583,18100	-1,23 -2,64	30	30	13	490 497	607,12946	607,12936	-2,97 -0,16	27	26	12
435	583,20355	583,20313	-0,72	27	34	14	498	607,16680	607,16575	-1,73	28	30	15
436	583,21814	583,21739	-1,29	31	34	11	499	607,20291	607,20213	-1,28	29	34	14
437	583,25485	583,25377	-1,85	32	38	10	500	607,23938	607,23852	-1,42	30	38	13
438	583,28889	583,29016	2,18	33	42	9	501	607,27474	607,27490	0,26	31	42	12
439	585,16116	585,16027	-1,52	29	28	13	502	607,31231	607,31129	-1,68	32	46	11
440	585,19810	585,19665	-2,48	30	32	12	503	609,14328	609,14501	2,84	27	28	16
441	585,23446	585,23304	-2,43	31	36	11	504	609,18237	609,18140	-1,59	28	32	15
442	585,27116	585,26942	-2,97	32	40	10	505	609,21871	609,21778	-1,53	29	36	14
443	585,30574	585,30581	0,12	33	44	9	506	611,16107	611,16066	-0,67	27	30	16
444	587,11861	587,11840	-0,36	31	22	12	507	611,21373	611,21230	-2,34	32	34	12
445 446	587,14058	587,13952	-1,81	28 20	26 20	14	508 500	611,25062	611,24869	-3,16	33	38	11
446 447	587,17671 587,21343	587,17592 587,21230	-1,35	29 30	30 34	13	509 510	611,28708 613,15710	611,28507	-3,29	34 30	42 28	10 14
447 448	587,21343 587,24992	587,21230 587,24869	$-1,92 \\ -2,09$	30 31	34 38	12 11	510 511	613,15710	613,15518 613,19157	$-3,13 \\ -3,46$	30 31	28 32	14
448 449	587,24992 587,28570	587,24809	-2,09 -1,07	32	38 42	10	512	613,22972	613,22795	-3,40 -2,89	32	32 36	13
450	587,32168	587,32146	-0,37	33	46	9	512	615,17093	615,17083	-2,39 -0,16	30	30	14
451	589,15645	589,15518	-2,16	28	28	14	514	615,20900	615,20722	-2,89	31	34	13
452	589,19300	589,19157	-2,43	29	32	13	515	615,24479	615,24360	-1,93	32	38	12
453	589,22949	589,22795	-2,61	30	36	12	516	615,28079	615,27999	-1,3	33	42	11
	589,26553	589,26434	-2,02	31	40	11	517	617,18711	617,18648	-1,02	30	32	14
454	,												
454 455	589,30020	589,30072	0,88	32	44 44	10 7	518 519	617,22303	617,22287 617,25925	-0,26	31	36	13 12

Appendix A (continued)

Count	А	В	С	D	Е	F	Count	А	В	С	D	Е	F
	Exp	Theory	Error (ppm)	C	н (М)	0		Exp	Theory	Error (ppm)	C	н (М)	0
520	617,29684	617,29564	-1,94	33	44	11	583	657,18263	657,18140	-1,87	32	32	1:
521	619,16392	619,16575	2,96	29	30	15	584	657,22030	657,21778	-3,83	33	36	14
522	619,20248	619,20213	-0,57	30	34	14	585	657,25644	657,25417	-3,45	34	40	1
523	619,23954	619,23852	-1,65	31	38	13	586	657,29314	657,29055	-3,94	35	44	11
524	619,27599	619,27490	-1,76	32	42	12	587	659,19792	659,19705	-1,32	32	34	1
525 526	619,31316 621,18238	619,31129 621,18140	$-3,02 \\ -1,58$	33 29	46 32	11 15	588 589	659,23479 659,27151	659,23343 659,26982	$-2,06 \\ -2,56$	33 34	38 42	1- 1
520 527	621,18238	621,18140	-1,38 -1,98	29 30	32	13	589 590	659,30782	659,30620	-2,30 -2,46	34	42 46	1
528	621,25546	621,25417	-2,08	31	40	13	591	661,17492	661,17631	2,1	31	32	1
529	621,29127	621,29055	-1,16	32	44	12	592	661,21209	661,21270	0,92	32	36	1
530	623,18234	623,18140	-1,51	29	34	15	593	661,24844	661,24908	0,97	33	40	1
531	623,21901	623,21778	-1,97	30	38	14	594	661,28545	661,28547	0,03	34	44	1
532	623,25546	623,25417	-2,07	31	42	13	595	663,19194	663,19196	0,03	31	34	1
533	623,29127	623,29055	-1,16	32	46	12	596	663,22682	663,22835	2,31	32	38	1
534	625,19679	625,19705	0,42	29	36	15	597	663,26385	663,26473	1,33	33	42	14
535	627,20697	627,20722	0,4	32	34	13	598	665,20809	665,20761	-0,72	31	36	1
536	627,24355	627,24360	0,08	33	38	12	599 600	665,24396	665,24400	0,06	32	40	1
537 538	627,27981 629,18569	627,27999 629,18648	0,29 1,26	34 31	42 32	11 14	600 601	665,28262 669,25322	665,28098 669,25417	-2,47 1,42	33 35	44 40	14 1
538 539	629,22295	629,22287	-0,13	32	32	14	602	669,29176	669,29055	-1,42	36	40 44	1
540	629,25954	629,25925	-0,15 -0,46	33	40	12	603	671,19723	671,19705	-0,27	33	34	1
541	629,29493	629,29564	1,13	34	44	11	604	671,23379	671,23343	-0,54	34	38	14
542	631,16507	631,16575	1,08	30	30	15	605	671,27049	671,26982	-1	35	42	1
543	631,20210	631,20213	0,05	31	34	14	606	673,21289	673,21270	-0,28	33	36	1
544	631,23845	631,23852	0,11	32	38	13	607	673,24986	673,24908	-1,16	34	40	1
545	631,27504	631,27490	-0,22	33	42	12	608	673,28672	673,28547	-1,86	35	44	1
546	631,31125	631,31129	0,06	34	46	11	609	673,32329	673,32185	-2,14	36	48	1
547	633,18151	633,18140	-0,17	30	32	15	610	675,19279	675,19196	-1,23	32	34	1
548	633,21794	633,21778	-0,25	31	36	14	611	675,22942	675,22835	-1,58	33	38	1
549 550	633,25463	633,25417	-0,73	32	40 44	13 12	612	675,26504 675,30185	675,26473	$-0,46 \\ -1,08$	34 35	42 46	14 12
550 551	633,28964 635,19707	633,29055 635,19705	$1,44 \\ -0,03$	33 30	34	12	613	,	675,30112	· · · ·			
552	635,23357	635,23343	-0,03 -0,22	31	38	13			etermined ma				
553	635,26882	635,26981	1,56	32	42	13			2.000000) from				
554	637,21097	637,21270	2,71	30	36	15	,	ese ions are pi	otonated addu	· · · ·			
555	641,18505	611 10610	2,23	32	32	14		n HIDAC no			Decuve		(
		641,18648	2,25	52	51	11		on IUPAC no					
	641,22181	641,22287	1,65	33	36	13	allowed:	C: 0–50, H: 0	–100, O: 0–50,	N: 0–50;	other el	ements all	owed
557	641,25860	641,22287 641,25925	1,65 1,01	33 34	36 40	13 12	allowed: given in	C: 0–50, H: 0 atomic mass	-100, O: 0-50, units. (C) D	N: 0–50; ifference b	other el etween	ements all A and F	lowed B. (D
557 558	641,25860 641,29380	641,22287 641,25925 641,29564	1,65 1,01 2,87	33 34 35	36 40 44	13 12 11	allowed: given in Number	C: 0–50, H: 0 atomic mass of carbon ato	–100, O: 0–50,	N: 0–50; ifference b st likely r	other el etween nolecula	ements all A and E ar formula	lowed B. (D a (cal
557 558 559	641,25860 641,29380 643,16556	641,22287 641,25925 641,29564 643,16575	1,65 1,01 2,87 0,3	33 34 35 31	36 40 44 30	13 12 11 15	allowed: given in Number culated	C: 0–50, H: 0 atomic mass of carbon ato hit with the	-100, O: 0-50, units. (C) D oms in the mo	N: 0–50; ifference b ost likely r n from t	other el etween nolecula heoretic	ements all A and E ar formula cal values	lowed B. (D a (cal). (E
557 558 559 560	641,25860 641,29380 643,16556 643,20264	641,22287 641,25925 641,29564 643,16575 643,20213	1,65 1,01 2,87 0,3 -0,79	33 34 35 31 32	36 40 44 30 34	13 12 11 15 14	allowed: given in Number culated Number	C: 0–50, H: 0 atomic mass of carbon ato hit with the of hydrogen	-100, O: 0-50, units. (C) D oms in the mo- least deviatio	N: 0–50; ifference b ost likely r n from t most lik	other el etween nolecula heoretic ely mo	ements all A and E ar formula cal values lecular fo	owed B. (D a (cal). (E ormula
557 558 559 560 561	641,25860 641,29380 643,16556 643,20264 643,23783	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852	1,65 1,01 2,87 0,3 -0,79 1,07	33 34 35 31 32 33	36 40 44 30 34 38	13 12 11 15 14 13	allowed: given in Number culated Number (calculated	C: 0–50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with th	-100, O: 0-50, units. (C) D oms in the mo least deviatio atoms in the	N: 0–50; ifference b ost likely r n from t most lik ion from	other el etween nolecula heoretic ely mo theoret	ements all A and E ar formula cal values lecular fo ical value	lowed B. (D a (cal). (E ormula s; th
557 558 559 560 561 562	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490	1,65 1,01 2,87 0,3 -0,79 1,07 0,96	33 34 35 31 32 33 34	36 40 44 30 34 38 42	13 12 11 15 14 13 12	allowed: given in Number culated Number (calculate original the most	C: 0–50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto t likely molecu	-100, O: 0-50, units. (C) D oms in the mo- least deviatio atoms in the ne least deviat nated adduct). lar formula (ca	N: 0–50; fference b st likely r n from t most lik ion from (F) Numb	other el etween nolecula heoretic ely mo theoret per of c	ements all A and E ar formula cal values lecular fo ical value oxygen ato	lowed B. (D a (cal). (E ormula s; th oms in
557 558 559 560 561 562 563	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129	$1,65 \\ 1,01 \\ 2,87 \\ 0,3 \\ -0,79 \\ 1,07 \\ 0,96 \\ -1,82$	33 34 35 31 32 33 34 35	36 40 44 30 34 38 42 46	13 12 11 15 14 13 12 11	allowed: given in Number culated Number (calculate original the most	C: 0–50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto	-100, O: 0-50, units. (C) D oms in the mo- least deviatio atoms in the ne least deviat nated adduct). lar formula (ca	N: 0–50; fference b st likely r n from t most lik ion from (F) Numb	other el etween nolecula heoretic ely mo theoret per of c	ements all A and E ar formula cal values lecular fo ical value oxygen ato	lowed B. (D a (cal). (E ormula s; th oms in
557 558 559 560 561 562 563 564	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767	$1,65 \\ 1,01 \\ 2,87 \\ 0,3 \\ -0,79 \\ 1,07 \\ 0,96 \\ -1,82 \\ 1,91$	33 34 35 31 32 33 34 35 36	36 40 44 30 34 38 42 46 50	13 12 11 15 14 13 12 11 10	allowed: given in Number culated Number (calculate original the most	C: 0–50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto t likely molecu	-100, O: 0-50, units. (C) D oms in the mo- least deviatio atoms in the ne least deviat nated adduct). lar formula (ca	N: 0–50; fference b st likely r n from t most lik ion from (F) Numb	other el etween nolecula heoretic ely mo theoret per of c	ements all A and E ar formula cal values lecular fo ical value oxygen ato	lowed B. (D a (cal). (E ormula s; the
557 558 559 560 561 562 563 564 565	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140	$1,65 \\ 1,01 \\ 2,87 \\ 0,3 \\ -0,79 \\ 1,07 \\ 0,96 \\ -1,82 \\ 1,91 \\ -2,53$	33 34 35 31 32 33 34 35 36 31	36 40 44 30 34 38 42 46 50 32	13 12 11 15 14 13 12 11 10 15	allowed: given in Number culated Number (calculate original the most tion from	C: 0–50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto c likely molecu n theoretical v	-100, O: 0-50, units. (C) D oms in the mo- least deviatio atoms in the ne least deviat nated adduct). lar formula (ca	N: 0–50; fference b st likely r n from t most lik ion from (F) Numb	other el etween nolecula heoretic ely mo theoret per of c	ements all A and E ar formula cal values lecular fo ical value oxygen ato	lowed B. (D a (cal). (E ormula s; th oms in
557 558 559 560 561 562 563 564 565 566	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767	$1,65 \\ 1,01 \\ 2,87 \\ 0,3 \\ -0,79 \\ 1,07 \\ 0,96 \\ -1,82 \\ 1,91$	33 34 35 31 32 33 34 35 36	36 40 44 30 34 38 42 46 50	13 12 11 15 14 13 12 11 10	allowed: given in Number culated Number (calculate original the most	C: 0–50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto c likely molecu n theoretical v	-100, O: 0-50, units. (C) D oms in the mo- least deviatio atoms in the ne least deviat nated adduct). lar formula (ca	N: 0–50; fference b st likely r n from t most lik ion from (F) Numb	other el etween nolecula heoretic ely mo theoret per of c	ements all A and E ar formula cal values lecular fo ical value oxygen ato	lowed B. (D a (cal). (E ormula s; th oms in
557 558 559 560 561 562 563 564 565 566 566 567	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303 645,21829	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140 645,21778	$1,65 \\ 1,01 \\ 2,87 \\ 0,3 \\ -0,79 \\ 1,07 \\ 0,96 \\ -1,82 \\ 1,91 \\ -2,53 \\ -0,79$	33 34 35 31 32 33 34 35 36 31 32	36 40 44 30 34 38 42 46 50 32 36	13 12 11 15 14 13 12 11 10 15 14	allowed: given in Number culated Number (calculate original the most tion from	C: 0–50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto : likely molecu n theoretical v	-100, O: 0-50, units. (C) D oms in the mo- least deviatio atoms in the ne least deviat nated adduct). lar formula (ca alues).	N: 0–50; ifference b ost likely r n from t most lik ion from (F) Numb alculated h	other el etween nolecula heoretic ely mo theoret per of c iit with	ements all A and F ar formula cal values lecular fo ical value oxygen ato the least	owed 3. (D a (cal). (E ormula s; tho oms in devia
557 558 559 560 561 562 563 564 565 566 566 567 568 569	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303 645,21829 645,25538	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140 645,21778 645,25417	$\begin{array}{c} 1,65\\ 1,01\\ 2,87\\ 0,3\\ -0,79\\ 1,07\\ 0,96\\ -1,82\\ 1,91\\ -2,53\\ -0,79\\ -1,88\\ \end{array}$	33 34 35 31 32 33 34 35 36 31 32 33	36 40 44 30 34 38 42 46 50 32 36 40	13 12 11 15 14 13 12 11 10 15 14 13	allowed: given in Number culated Number (calculate original the most tion from Referen Aluwihan	C: 0–50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto : likely molecu n theoretical v nces re, L.I., Repeta	-100, O: 0-50, units. (C) D oms in the mo- least deviatio atoms in the ne least deviatinated adduct). lar formula (ca alues).	N: 0–50; ifference b ost likely r n from t most lik ion from (F) Numb alculated h	other el etween nolecula heoretic ely mo theoret per of c it with	ements all A and F ar formula cal values lecular for ical value oxygen ato the least	owed 3. (D a (cal). (E ormula s; th oms in devia
557 558 559 560 561 562 563 564 565 566 566 566 566 566 568 569 570	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303 645,21829 645,25538 645,29055 647,19806 647,23523	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140 645,21778 645,25417 645,29055 647,19704 647,23343	$1,65 \\ 1,01 \\ 2,87 \\ 0,3 \\ -0,79 \\ 1,07 \\ 0,96 \\ -1,82 \\ 1,91 \\ -2,53 \\ -0,79 \\ -1,88 \\ 0 \\ -1,58 \\ -2,78 \\ \end{array}$	33 34 35 31 32 33 34 35 36 31 32 33 34 31 32	36 40 44 30 34 38 42 46 50 32 36 40 44 34 38	13 12 11 15 14 13 12 11 10 15 14 13 12 15 14	allowed: given in Number culated Number (calculate original the most tion from Referen Aluwihan comp	C: 0-50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto : likely molecu n theoretical v nces re, L.I., Repeta	-100, O: 0-50, units. (C) D oms in the mo- least deviatio atoms in the ne least deviat nated adduct). lar formula (ca alues).	N: 0–50; ifference b ost likely r n from t most lik ion from (F) Numb alculated h	other el etween nolecula heoretic ely mo theoret per of c it with	ements all A and F ar formula cal values lecular for ical value oxygen ato the least	owed 3. (D a (cal). (E ormula s; th oms in devia
557 558 559 560 561 562 563 564 565 566 566 566 566 567 568 569 570 571	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303 645,21829 645,25538 645,29055 647,19806 647,23523 647,27220	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140 645,21778 645,25417 645,29055 647,19704 647,23343 647,26982	$\begin{array}{c} 1,65\\ 1,01\\ 2,87\\ 0,3\\ -0,79\\ 1,07\\ 0,96\\ -1,82\\ 1,91\\ -2,53\\ -0,79\\ -1,88\\ 0\\ -1,58\\ -2,78\\ -3,68 \end{array}$	33 34 35 31 32 33 34 35 36 31 32 33 34 31 32 33	36 40 44 30 34 38 42 46 50 32 36 40 44 34 38 42	13 12 11 15 14 13 12 11 10 15 14 13 12 15 14 13	allowed: given in Number culated Number (calculate original the most tion from Referen Aluwihan comp 387 , 1	C: 0–50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto : likely molecu n theoretical v nces re, L.I., Repeta onent to disso 166–169.	-100, O: 0-50, units. (C) D oms in the mo least deviatio atoms in the ne least deviat nated adduct). lar formula (ca alues).	N: 0–50; ifference b ost likely r n from t most lik ion from (F) Numb alculated h R.F., 1997 rbon in su	other el etween molecula heoretic ely mo theoret per of c it with . A maj irface se	ements all A and F ar formula cal values lecular for ical value oxygen ato the least for biopoly ca water. <i>I</i>	owed 3. (D a (cal). (E rrmula s; th oms in devia ymeri Watur
557 558 559 560 561 562 563 564 565 566 566 567 568 569 570 571 572	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303 645,21829 645,25538 645,29055 647,19806 647,23523 647,27220 649,17570	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140 645,21778 645,25417 645,29055 647,19704 647,23343 647,26982 649,17631	$\begin{array}{c} 1,65\\ 1,01\\ 2,87\\ 0,3\\ -0,79\\ 1,07\\ 0,96\\ -1,82\\ 1,91\\ -2,53\\ -0,79\\ -1,88\\ 0\\ -1,58\\ -2,78\\ -3,68\\ 0,94 \end{array}$	33 34 35 31 32 33 34 35 36 31 32 33 34 31 32 33 30	36 40 44 30 34 38 42 46 50 32 36 40 44 34 38 42 32	13 12 11 15 14 13 12 11 10 15 14 13 12 15 14 13 16	allowed: given in Number culated Number (calculate original the most tion from Referen Aluwihan comp 387 , 1 Aluwihan	C: 0–50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto likely molecu n theoretical v nces re, L.I., Repeta onent to disso 166–169. re, L.I., Repeta	-100, O: 0-50, units. (C) D oms in the mo least deviatio atoms in the ne least deviat nated adduct). lar formula (ca alues).	N: 0–50; ifference b ost likely r n from t most lik ion from (F) Numb alculated h R.F., 1997 rbon in su R.F., 2002	other el etween molecula heoretic eely mo theoret ber of c it with . A maj urface se . Chemi	ements all A and F ar formula cal values lecular for ical value oxygen ato the least for biopole ca water.	owed 3. (D 1 (cal). (E ormula s; th oms in devia ymeri Natur osition
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303 645,21829 645,25538 645,29055 647,19806 647,23523 647,27220 649,17570 649,21404	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140 645,21778 645,25417 645,29055 647,19704 647,23343 647,26982 649,17631 649,21270	$\begin{array}{c} 1,65\\ 1,01\\ 2,87\\ 0,3\\ -0,79\\ 1,07\\ 0,96\\ -1,82\\ 1,91\\ -2,53\\ -0,79\\ -1,88\\ 0\\ -1,58\\ -2,78\\ -3,68\\ 0,94\\ -2,06 \end{array}$	33 34 35 31 32 33 34 35 36 31 32 33 34 31 32 33 30 31	36 40 44 30 34 38 42 46 50 32 36 40 44 34 38 42 32 36	13 12 11 15 14 13 12 11 10 15 14 13 12 15 14 13 16 15	allowed: given in Number culated Number (calculate original the most tion from Referen Aluwihan comp 387 , 1 Aluwihan and c	C: 0–50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto likely molecu n theoretical v nces re, L.I., Repeta onent to disso 166–169. re, L.I., Repeta cycling of disso	-100, O: 0-50, units. (C) D oms in the mo least deviatio atoms in the ne least deviat nated adduct). lar formula (ca alues).	N: 0–50; ifference b ost likely r n from t most lik ion from (F) Numb alculated h R.F., 1997 rbon in su R.F., 2002	other el etween molecula heoretic eely mo theoret ber of c it with . A maj urface se . Chemi	ements all A and F ar formula cal values lecular for ical value oxygen ato the least for biopole ca water.	owed 3. (D 1 (cal 1). (E ormula s; the oms in devia ymeric Nature osition
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 573 574	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303 645,21829 645,25538 645,29055 647,19806 647,23523 647,27220 649,17570 649,21404 649,25128	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140 645,21778 645,25417 645,29055 647,19704 647,23343 647,26982 649,17631 649,21270 649,24908	$\begin{array}{c} 1,65\\ 1,01\\ 2,87\\ 0,3\\ -0,79\\ 1,07\\ 0,96\\ -1,82\\ 1,91\\ -2,53\\ -0,79\\ -1,88\\ 0\\ -1,58\\ -2,78\\ -3,68\\ 0,94\\ -2,06\\ -3,39\\ \end{array}$	 33 34 35 31 32 33 34 35 36 31 32 33 34 31 32 33 30 31 32 	36 40 44 30 34 38 42 46 50 32 36 40 44 34 38 42 32 36 40	13 12 11 15 14 13 12 11 10 15 14 13 12 15 14 13 16 15 14	allowed: given in Number culated Number (calculate original the most tion from Referen Aluwihar comp 387 , 1 Aluwihar and c <i>Deep</i> -	C: 0-50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto likely molecu n theoretical v nces re, L.I., Repeta conent to disso 166-169. re, L.I., Repeta cycling of disso <i>Sea Res. II.</i> 49	 -100, O: 0–50, units. (C) D oms in the molecular deviation atoms in the molecular deviation atoms in the ne least deviation nated adduct). lar formula (caralues). a, D.J., Chen, I lived organic caracteristic deviation of the second polyed organic response of the second second second second polyed organic response of the second sec	N: 0–50; ifference b ost likely r n from t most lik ion from (F) Numb alculated h R.F., 1997 rbon in su R.F., 2002 natter in f	other el etween molecula heoretic cely mo theoret ber of c it with . A maj urface se . Chemi the Mic	ements all A and F ar formula cal values lecular for ical value oxygen ato the least for biopoly ca water. <i>i</i> ical compo-	owed 3. (D 1 (cal 1. (E 1. (E 1. (E 1. (C 1. (C 1. (C) 1. (C)
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303 645,21829 645,25538 645,29055 647,19806 647,23523 647,27220 649,17570 649,21404 649,25128 651,19075	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140 645,21778 645,25417 645,29055 647,19704 647,23343 647,26982 649,17631 649,21270 649,21270 649,24908 651,19196	$\begin{array}{c} 1,65\\ 1,01\\ 2,87\\ 0,3\\ -0,79\\ 1,07\\ 0,96\\ -1,82\\ 1,91\\ -2,53\\ -0,79\\ -1,88\\ 0\\ -1,58\\ -2,78\\ -3,68\\ 0,94\\ -2,06\\ -3,39\\ 1,86\\ \end{array}$	33 34 35 31 32 33 34 35 36 31 32 33 34 31 32 33 30 31 32 30	36 40 44 30 34 38 42 46 50 32 36 40 44 34 38 42 32 36 40 34	13 12 11 15 14 13 12 11 10 15 14 13 12 15 14 13 16 15 14 16	allowed: given in Number culated Number (calculate original the most tion from Referen Aluwihar and co <i>Deep</i> - Amon, F	C: 0-50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto likely molecu n theoretical v nces re, L.I., Repeta onent to disso 166–169. re, L.I., Repeta cycling of disso <i>Sea Res. II.</i> 49 R.M.W., Benne	 -100, O: 0–50, units. (C) D. pms in the model least deviation atoms in the model atoms in the ne least deviation atoms in the ne least deviation atom and adduct). lar formula (caralues). a, D.J., Chen, I level organic caracteristic atoms at the organic caracteristic atoms at the organic caracteristic atoms at the organic caracteristic at the organic caracteristic atoms atoms at the organic caracte	N: 0–50; ifference b ost likely r n from t most lik ion from (F) Numb alculated h R.F., 1997 rbon in su R.F., 2002 natter in factorial uti	other el etween molecula heoretic cely mo theoret per of c it with . A maj urface se . Chemi the Mic lization	ements all A and F ar formula cal values lecular for ical value oxygen ato the least for biopoly ca water. I ical compo- l-Atlantic of different	owed 3. (D 1 (cal). (E formula s; tho ms in devia ymeric vatura osition Bight nt size
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303 645,21829 645,25538 645,29055 647,19806 647,23523 647,27220 649,17570 649,21404 649,25128 651,19075 651,22930	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140 645,21778 645,25417 645,29055 647,19704 647,23343 647,26982 649,17631 649,21270 649,24908 651,19196 651,22835	$\begin{array}{c} 1,65\\ 1,01\\ 2,87\\ 0,3\\ -0,79\\ 1,07\\ 0,96\\ -1,82\\ 1,91\\ -2,53\\ -0,79\\ -1,88\\ 0\\ -1,58\\ -2,78\\ -3,68\\ 0,94\\ -2,06\\ -3,39\\ 1,86\\ -1,46\\ \end{array}$	 33 34 35 31 32 33 34 35 36 31 32 33 34 31 32 33 30 31 32 30 31 	36 40 44 30 34 38 42 46 50 32 36 40 44 34 38 42 32 36 40 34 38	13 12 11 15 14 13 12 11 10 15 14 13 12 15 14 13 16 15 14 16 15	allowed: given in Number culated Number (calculate original the most tion from Referen Aluwihar and co <i>Deep</i> - Amon, F classe	C: 0-50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto likely molecu n theoretical v nces re, L.I., Repeta onent to disso 166–169. re, L.I., Repeta cycling of disso <i>Sea Res. II.</i> 49 R.M.W., Benne so of dissolved	 -100, O: 0–50, units. (C) D. poms in the model least deviation atoms in the model atoms in the me least deviation atoms in the me least deviation atom and adduct). lar formula (caralues). a, D.J., Chen, I level organic caracterized organic caracterized organic caracterized organic caracterized organic matter. 	N: 0–50; ifference b ost likely r n from t most lik ion from (F) Numb alculated h R.F., 1997 rbon in su R.F., 2002 matter in from acterial uti <i>Limnol. C</i>	other el etween molecula heoretic cely mo theoret ber of c it with . A maj urface se . Chemi the Mic lization <i>Decanogr</i>	ements all A and F ar formula cal values lecular for ical value oxygen ato the least for biopoly ca water. <i>i</i> ical compo- l-Atlantic of different : 41 , 41–5	owed 3. (D 1 (cal). (E formula s; tho ms in devia ymeric vatura osition Bight nt size 1.
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303 645,21829 645,25538 645,29055 647,19806 647,23523 647,27220 649,17570 649,21404 649,25128 651,19075 651,22930 651,26566	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140 645,21778 645,25417 645,29055 647,19704 647,23343 647,26982 649,17631 649,21270 649,21270 649,24908 651,19196 651,22835 651,26473	$\begin{array}{c} 1,65\\ 1,01\\ 2,87\\ 0,3\\ -0,79\\ 1,07\\ 0,96\\ -1,82\\ 1,91\\ -2,53\\ -0,79\\ -1,88\\ 0\\ -1,58\\ -2,78\\ -3,68\\ 0,94\\ -2,06\\ -3,39\\ 1,86\\ -1,46\\ -1,43\\ \end{array}$	 33 34 35 31 32 33 34 35 36 31 32 33 34 31 32 33 30 31 32 30 31 32 30 31 32 	36 40 44 30 34 38 42 46 50 32 36 40 44 38 42 32 36 40 34 38 42	13 12 11 15 14 13 12 11 10 15 14 13 12 15 14 13 16 15 14 16 15 14	allowed: given in Number culated Number (calculate original the most tion from Referen Aluwihar and corp 387 , 1 Aluwihar and corp <i>corp</i> 387 , 1 Aluwihar and corp <i>corp</i> Amon, Fichar and corp <i>corp</i> Amon, Fichar and <i>corp</i> <i>corp</i> Aluwihar and <i>corp</i> <i>corp</i> Amon, Fichar and <i>corp</i> <i>corp</i> <i>corp</i> <i>corp</i>	C: 0–50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto likely molecu n theoretical v nces re, L.I., Repeta onent to disso 166–169. re, L.I., Repeta cycling of disso <i>Sea Res. II.</i> 49 R.M.W., Benne so of dissolved R., 2002. In: Ha	 -100, O: 0–50, units. (C) D. oms in the model least deviation atoms in the model least deviation atoms in the ne least deviation nated adduct). lar formula (caralues). a, D.J., Chen, I lved organic caracterization of the least deviation of the least deviation of the least deviation. a, D.J., Chen, I lved organic caracterization of the least deviation of the least deviation of the least deviation. a, D.J., Chen, I lved organic caracterization of the least deviation of the least deviation. a, D.J., Chen, I a, D.J., Chen, I b) deviation of the least deviation of the least deviation. b) deviation of the least deviation. b) deviation of the least deviation of the least deviation. b) deviation of the least deviation. c) deviation of the least devia	N: 0–50; ifference b ost likely r n from t most lik ion from (F) Numb alculated h R.F., 1997 rbon in su R.F., 2002 matter in t acterial uti <i>Limnol. C</i> rlson, C.A.	other el etween molecula heoretic cely mo theoret ber of c it with . A maj irface se . Chemi the Mic lization <i>Dceanogr</i> . (Eds.),	ements all A and F ar formula cal values lecular for ical value oxygen ato the least for biopoly ca water. <i>i</i> ical compo- l-Atlantic of different : 41 , 41–5 <i>Biogeoche</i>	owed 3. (D 1. (cal 2. (cal 3. (E 5. (cal 5. (cal))))))))))))))))))))))))))))))))))))
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303 645,21829 645,25538 645,29055 647,19806 647,23523 647,27220 649,17570 649,21404 649,25128 651,19075 651,22930	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140 645,21778 645,25417 645,29055 647,19704 647,23343 647,26982 649,17631 649,21270 649,24908 651,19196 651,22835	$\begin{array}{c} 1,65\\ 1,01\\ 2,87\\ 0,3\\ -0,79\\ 1,07\\ 0,96\\ -1,82\\ 1,91\\ -2,53\\ -0,79\\ -1,88\\ 0\\ -1,58\\ -2,78\\ -3,68\\ 0,94\\ -2,06\\ -3,39\\ 1,86\\ -1,46\\ \end{array}$	 33 34 35 31 32 33 34 35 36 31 32 33 34 31 32 33 30 31 32 30 31 	36 40 44 30 34 38 42 46 50 32 36 40 44 34 38 42 32 36 40 34 38	$\begin{array}{c} 13\\ 12\\ 11\\ 15\\ 14\\ 13\\ 12\\ 11\\ 10\\ 15\\ 14\\ 13\\ 12\\ 15\\ 14\\ 13\\ 16\\ 15\\ 14\\ 16\\ 15\\ 14\\ 10\\ \end{array}$	allowed: given in Number culated Number (calculate original the most tion from Referen Aluwihar and corp 387 , 1 Aluwihar and corp <i>corp</i> 387 , 1 Aluwihar and corp <i>corp</i> Amon, Fichar and corp <i>corp</i> Amon, Fichar and <i>corp</i> <i>corp</i> Aluwihar and <i>corp</i> <i>corp</i> Amon, Fichar and <i>corp</i> <i>corp</i> <i>corp</i> <i>corp</i>	C: 0-50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto likely molecu n theoretical v nces re, L.I., Repeta onent to disso 166–169. re, L.I., Repeta cycling of disso <i>Sea Res. II.</i> 49 R.M.W., Benne so of dissolved R., 2002. In: Ha arine Dissolved	 -100, O: 0–50, units. (C) D. poms in the model least deviation atoms in the model atoms in the me least deviation atoms in the me least deviation atom and adduct). lar formula (caralues). a, D.J., Chen, I level organic caracteristic atoms at the organic matter. 	N: 0–50; ifference b ost likely r n from t most lik ion from (F) Numb alculated h R.F., 1997 rbon in su R.F., 2002 matter in t acterial uti <i>Limnol. C</i> rlson, C.A.	other el etween molecula heoretic cely mo theoret ber of c it with . A maj irface se . Chemi the Mic lization <i>Dceanogr</i> . (Eds.),	ements all A and F ar formula cal values lecular for ical value oxygen ato the least for biopoly ca water. <i>i</i> ical compo- l-Atlantic of different : 41 , 41–5 <i>Biogeoche</i>	owed 3. (D 1. (cal 2. (cal 3. (E 5. (cal 5. (cal))))))))))))))))))))))))))))))))))))
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303 645,21829 645,25538 645,29055 647,19806 647,23523 647,27220 649,17570 649,21404 649,25128 651,19075 651,22930 651,26566 653,33046	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140 645,21778 645,25417 645,29055 647,19704 647,23343 647,26982 649,17631 649,21270 649,21270 649,21270 649,24908 651,19196 651,22835 651,26473 653,33202	$\begin{array}{c} 1,65\\ 1,01\\ 2,87\\ 0,3\\ -0,79\\ 1,07\\ 0,96\\ -1,82\\ 1,91\\ -2,53\\ -0,79\\ -1,88\\ 0\\ -1,58\\ -2,78\\ -3,68\\ 0,94\\ -2,06\\ -3,39\\ 1,86\\ -1,46\\ -1,43\\ 2,39\\ \end{array}$	 33 34 35 31 32 33 34 35 36 31 32 33 34 31 32 33 30 31 32 37 	36 40 44 30 34 38 42 46 50 32 36 40 44 38 42 32 36 40 34 38 42 32 36 40 34 38 42 38	13 12 11 15 14 13 12 11 10 15 14 13 12 15 14 13 16 15 14 16 15 14	allowed: given in Number culated Number (calculate original the most tion from Referen Aluwihan comp 387 , 1 Aluwihan and c <i>Deep</i> - Amon, F classe Benner, F <i>of Ma</i> 59–15	C: 0-50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto likely molecu n theoretical v nces re, L.I., Repeta onent to disso 166–169. re, L.I., Repeta cycling of disso <i>Sea Res. II.</i> 49 R.M.W., Benne es of dissolved R., 2002. In: Ha arine Dissolved 51.	 -100, O: 0–50, units. (C) D. oms in the model least deviation atoms in the model least deviation atoms in the ne least deviation nated adduct). lar formula (caralues). a, D.J., Chen, I lved organic caracterization of the least deviation of the least deviation. a, D.J., Chen, I lved organic caracterization of the least deviation of the least deviation of the least deviation. a, D.J., Chen, I lved organic caracterization of the least deviation of the least deviation. a, D.J., Chen, I a, D.J., Chen, I b) deviation of the least deviation of the least deviation. a, D.J., Chen, I b) deviation of the least deviation of the least deviation. a, D.J., Chen, I b) deviation of the least deviation. b) deviation of the least deviation. b) deviation of the least deviation. c) deviation of the least deviation. d) deviation of the least deviation. d)	N: 0-50; ifference b ost likely r n from t most lik ion from (F) Numb alculated h R.F., 1997 rbon in su R.F., 2002 natter in r acterial uti <i>Limnol. C</i> rlson, C.A.	other el etween molecula heoretic cely mo theoret ber of c it with . A maj urface se . Chemi the Mic lization <i>Dceanogr</i> . (Eds.), c Press,	ements all A and F ar formula cal values lecular for ical value oxygen ato the least for biopoly ca water. <i>i</i> ical compo- l-Atlantic of different c 41 , 41–5 <i>Biogeoche</i> Amsterda	owed 3. (D 1 (cal-). (E formula s; the oms in devia wmeria Natura osition Bight nt size 1. mistry m, pp
556 557 558 559 560 561 562 563 564 565 566 566 567 568 569 570 571 572 573 574 575 574 575 576 577 578 579 580 581	641,25860 641,29380 643,16556 643,20264 643,23783 643,27428 643,31246 643,34644 645,18303 645,21829 645,25538 645,29055 647,19806 647,23523 647,27220 649,17570 649,21404 649,25128 651,19075 651,22930 651,26566 653,33046 655,20084	641,22287 641,25925 641,29564 643,16575 643,20213 643,23852 643,27490 643,31129 643,34767 645,18140 645,21778 645,25417 645,29055 647,19704 647,23343 647,26982 649,17631 649,21270 649,21270 649,24908 651,19196 651,22835 651,26473 653,33202 655,20213	$\begin{array}{c} 1,65\\ 1,01\\ 2,87\\ 0,3\\ -0,79\\ 1,07\\ 0,96\\ -1,82\\ 1,91\\ -2,53\\ -0,79\\ -1,88\\ 0\\ -1,58\\ -2,78\\ -3,68\\ 0,94\\ -2,06\\ -3,39\\ 1,86\\ -1,46\\ -1,43\\ 2,39\\ 1,97\\ \end{array}$	33 34 35 31 32 33 34 35 36 31 32 33 34 31 32 33 30 31 32 30 31 32 37 33	36 40 44 30 34 38 42 46 50 32 36 40 44 38 42 32 36 40 34 38 42 32 36 40 34 38 42 38 42 38 42 36 40 34 38 34 38 38 36 36 36 36 37 36 37 36 37 36 37 36 37 36 37 37 38 38 37 38 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38	$\begin{array}{c} 13\\ 12\\ 11\\ 15\\ 14\\ 13\\ 12\\ 11\\ 10\\ 15\\ 14\\ 13\\ 12\\ 15\\ 14\\ 13\\ 16\\ 15\\ 14\\ 16\\ 15\\ 14\\ 10\\ 14\\ \end{array}$	allowed: given in Number culated Number (calculate original the most tion from Referen Aluwihan comp 387 , 1 Aluwihan and c <i>Deep</i> - Amon, F classe Benner, F <i>of Ma</i> 59–15 Benner, 1	C: 0-50, H: 0 atomic mass of carbon ato hit with the of hydrogen ed hit with the ion is a proto the likely molecu n theoretical v nces re, L.I., Repeta onent to disso 166–169. re, L.I., Repeta cycling of disso <i>Sea Res. II.</i> 49 R.M.W., Benne es of dissolved R., 2002. In: Ha arine Dissolved S., Kaiser, K.,	 -100, O: 0–50, units. (C) D. oms in the model least deviation atoms in the model atoms in the model atoms in the ne least deviation atom atom atom atom atom atom atom atom	N: 0-50; ifference b ost likely r n from t most lik ion from (F) Numb alculated h R.F., 1997 rbon in su R.F., 2002 natter in t acterial uti <i>Limnol. C</i> rlson, C.A. . Academi nce of am	other el etween molecula heoretic cely mo theoret ber of c it with . A maj urface se . Chemi the Mic lization <i>Dceanogr</i> . (Eds.), c Press, ino suga	ements all A and F ar formula cal values lecular for ical value oxygen ato the least for biopoly ca water. <i>I</i> ical compo- l-Atlantic of different c 41 , 41–5 <i>Biogeoche</i> Amsterda	owed 3. (D 1 (cal-). (E formula s; the oms in devia wmerica Natura osition Bight nt size 1. mistry m, pp ptido

- Benner, R., Pakulski, J.D., McCarthy, M., Hedges, J.I., Hatcher, P.G., 1992. Bulk chemical characterization of dissolved organic matter in the ocean. *Science* 255, 1561–1564.
- Benner, R., Biddanda, B., Black, B., McCarthy, M., 1997. Abundance, size distribution, and stable carbon and nitrogen isotopic compositions of marine organic matter isolated by tangential-flow ultrafiltration. *Mar. Chem.* 57, 243–263.
- Boon, J.J., Klap, V.A., Eglinton, T.I., 1998. Molecular characterization of microgram amounts of oceanic colloidal organic matter by direct temperature-resolved ammonia chemical ionization mass spectrometry. Org. Geochem. 29, 1051–1061.
- Brindle, J.T., Antti, H., Holmes, E., Tranter, G., Nicholson, J.K., Bethell, H.W.L., Clarke, S., Schofield, P.M., McKilligin, E., Mosedale, D.E., Grainger, D.J., 2002. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using H-1-NMR-based metabonomics. *Nat. Med.* 8, 1439–1445.
- Buddrus, J., Lambert, J., 1995. Isolated paraffinic methyl groups in humic substances. Org. Geochem. 23, 269–271.
- Chin, W.C., Orellana, M.V., Verdugo, P., 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. *Nature* **391**, 568– 572.
- Dacey, J.W.H., Wakeham, S.G., 1986. Oceanic dimethylsulfide: production during zooplankton grazing on phytoplankton. *Science* 233, 1314–1316.
- Druffel, E.R.M., Williams, P.M., Bauer, J.E., Ertel, J.R., 1992. Cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res. 97, 15639–15659.
- Hatcher, P.G., Rowan, R., Mattingly, M.A., 1979. ¹H and ¹³C NMR of marine humic acids. Org. Geochem. 2, 77–85.
- Hatcher, P.G., Maciel, G.E., Dennis, L.W., 1981. Aliphatic structure of humic acids; a clue to their origin. Org. Geochem. 3, 43–48.
- Hedges, I.J., Hatcher, P.G., Ertel, J.R., Meyers-Schulte, K.J., 1992. A comparison of dissolved humic substances from seawater with Amazon River counterparts by ¹³C NMR spectrometry. *Geochim. Cosmochim. Acta* 56, 1753–1757.
- Hedges, J.I., Eglinton, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., Kögel-Knabner, I., de Leeuw, J.W., Littke, R., 2000. The molecularly-uncharacterized component of nonliving organic matter in natural environments. *Org. Geochem.* **31**, 945–958.
- Hedges, J.I., 1992. Global biogeochemical cycles: progress and problems. Mar. Chem. 39, 67–93.
- Hedges, J.I., Baldock, J.A., Gélinas, Y., Lee, C., Peterson, M., Wakeham, S.G., 2001. Evidence for non-selective preservation of organic matter in sinking marine particles. *Nature* 409, 801–804.
- Hertkorn, N., Frommberger, M. (2006). unpublished data.
- Hertkorn, N., Permin, A., Perminova, I.V., Kovalevskii, D., Yudov, M., Petrosyan, V., Kettrup, A., 2002. Comparative analysis of partial structures of a peat humic and fulvic acid using one- and twodimensional nuclear magnetic resonance spectroscopy. J. Environ. Qual. 31, 375–387.
- Hsu, C.S., Qian, K., Chen, Y.C., 1992. An innovative approach to data analysis in hydrocarbon characterization by on-line liquid chromatography-mass spectrometry. *Anal. Chim. Acta* 264, 79–89.
- Hughey, C.A., Hendrickson, C.L., Rodgers, P.R., Marshall, A.G., 2001. Kendrick mass defect spectrum: a compact visual analysis for ultrahighresolution broadband mass spectra. *Anal. Chem.* 73, 4676–4681.
- Kaiser, K., Benner, R., (2006). Bacterial contribution to marine organic matter. *Limnol. Oceanogr., in preparation.*
- Kalinowski, H.-O., Berger, S., Braun, S., 1984. ¹³C-NMR-Spektroskopie. Thieme, Stuttgart, pp. 88–96.

- Kim, S., Kramer, R.W., Hatcher, P.G., 2003. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. *Anal. Chem.* 75, 5336–5344.
- Lambert, J., Buddrus, J., 1996. Quantification of isolated methyl groups in aquatic humic substances by means of ¹H and ¹³C NMR spectroscopy. *Magn. Reson. Chem.* 34, 276–282.
- Leenheer, J.A., Nanny, M.A., McIntyre, C., 2003. Terpenoids as major precursors of dissolved organic matter in landfill leachates, surface water, and groundwater. *Environ. Sci. Technol.* 37, 2323–2331.
- McCarthy, M., Hedges, J.I., Benner, R., 1996. Major biochemical composition of dissolved high molecular weight organic matter in seawater. *Mar. Chem.* 55, 281–297.
- McCarthy, M., Hedges, J.I., Benner, R., 1998. Major bacterial contribution to marine dissolved organic nitrogen. *Science* 281, 231–234.
- Nelson, P.N., Baldock, J.A., 2005. Estimating the molecular composition of a diverse range of natural organic materials from solid-state ¹³C NMR and elemental analyses. *Biogeochemistry* **72**, 1–34.
- Ourisson, G., Rohmer, M., Poralla, K., 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu. Rev. Microbiol. 41, 301–333.
- Sardessai, S., Wahidullah, S., 1998. Structural characteristics of marine sedimentary humic acids by CP/MAS ¹³C NMR spectroscopy. *Oceanol. Acta* 21, 543–550.
- Schmitt-Kopplin, P., Junkers, J., 2003. Capillary zone electrophoresis of natural organic matter. J. Chromatogr. A 998, 1–20.
- Schmitt-Kopplin, P., Kettrup, A., 2003. Capillary electrophoresis–electrospray ionization–mass spectrometry for the characterization of natural organic matter: an evaluation with free flow electrophoresis-off-line flow injection electrospray ionization-mass spectrometry. *Electrophoresis* 24, 3057–3066.
- Schmitt-Kopplin, P., Hertkorn, N., Schulten, H.R., Kettrup, A., 1998. Structural changes in a dissolved soil humic acid during photochemical degradation processes under O₂ and N₂ atmosphere. *Environ. Sci. Technol.* **32**, 2531–2541.
- Skoog, A., Benner, R., 1997. Aldoses in various size fractions of marine organic matter: implications for carbon cycling. *Limnol. Oceanogr.* 42, 1803–1813.
- Stenson, A.C., Marshall, A.G., Cooper, W.T., 2003. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. *Anal. Chem.* **75**, 1275–1284.
- Summons, R.E., 1993. In: Engel, M.H., Macko, S.A. (Eds.), Organic Geochemistry: Principles and Applications Biogeochemical cycles: A Review of Fundamental Aspects of Organic Matter Formation, Preservation, and Composition. Plenum Press, New York, pp. 3–21.
- Tanoue, E., Nishiyama, S., Kamo, M., Tsugita, A., 1995. Bacterial membranes: possible source of a major dissolved protein in seawater. *Geochim. Cosmochim. Acta* 59, 2643–2650.
- Vernonclark, R.N., Goldberg, E.D., Bertine, K.K., 1994. Organic and inorganic characterization of marine colloids. *Chem. Ecol.* 11, 69–83.
- Visser, S.A., 1983. Application of Van Krevelen's graphical-statistical method for the study of aquatic humic material. *Environ. Sci. Technol.* 17, 412–417.
- Wakeham, S.G., Pease, T.K., Benner, R., 2003. Hydroxy fatty acids in marine dissolved organic matter as indicators of bacterial membrane material. Org. Geochem. 34, 857–868.
- Willker, W., Leibfritz, D., Kerssebaum, R., Bermel, W., 1992. Gradient selection in inverse heteronuclear correlation spectroscopy. *Magn. Reson. Chem.* **31**, 287–292.
- Wilson, M.A., Barron, P.F., Gillam, A.H., 1981. The structure of freshwater humic substances as revealed by ¹³C NMR spectroscopy. *Geochiom. Cosmochim. Acta* 45, 1743–1750.