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S U M M A R Y
This study introduces a new approach (based on the Continuous Wavelet Transform Modulus
Maxima method) to describe qualitatively and quantitatively the complex temporal patterns
of seismicity, their multifractal and clustering properties in particular. Firstly, we analyse the
temporal characteristics of intermediate-depth seismic activity (M ≥ 2.6 events) in the Vrancea
region, Romania, from 1974 to 2002. The second case studied is the shallow, crustal seismicity
(M ≥ 1.5 events), which occurred from 1976 to 1995 in a relatively large region surrounding
the epicentre of the 1995 Kobe earthquake (Mw = 6.9). In both cases we have declustered the
earthquake catalogue and selected only the events with M ≥ Mc (where Mc is the magnitude of
completeness) before analysis. The results obtained in the case of the Vrancea region show that
for a relatively large range of scales, the process is nearly monofractal and random (does not
display correlations). For the second case, two scaling regions can be readily noticed. At small
scales (i.e. hours to days) the series display multifractal behaviour, while at larger scales (days
to several years) we observe monofractal scaling. The Hölder exponent for the monofractal
region is around 0.8, which would indicate the presence of long-range dependence (LRD).
This result might be the consequence of the complex oscillatory or power-law trends of the
analysed time-series. In order to clarify the interpretation of the above results, we consider
two ‘artificial’ earthquake sequences. Firstly, we generate a ‘low productivity’ earthquake
catalogue, by using the epidemic-type aftershock sequence (ETAS) model. The results, as
expected, show no significant LRD for this simulated process. We also generate an event
sequence by considering a 70 km long and 17.5 km deep fault, which is divided into square
cells with dimensions of 550 m and is embedded in a 3-D elastic half-space. The simulated
catalogue of this study is identical to the case (A), described by Eneva & Ben-Zion. The series
display clear quasi-periodic behaviour, as revealed by simple statistical tests. The result of the
wavelet-based multifractal analysis shows several distinct scaling domains. We speculate that
each scaling range corresponds to a different periodic trend of the time-series.

Key words: earthquake predictability, long-range dependence, (multi)fractals, real and syn-
thetic earthquake sequences, wavelet analysis.

1 I N T RO D U C T I O N

The notion of scale-invariance is defined loosely as the absence of
characteristic scales of a time-series. Its main consequence is that
the whole and its parts cannot be statistically distinguished from
each other. The absence of such characteristic scales requires new
signal processing tools for analysis and modelling. The exact self-
similar, scale-invariant processes, like for example the fractional
Brownian motion, are mathematically well defined and well docu-
mented. In actual real world data, however, the scaling holds only
within a finite range and will typically be approximate. Therefore,

other ‘scaling models’ are more appropriate to describe their com-
plexity. Long-range dependence (LRD) or long memory is a model
for scaling observed within the limit of the largest scales. Research
on LRD (or long-range correlation) characteristics of ‘real’ time-
series is the subject of active research in fields ranging from genetics
to network traffic modelling. Another broad class of signals corre-
sponds to ‘fractal processes’, which are usually related to scaling in
the limit of small scales. Such time-series are described by a (local)
scaling exponent, which is related to the degree of regularity of a
signal. If the scaling exponent varies with position (time), we refer
to the corresponding process as multifractal. The fractal concept is,
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however, usually used in a broader sense and refers to any process
that shows some sort of self-similarity.

(Multi)fractal structures have been found in various contexts,
as for example in the study of turbulence or of stock market ex-
change rates. The concepts of ‘fractal analysis’ have also been ap-
plied to describe the spatial and temporal distribution of earthquakes
(e.g. Smalley et al. 1987; Turcotte 1989; Kagan & Jackson 1991).
Geilikman et al. (1990), Hirabayashi et al. (1992) and Goltz (1997)
have all employed a multifractal approach to characterize the earth-
quake spatial, temporal or energy distribution. Their results sug-
gest that seismicity is an inhomogeneous fractal process. Kagan
& Jackson (1991), by analysing statistically several instrumental
earthquake catalogues, concluded that besides the short-term clus-
tering, characteristic for aftershock sequences, there is a long-term
earthquake clustering in the residual (declustered or aftershocks-
removed) catalogues.

Wavelet analysis is a powerful multiscale resolution technique,
well suited to understanding deeply the complex features of real
world processes: different ‘kinds’ of (multi)fractality, LRD, non-
stationarity, oscillatory behaviour and trends. The purpose of this
study is to apply wavelet analysis to reveal the multifractal and LRD
characteristics of the occurrence times of earthquakes. More pre-
cisely, we apply the Wavelet Transform Modulus Maxima (WTMM)
method that has been proposed as a generalization of the multifractal
formalism from singular measures to fractal distributions, including
functions (Arneodo et al. 1991; Muzy et al. 1994; Arneodo et al.
1995). By using wavelet analysis, we reveal the clear fractal char-
acteristics of the analysed time-series and successfully describe the
main features of our earthquake sequences. The study focuses on
the interpretation and explanation of the various temporal fractal
patterns found in earthquake time-series and thus, we hope, will
be a good reference for future related research. In particular, we
try for the first time to discriminate between genuine and spurious
LRD due to the presence of simple, trivial trends of the earthquake
time-series. The methodology and the detailed characterization of
the analysed earthquake time-series may show their usefulness to
probabilistic earthquake forecasting, where the inherent complexity
(Mulargia & Geller 2003) requires new multiscale analysis tools. In
this context, please note that any wavelet method is a compromise
between establishing the scale (frequency) or the time accurately,
according to the Fourier equivalent of the Heisenberg uncertainty
principle. To the best of our knowledge, this is the first systematic
study of the multifractal and LRD properties of earthquake time-
series by using a wavelet approach. Ouillon & Sornette (1996) have
developed a wavelet-based approach to perform multifractal anal-
ysis, and applied it in a related field: the study of earthquake fault
patterns.

In the next section we introduce the WTMM method and explain
the relation between multifractality and wavelets. The WTMM ap-
proach is compared in Section 3 with a ‘traditional’ box-counting
technique (BCT) commonly used to estimate the multifractal spec-
trum. The advantages of using the wavelet method are clearly em-
phasized. The data to be analysed are introduced in Section 4 and
consist of four earthquake time-series. Two of them are real earth-
quake sequences, while the other two are simulations. Firstly, we
generate a sequence of events by using the epidemic-type after-
shock sequence (ETAS) model (Ogata 1985, 1988). The second
‘artificial’ time-series is obtained by using a realistic earthquake
model: an inhomogeneous cellular fault embedded in a 3-D elastic
solid (Ben-Zion & Rice 1993; Ben-Zion 1996). Section 5 discusses
the results of the analysis, while in the last section we present the
main conclusions.

2 T H E C O N T I N U O U S WAV E L E T
T R A N S F O R M ( C W T ) A N D
WAV E L E T - B A S E D M U LT I F R A C TA L
A N A LY S I S

The wavelet transform is a convolution product of the data sequence
(a function f (x), where x, referred to in this study as ‘position’, is
usually a time or space variable) with the scaled and translated ver-
sion of the mother wavelet (basis function), ψ(x). The scaling and
translation are performed by two parameters; the scale parameter s
stretches (or compresses) the mother wavelet to the required reso-
lution, while the translation parameter b shifts the basis function to
the desired location (see Fig. 1a):

(W f )(s, b) = 1

s

∫ +∞

−∞
f (x)ψ ∗

(
x − b

s

)
dx, (1)

where s, b are real, s > 0 for the continuous version (CWT) and
ψ∗ is the complex conjugate of ψ . The wavelet transform acts as a
microscope: it reveals more and more details while going towards
smaller scales, that is, towards smaller s-values. One can associate
with a mother wavelet a purely periodic signal of frequency Fc which
‘captures’ its main oscillations (Fc is the centre frequency of the
mother wavelet). Then, it follows that the frequency corresponding
to a certain scale s can be expressed as: Fs = (SP ∗ Fc)/s, where
SP is the sampling period. As in most wavelet-based multifractal
studies and for simplicity, we use ‘scale’ rather than ‘frequency’
throughout this paper.

The mother wavelet (ψ(x)) is generally chosen to be well local-
ized in space (or time) and frequency. Usually, ψ(x) is only required
to be of zero mean, but for the particular purpose of multifractal
analysis ψ(x) is also required to be orthogonal to some low or-
der polynomials, up to the degree n − 1 (i.e., to have n vanishing
moments):
∫ +∞

−∞
xmψ(x) dx = 0, ∀m, 0 ≤ m < n. (2)

Thus, while filtering out the trends, the wavelet transform reveals
the local characteristics of a signal, and more precisely its singular-
ities. (The Hölder exponent can be understood as a global indicator
of the local differentiability of a function.) By preserving both scale
and location (time, space) information, the CWT is an excellent
tool for mapping the changing properties of non-stationary signals.
A class of commonly used real-valued analysing wavelets, which
satisfies the above condition (2), is given by the successive deriva-
tives of the Gaussian function:

ψ (N )(x) = d N

dx N
e−x2/2, (3)

for which n = N . In this study, the analysing wavelet is the second
derivative of the Gaussian. The computation of the CWT was carried
out in the frequency domain, by using the fast Fourier transform.
The time-series were padded with zeros up to the next power of two
to reduce the edge distortions introduced by the Fourier transform,
which assumes the data are infinite and cyclic (Torrence & Compo
1998).

It can be shown that the wavelet transform can reveal the local
characteristics of f at a point x o. More precisely, we have the fol-
lowing power-law relation:

W (n) f (s, x0) ∼ |s|h(x0) (4)

where h is the Hölder exponent (or singularity strength). The sym-
bol ‘(n)’, which appears in the above formula, shows that the
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Figure 1. (a) Scaling and translation of the mother wavelet (here the second derivative of the Gaussian) along a signal (function) f (x). The stretching of the
wavelet reveals the properties of the signal at progressively larger scales. The wavelet coefficients, computed by using formula (1), are a measure of the similarity
between the wavelet and the signal for different positions, x, and scales, s. (b) Up: a function f (x), Down: amplitude of the wavelet transform of function f (x),
along the x-axis, at a certain scale, s0. The mother-wavelet is the second derivative of the Gaussian. As one goes to finer (smaller) scales (or higher frequencies)
the local modulus maxima converge to the singularities of the function (S1 and S2) (adapted from Mallat 1998, Fig. 6.4).

wavelet used (ψ(x)) is orthogonal to polynomials up to degree n − 1.
The scaling parameter (the so-called Hurst exponent) estimated
when analysing time-series by using ‘monofractal’ techniques is
a global measure of self-similarity in a time-series, while the singu-
larity strength h can be considered a local version (i.e. it describes
‘local similarities’) of the Hurst exponent. In the case of monofrac-
tal signals, which are characterized by the same singularity strength
everywhere (h(x) = constant), the Hurst exponent equals h. Depend-
ing on the value of h, the input series could be long-range correlated
(h > 0.5), uncorrelated (h = 0.5) or anticorrelated (h < 0.5).

The continuous wavelet transform described in eq. (1) is an ex-
tremely redundant representation, too costly for most practical ap-
plications. To characterize the singular behaviour of functions, it is
sufficient to consider the values and position of the WTMM (Mallat
& Hwang 1992). The wavelet modulus maximum is a point (s 0,
x 0) on the scale-position plane, (s, x), where |Wf (s 0, x)| is locally
maximum for x in the neighbourhood of x0. These maxima are lo-
cated along curves in the plane (s, x). We present in Fig. 1(b) an
example that illustrates the correspondence between maxima lines
and the singularities of a function. The WTMM representation has
been used for defining the partition function-based multifractal for-
malism (Muzy et al. 1994; Arneodo et al. 1995).

Let {un (s)}, where n is an integer, be the position of all local
maxima at a fixed scale s. By summing up the q’s power of all these
WTMM, we obtain the partition function Z:

Z (q, s) =
∑

n

|W f (un, s)|q . (5)

By varying q in eq. (5), it is possible to characterize selectively
the fluctuations of a time-series: positive q’s accentuate the ‘strong’
inhomogeneities of the signal, while negative q’s accentuate the
‘smoothest’ ones. In this work, we have employed a slightly dif-
ferent formula to compute the partition function Z by using the
‘supremum method’, which prevents divergences from appearing
in the calculation of Z (q, a), for q < 0 (e.g. Arneodo et al.
1995).

Often scaling behaviour is observed for Z (q, s) and the spectrum
τ (q), which describes how Z scales with s, can be defined:

Z (q, s) ∼ sτ (q). (6)

If the τ (q) exponents define a straight line, the analysed signal
is a monofractal; otherwise the fractal properties of the signal are
inhomogeneous, that is, they change with location, and the time-
series is a multifractal. By applying the Legendre transformation to
τ (q) we can obtain the multifractal spectrum D(h). D(h), known
also as the singularity spectrum, captures how ‘frequently’ a value
h is found.

When computing the CWT, we introduced some discontinuities
at the endpoints of the time-series, due to zero padding. As a result,
as one goes to larger scales, the CWT amplitude near the edges
decreases as more zeroes enter the analysis. The cone of influence
(COI) is defined as the region of the wavelet spectrum, in which
such a decrease becomes significant (see Torrence & Compo 1998,
for details). When the analysing wavelet is the second derivative
of the Gaussian, however, the COI area is relatively small, as the
wavelet is relatively narrow. To check for possible border effects,
we constructed the WTMM tree by (a) including and (b) excluding
the COI region from the analysis. The final results for the two cases
were practically the same. This proves that the zero padding did not
bias our analysis.

For the computations made in this work, we acknowledge the
use of the Matlab software package (http://www.mathworks.com),
Matlab’s Wavelet Toolbox and the free software programs: Wave-
lab (Stanford University—http://www-stat.stanford.edu/∼wavelab)
(Buckheit and Donoho, 1995), Fraclab, A Fractal Analysis Soft-
ware (INRIA—http://fractales.inria.fr/) and other Matlab routines
(http://paos.colorado.edu/research/wavelets/; Torrence & Compo
1998). We also developed some routines, in Matlab, which are go-
ing to be made available on the web (http://www.rcep.dpri.kyoto-
u.ac.jp/∼benescu/).
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3 A DVA N TA G E S O F T H E W T M M
M E T H O D W H E N C O M PA R E D W I T H
O T H E R T R A D I T I O N A L T E C H N I Q U E S
U S E D T O E S T I M AT E T H E
M U LT I F R A C TA L D I M E N S I O N S

To assess the performance of the WTMM approach, we consider
a ‘classic’ example of a recursive fractal function, for which the
singularity spectrum can be computed analytically: the Generalized
Devil’s Staircase, associated with the Multinomial Cantor Measure.
The measure (µ) is constructed by dividing recursively the unit in-
terval [0, 1] in four subintervals of the same lengths and distributing
the ‘measure’ or ‘mass’ µ among them, with the weights p1, p2, p3
and p4 (p1 + p2 + p3 + p4 = 1) (Peitgen et al. 1992, appendix B).
We apply both the WTMM and a ‘traditional’ box-counting tech-
nique (BCT) to characterize the multifractal properties of the multi-
nomial measure and compare their estimates with the theoretical
values. Briefly, BCT consists in covering the support (here, the
unit interval) with boxes of successively smaller size, ε, and then
calculate a partition function for several q-values:

Z (ε) =
N (ε)∑
i=1

µ
q
i , (7)

where N (ε) is the total number of boxes for a certain ε. For each
q-value the slope of the linear part of log Z (ε) versus log (ε) is
computed and, thus, the tau-spectrum, τ (q), can be determined.
We refer to Feder (1988) and Peitgen et al. (1992) for a detailed
description of BCT and other commonly used techniques applied
for multifractal analysis.

Fig. 2 presents τ (q) obtained by using the two methods mentioned
above together with the analytical spectrum. One can notice the very
good agreement between the theoretical and the computed spectrum,
for q-values between −7 and 10, when the wavelet-based procedure
is used. The spectrum produced by using the box-counting method,
however, shows significant deviations from the theoretical values,
especially for negative q. The failure of the standard box counting
is mainly the result of a set of boxes with spuriously small mass;
when raised to a negative power in the partition function, these boxes
become dominating and hence obliterate all information about the
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Figure 2. ‘Tau-spectrum’ for the Generalized Devil Staircase (length of
4096 values). P1, p2, p3 and p4 are the parameters used to obtain the time-
series. q takes equally spaced values, between −7 and 10. The spectra com-
puted by using the wavelet approach and the box-counting techniques are
represented by crosses and rectangles, respectively. The theoretical spectrum
is shown by solid line.
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Figure 3. Theoretical (continuous line) and obtained (WTMM method,
crosses) D(h) singularity spectrum in the case of the Generalized Devil Stair-
case. One can notice the clear multifractal signature of the simulated time-
series, as well as the good agreement between the theoretical and wavelet-
based computed spectrum.

original measure (e.g. Grassberger et al. 1988). This problem is com-
mon for most fixed-size algorithms, including BCT and the method
based on the correlation function, which are both used frequently
in earthquake-related multifractal studies (Hirabayashi et al. 1992).
To overcome this problem another sampling procedure, known as
the fixed-mass algorithm was adopted (Badii & Broggi 1988) and
applied, in the context of earthquakes, by Hirabayashi et al. (1992).
According to Badii & Broggi (1988), the fixed-radius method works
better for q > 1, while the fixed-mass method gives better results
for q ≤ 1. However, instead of using two different techniques it
is desirable to apply only one reliable method to obtain the whole
spectrum, from negative to positive q-values. For larger values of q,
the BCT tau-spectrum deviates again slightly from the theoretical
one (Fig. 2).

The tau-spectrum in Fig. 2 is curved, which indicates the multi-
fractal nature of the time-series. Fig. 3 presents the theoretical and
wavelet-based singularity spectrum, which clearly confirms the non-
uniqueness of the Hölder exponent h, and thus the multifractality of
the process.

There is another strong argument in favour of the wavelet-based
approach: the possibility to discriminate between trivial (polyno-
mial, simple oscillatory) trends and the ‘true’ fractal behaviour of a
time-series (Arneodo et al. 1991; Muzy et al. 1994; Arneodo et al.
1995). In Section 5 we will demonstrate that such trends can mimic
LRD and lead to wrong conclusions when a standard technique to
quantify the scaling behaviour is used.

4 DATA

We have applied the wavelet-based approach to the analysis of four
sets of earthquake data; two of them are real and the other two
are simulations. The data consist of interevent times between suc-
cessive earthquakes above a threshold magnitude. Our choice was
made by considering that the earthquake occurrence time is one
of the most reliable and accurate parameters that define a seismic
event. Also, our choice was based on the relevance of earthquake
recurrence times for earthquake hazard and forecasting. The results
of the multifractal analysis (τ (q), D(h)) correspond, however, to the
integrated interevent times. In this way, we made our results directly
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comparable with those obtained by Enescu et al. (2005), who use
the Detrended Fluctuation Method (DFA) to analyse the seismicity
of the Vrancea (Romania) region. The method (DFA) requires inte-
grating the data in advance. Nonetheless, the integration just adds a
constant value (one) to the obtained h, the results being otherwise
identical (Arneodo et al. 1995). The four sets of data are explained
briefly below.

The Vrancea (Romania) intermediate-depth seismicity

The Vrancea seismic region is situated beneath the Eastern
Carpathians in Romania and is characterized by well-confined and
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Figure 4. Records of interevent times, that is, earthquake intervals, in the case of: (a) the Vrancea (Romania) earthquakes; (b) the shallow seismicity in the
Hyogo region; (c) ETAS model simulation and (d) EBZ A simulation. For case (d) only 7000 earthquake intervals were represented to show clearly the temporal
pattern.

persistent intermediate-depth activity (60 km < depth < 220 km). In
this study, we have used an updated version of the Trifu & Radulian
(1991) catalogue for this area. The initial catalogue consists of 5630
intermediate-depth events with Mw ≥ 1.5, occurring between 1974
and 2002. The magnitude of completeness of the catalogue slightly
increases with depth, being on average around 2.6 (Trifu & Radulian
1991). Therefore, we have selected for analysis earthquakes with
M ≥ 2.6, and decluster the catalogue as explained at the end of this
section. The resulting data set has 4254 events (Fig. 4a). A detailed
description of the catalogue and its main statistical features can be
found in Trifu et al. (1990), Trifu & Radulian (1991) and Enescu
et al. (2003).
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The seismic activity before the 1995 Kobe earthquake

The second case studied is represented by the crustal seismic activity
(depth ≤30 km), which occurred in the northern Hyogo area, Japan,
from 1976 to 1995 January 17, the date of the Kobe earthquake (Mw

= 6.9), in a broad area surrounding the epicentre of the large event.
We have used the earthquake catalogue of the Disaster Prevention
Research Institute, Kyoto University, which for the area and period
under investigation, is complete in earthquakes of magnitude M ≥
1.5 (Enescu & Ito 2001). The good coverage with seismic stations
in the region and the phase picking, which was done by a person
on the basis of the same criteria throughout the period, produced a
homogeneous, high-quality catalogue. The selection of a relatively
large area (34–36◦N and 134–136◦E) for analysis is mainly moti-
vated by the spatial extent of the stress-change-related phenomena
which were reported taking place before and after the occurrence of
the 1995 Kobe earthquake. More precisely, there is clear evidence
of earthquake triggering in this broad region after the occurrence
of the large event (Katao & Ando 1996; Hashimoto 1996; Enescu
& Ito 2001). Moreover, there are several well-documented reports
(after the event) on the premonitory phenomena which have oc-
curred within this large area several years before the 1995 Kobe
earthquake: seismicity rate decrease and increase, b-value and frac-
tal dimension anomalous changes (e.g. Watanabe 1998; Enescu &
Ito 2001; Enescu 2004; Ogata 2004).

The original and the declustered (6583 events, Fig. 4b) data sets
were thoroughly tested statistically by Enescu & Ito (2001) and,
in his PhD thesis, by Enescu (2004). Therefore, we refer to these
studies for further details.

ETAS model simulation

The ETAS model (Ogata 1985, 1988) is a point process model rep-
resenting the activity of earthquakes of magnitude Mc and larger
occurring in a certain region during a certain interval of time. We
have simulated such a process by using the following parameters:
Mc = 1.5, b = 1.0, µ = 0.1, K = 0.04. c = 0.01, α = 0.4 and
p = 1.2 (Fig. 4c). The first parameter represents the magnitude of
completeness for the simulated data. The b-value is the slope of
the frequency-magnitude distribution of earthquakes. The follow-
ing five parameters represent the characteristics of earthquakes in
the simulated time-series. Among them, the last two parameters, α

and p, are the most important in describing the temporal pattern of
seismicity. Thus, the p-value describes the decay rate of aftershock
activity, and the α-value measures the efficiency of an earthquake
with a certain magnitude to generate offspring, or aftershocks, in a
wide sense. For the physical interpretation of the other parameters
and more details, we refer to Ogata (1992). In this study we have
chosen a small α-value to simulate a sequence of 7000 events, with
‘low productivity’ of aftershocks.

Simulation of seismicity by using a 2-D heterogeneous fault
embedded in a 3-D elastic half-space

The model we use (Ben-Zion 1996) generates seismicity along a
fault segment that is 70 km long and 17.5 km deep. The fault is
divided into square cells with dimensions of 550 m. The boundary
conditions and model parameters are compatible with the observa-
tions along the central San Andreas Fault. Eneva & Ben-Zion (1997)
applied several pattern recognition techniques to examine four real-
izations of the model, with the same creep properties, but different
brittle properties. The simulated catalogue of this study is identical
to the case (A), described by Eneva & Ben-Zion (1997), and is the

result of a fault model containing a Parkfield-type asperity of size
25 km × 5 km. From now on we will refer to this simulation as
EBZ A (25 880 events in total; Fig. 4d).

We decided to decluster both ‘real’ earthquake catalogues be-
fore analysis (i.e. to eliminate the aftershock sequences from the
catalogues) for two main reasons:

(a) We are more interested in searching for LRD in the catalogue
and, therefore, the elimination of shorter-range dependent seismicity
(i.e. aftershocks) is considered appropriate, since it may influence
the results on LRD.

(b) The magnitude of completeness might be subevaluated im-
mediately after the occurrence of some larger events, during the
periods and in the regions under study. However, in the case of the
intermediate-depth Vrancea earthquakes, the number of aftershocks
is small even after major earthquakes, such as those that occurred
in 1977 (Mw = 7.4), 1986 (Mw = 7.1) and 1990 (Mw = 6.9). For
the crustal, shallow events in the Hyogo area, there are no major
earthquakes during the period of investigation.

In the case of the shallow earthquakes in the northern Kinki re-
gion, the declustering was done by using Reasenberg’s (1985) al-
gorithm. Details on the results of the aftershock removal proce-
dure and the robustness of the declustering algorithm applied to
this sequence of events, can be found in Enescu & Ito (2001) and
Enescu (2004). For the Vrancea (Romania) earthquakes a simpli-
fied declustering procedure was adopted, taking advantage of the
scarcity of aftershocks for these intermediate-depth events (Enescu
et al. 2003). The declustered catalogue was obtained by eliminat-
ing the aftershock sequences following the three major earthquakes
that occurred in 1977, 1986 and 1990. The abnormal aftershock ac-
tivity occurs in time windows of several months, but is especially
concentrated in the first hours and days following the occurrence
of a major event. As reported by Enescu et al. (2003), the scaling
range of the aftershocks and the declustered seismicity is different in
Vrancea region and, therefore, one can characterize unambiguously
their fractal properties.

5 R E S U LT S A N D D I S C U S S I O N

Fig. 4 shows the series of interevent times between consecutive
earthquakes for all four cases studied. The graphs look rather sim-
ilar, with no clear distinctive characteristics. Only the EBZ A sim-
ulation (Fig. 4d) shows some kind of regular and quasi-periodic
behaviour.

Fig. 5(a) shows the CWT representation in the case of the Vrancea
region earthquake intervals. A zoomed view is displayed in order
to observe better the clear self-similar (fractal) pattern. From an
intuitive point of view, the wavelet transform consists of calculating
a ‘resemblance index’ between the signal and the wavelet, in this
case the second derivative of the Gaussian. If a signal is similar
to itself at different scales, then the ‘resemblance index’ or wavelet
coefficients also will be similar at different scales. In the coefficients
plot (Fig. 5a), which shows scale on the vertical axes, this self-
similarity generates a characteristic pattern. We believe that this is
a very good demonstration of how well the wavelet transform can
reveal the fractal pattern of the seismic activity at different times
and scales. Fig. 5(b) displays the maxima lines of the CWT (i.e. the
WTMM tree) in the case of the Vrancea time-series. One can notice
the branching structure of the WTMM skeleton, in the (position,
scale) coordinates, which enlightens the hierarchical structure of
time-series singularities.
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Figure 5. (a) CWT coefficients plot in the case of the Vrancea (Romania) time-series, zoomed view. Scale and position are on the vertical and horizontal
axes, respectively. The coefficients, taking values between MIN and MAX , are plotted by using 64 levels of grey. The plot was obtained by using the ‘Wavelet
toolbox’ of Matlab software. (b) WTMM skeleton plot. The vertical axis is logarithmic, with small scales at the top.
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Figure 6. Double logarithmic plot of the partition functions, for q between
4 to −2 (up to down, constant increment), in the case of the Vrancea time-
series. The vertical lines indicate the limits of the scaling region. Outside this
area there are ‘boundary effects’ due to the limited length of the time-series.

Fig. 6 represents in a logarithmic plot the partition functions Z (q, s)
versus scale (s), obtained from the WTMM skeleton representation
(Fig. 5b). One can notice the existence of a well-defined, relatively
broad scaling region, as it is indicated in the figure. This scaling
domain corresponds approximately to time periods from days to
several years.

Fig. 7 shows the D(h) plot in the case of the Vrancea (Romania)
integrated interevent times. The spectrum is narrow (i.e. the Hurst
exponent (h) takes values in a very limited range). The τ spectrum,
represented in the inset of the figure, can be well fitted by a straight
line. These observations suggest that our time-series is the result of

a monofractal (or near-monofractal) process. One can also notice
that the ‘central’ h-value of the spectrum is close to 0.5, which is an
indication of the nearly random behaviour of the time-series. Enescu
et al. (2005) obtained a similar result, by using a ‘monofractal’
approach, the DFA technique. Therefore, we cannot reject the null
hypothesis that the defining temporal characteristics of the analysed
data set (M ≥ 2.6) are monofractality and randomness.

Before presenting the results concerning our second earthquake
sequence, we would like to illustrate, using a simple example, the
effect of artificial trends on the results of fractal analysis, when a
non-detrending technique is used. Fig. 8(a) shows the cumulative
number of events versus time for an ‘artificial’ sequence of events
obtained from the seismic catalogue in Vrancea region by selecting
earthquakes with M ≥ 2.6 for time period T1 (1976–1985) and M ≥
3.2 for T2 (1985–2002). In this way, we can simulate an (artificial)
change of seismicity rate, which could be, for example, the result
of a different detection capability of the seismic network during
the two time periods. In real earthquake catalogues seismicity rate
changes could be more complex, however, we consider that the sim-
ple ‘pattern’ considered here has the characteristics and appearance
(Fig. 8a) of a realistic simulation.

To study this sequence we apply the Hurst analysis (known also
as rescaled range or R/S analysis), a standard technique used to
detect correlations of noisy time-series (Hurst 1951). In the context
of earthquakes, the method has been applied by Lomnitz (1994)
and Goltz (1997), among others. A good introduction can be found
in Feder (1988) and Turcotte (1997). For a time-series u(i) (i = 1,
2, 3 . . . , Nmax), it is divided into boxes of equal size n. In each
box, the cumulative departure Xi of the series from the mean is
calculated. The range, R, is defined as the difference, max (Xi) −
min (Xi), in each box. One can compute then R/S, where S is the
standard deviation and obtain the average of the rescaled range,
〈R/S〉, in all boxes of equal size n. Repeat the above computation
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M >= 2.6, declustered Vrancea
(Romania) earthquake catalog.
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Figure 7. D(h) spectrum of the integrated interevent times, in the case of the Vrancea (Romania) integrated earthquake intervals. The spectrum is nearly
monofractal, centred on 0.56. This value, slightly larger than 0.5, is an indication of quasi-randomness. The inset shows the τ (q) spectrum, which is very close
to a straight line (an indication of monofractality).

over different box sizes, n, to provide a relationship between 〈R/S〉
and n. According to Hurst’s experimental study (Hurst 1951), a
power-law relation between 〈R/S〉 and n indicates the presence of
scaling: 〈R/S〉 ∼ nH , where H is the Hurst exponent. Since the
Vrancea region sequence of earthquakes is monofractal, one has
h = H (Section 2).

If our sequence of events is analysed separately during the periods
T1 and T2, by using R/S analysis, we obtained H = 0.56 and H =
0.57, respectively. This is in rather good agreement with our wavelet-
based results, which showed quasi-randomness in Vrancea’s case.
However, if we analyse together all data, the resulting 〈R/S〉 graph
(Fig. 8b) shows two different scaling regions. At small scales we
obtain H = 0.56, while at large scales the Hurst exponent is 0.9!
The large value of H would suggest non-random, highly correlated
behaviour at large scales. Obviously, the large Hurst exponent does
not reflect correlation or clustering of the catalogue, but is just a
spurious effect of the seismicity rate change, or, in other words, of
the non-stationarity of the data. Of course, in this simple, illustrative
example, we can easily detect the rate change and choose to investi-
gate the two time periods, T1 and T2, separately. However, by doing
so, the results will be less accurate due to the shorter length of each
time-series. Moreover, in real catalogues there might be several such
rate changes and, thus, one could not afford anymore partitioning
the data.

By applying the WTMM approach to the same data set, we have
obtained unbiased results, similar with those in Fig. 7: a narrow D(h)
singularity spectrum, centred on 0.55.

Simple trends, caused by artificial (man-made) or natural phe-
nomena can be seen frequently in real earthquake catalogues. If one
is interested in the real fractal properties of earthquakes and their
genuine LRD, the wavelets provide the necessary tool to look beyond
these non-stationarities. Moreover, there are other known shortcom-
ings of the R/S analysis, as for example the difficulty to discriminate
between long- and short-range correlations of a time-series.

Fig. 9 shows the partition functions Z (q, s) computed from the
WTMM skeleton of the second time-series considered here for anal-
ysis: the interevent times of the ‘Kobe sequence’. One can easily
notice that there are two distinct, well-defined, scaling domains, at

smaller scales and larger ones respectively, as indicated in the figure.
Further evidence for the existence of these two scaling regions is
presented in Fig. 10, which displays the amplitude of the Wavelet
Transform along Ridges (i.e. maxima lines). As eq. (4) also suggests,
the slopes of these maxima lines correspond to the local Hölder ex-
ponents (or local singularities) of a time-series. However, for most
‘real’ signals, these ‘local’ slopes are intrinsically unstable (mainly
because the singularities are not isolated), thus making very diffi-
cult the estimation of these local exponents. In contrast, the partition
function approach provides global estimates of scaling, which are
statistically more robust. However, by closely examining Fig. 10,
one can notice that again there is a rather clear crossover between
small and large scales.

By computing the corresponding D(h) spectrum for each of the
two scaling domains, at small scales (21 ∼ 24) we observed mul-
tifractal behaviour, while at larger scales (24 ∼ 29) the series is
monofractal, with an exponent of about 0.8. The first scaling do-
main extends roughly from hours to days, while the second one
corresponds to periods of time up to 2–3 yr. As is known, h > 0.5
could indicate the presence of correlations (or long-range correla-
tions), but there is also another important factor that can produce
h > 0.5. It relates to the probability distribution of the time-series (in
our case the probability distribution of the interevent times). Thus,
for series with a power-law-like probability distribution (or other
distributions characterized by heavy tails), one observes h > 0.5. A
method to discriminate between LRD and the results of the prob-
ability distribution effects is to analyse the shuffled version of the
signal. A shuffling technique was also used by Huc & Main (2003)
to develop a null hypothesis for examining earthquake triggering on
a global scale. By shuffling the series, the correlation is lost but the
power-law-like distribution, if present, remains unchanged. In other
words, the shuffled series would have h = 0.5 in the first case (only
LRD) and h > 0.5 in the second one (only power-law-like distri-
bution). We shuffled our series and obtain h = 0.5, which excludes
the possibility of an h larger than 0.5 caused by the probability
distribution.

There is still one more factor that could ‘induce’ LRD-like
characteristics: the presence of trends within the data. As already
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Figure 8. (a) Cumulative number of events for the ‘artificial’ Vrancea earth-
quake time-series (see text for details). The earthquakes occurred during time
periods T1 and T2 have threshold magnitudes of 2.6 and 3.2, respectively.
(b) Rescaled range (R/S) analysis of the data in Fig. 8(a). One can clearly
notice the crossover of scaling (marked by a vertical dotted line). The num-
bers indicate the slopes of the graph and hence the Hurst exponents in the
two regions.

mentioned, the wavelet approach eliminates the effect of polyno-
mial trends, if an appropriate mother wavelet is used to compute the
CWT. However, there are situations when other types of trends are
present in the time-series, like for example power-law or oscillatory
trends. As shown by Kantelhardt et al. (2001) and Hu et al. (2001),
both kinds of non-stationarities, superposed on LRD data, could
produce crossovers of the scaling region. By carefully analysing our
sequence, we identified some oscillatory behaviour and also peri-
ods of ‘accelerating seismicity’ or quiescence. As shown by Enescu
& Ito (2001) and Enescu (2004) anomalous earthquake frequency
changes occurred several years before the 1995 Kobe earthquake.
The increase and decrease of earthquake frequency could have been
associated with power-law (or higher order polynomial?) trends of
the earthquake intervals. Therefore, it is possible that such rather
complex non-stationary patterns are responsible for the large value
of h and thus for the LRD signature obtained in this study. We
would like to note, however, that while a clear distinction should be
made between simple, trivial trends and genuine LRD, such a sepa-
ration is probably less definite in the case of trends having complex,
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low-frequency characteristics. On the other hand, more important
to emphasize in our case is the existence of two distinct scaling do-
mains, both of them associated with fluctuations that are intrinsic
to the data. More research has to be done, however, to identify ‘the
nature’ of these fluctuations and their physical background.

The computation of the D(h) spectrum at small scales (21 to 24;
see Fig. 9) showed multifractality, which probably corresponds to
inhomogeneous local scaling behaviour of the time-series. The re-
sult may also reflect the incomplete detection and removal of after-
shocks. However, these findings are less reliable due to the limited
length of the data set and a rather short scaling domain.

Our third case is concerned with the analysis of a simulated earth-
quake sequence, obtained by using the ETAS model. Fig. 11 shows
the D(h) spectrum computed by using a scaling region of the parti-
tion functions Z between 23 and 210. The plot shows a monofractal
spectrum, with a Hurst exponent, h, close to 0.5. It is an expected
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ETAS model with the following parameters:

M >= 1.5; b = 1.0; µ = 0.1, K = 0.04, c= 0.01,
α = 0.4, p = 1.2; 7000 events.

h

D
(h

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 11. Multifractal spectrum in the case of ETAS model simulation. By
analysing the spectrum one can assume a nearly monofractal, non-correlated
process. A scaling range between 22 and 29 was used to compute the D(h)
spectrum.
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finding for a sequence that has low offspring productivity and thus
behaves quasi-randomly in the range of scales mentioned above.
The result demonstrates that the small number of aftershocks, which
occurred for very short periods of time, could not influence signifi-
cantly the spectrum’s characteristics at larger scales.

Our final analysis is concerned with another earthquake simula-
tion, EBZ A (see chapter 3). We are primarily interested here to see
if oscillatory behaviour of the time-series could induce a crossover
of scaling and apparent long-range correlation. Fig. 12 shows the
result of basic statistical testing of data. We represent the cumulative
probability distribution of the interevent times in a half-logarithmic
plot. A random occurrence of earthquakes corresponds to an expo-
nential distribution of the interevent times and, thus, in such a case,
one would expect a straight line of the plot. The evident departure
from linearity is a clear proof that the simulated earthquakes do not
occur randomly. The step-like shape of the plot suggests that some

Time (years)

No. of bins = 600

150 200 250 300
0

10

20

30

40

50

60

70

80

q = 4

q = 3

q = 2

log2(s)

lo
g 2

(Z
(q

,s
))

1 2 3 4 5 6 7 8
14

16

18

20

22

24

26

28

30

a)

b)

F
re

qu
en

cy
(n

o.
of

ea
rt

hq
ua

ke
s/

bi
n)

Scaling region 1

Scaling region 2

Scaling region 3

Figure 13. (a) Frequency of earthquakes versus time plot, in the case of
EBZ A simulation. Oscillatory behaviour is observed. (b) Partition func-
tions, Z, for q = 2, 3, 4, in the case of EBZ A simulation. Several distinct
scaling domains are observed. The vertical lines indicate the approximate
borders of these regions.

recurrence intervals are strongly preferred, or in other words that
our synthetic data has several quasi-periodicities.

Fig. 13(a) presents the frequency of earthquakes versus time (the
total time span of the earthquake sequence is 150 yr). The graph
confirms the periodic behaviour found before. We have also analysed
the variation of CWT coefficients with time and found the same
oscillatory behaviour. Fig. 13(b) displays the partition functions in
the case of the EBZ A simulation, only for q = 2, 3 and 4. As in the
case of the ‘Kobe earthquake time-series’, one can see a segmented
plot, which indicates different characteristics across scales. It is
beyond the scope of this study to analyse in detail the influence of
oscillatory trends on the multifractal characteristics of the analysed
signal, as they are revealed by wavelet analysis. Some preliminary
results, however, indicate that such a relation could be ‘quantified’
and employed as a useful tool to analyse the behaviour of complex
signals.

Finally we would like to note that the results reported so far on real
seismicity are stable when we ‘sample’ the catalogues in different
ways: chose a different threshold magnitude, analyse the data for
different spatial and temporal windows.

6 C O N C L U S I O N S

The present paper presents an in-depth analysis of the multifrac-
tal and correlation properties of real and simulated time-series of
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earthquakes, using a new, wavelet-based approach. Our study re-
veals the clear fractal pattern of the analysed series of interevent
times and their different scaling characteristics.

In the case of the intermediate-depth seismic activity in Vrancea,
Romania, we found random and monofractal behaviour that occurs
for a rather broad range of scales. The crustal seismic activity in the
Hyogo area, Japan, has different characteristics, the most notable
ones being the crossover in scaling and the long-range correlation
signature observed at larger scales. It is not certain, however, what is
the ‘nature’ of this LRD-like behaviour. We believe that the complex
non-stationarities of the data (trends) are responsible for this result.
There is some evidence in support of our assumption, coming from
theoretical studies of LRD with superposed oscillatory or power-
law trends. The precise mechanism of the observed LRD needs to
be analysed further with the wavelet transform. We believe it is
essential to studying this phenomenon since it is ultimately related
to the predictability of the earthquake time-series.

The investigation of two simulated earthquake sequences helped
to understand the fractal and correlation properties of the real data.
Thus, the analysis of the ETAS model sequence, with a ‘low produc-
tivity’ of aftershocks, showed that the clustering that occurs ‘locally’
does not have any influence on the results at larger scales. The in-
vestigation of the time-series of earthquakes simulated by using a
cellular fault embedded in a 3-D elastic medium revealed the quasi-
cyclic behaviour of the earthquake occurrence. We have shown that
there are several crossovers of scaling, which are probably associated
with the oscillatory trends of the simulated sequence of earthquakes.

As one could notice, the present study does not indicate explicit
confidence intervals for the h-value estimates. We briefly discuss
here this issue. In the case of the Multinomial Cantor Measure (Sec-
tion 3), we have generated a large number of series (100) having
the same length (4096) and determined for each of them the D(h)
singularity spectrum. For q = 10, the computed h-values form a dis-
tribution centred on the theoretical h-value (0.28), with a standard
deviation of ±0.05. The standard deviation of h for other q-values is
smaller. Because the analysed earthquake time-series have lengths
larger than 4096, one would expect even smaller standard devia-
tions. In reality, the effective uncertainty in the case of earthquake
data is probably larger since we do not have the perfect multifractal
behaviour of the Multinomial Cantor Measure. Surrogate data, ob-
tained for example by randomly shuffling the original series, should
be used to test for the significance of the results.

The fractal characteristics of our time-series were mainly ad-
dressed in this study by computing ‘global estimates of scaling’.
However, by using a recently developed technique (Struzik 1999),
one can evaluate the Hölder exponent at an arbitrary location and
scale. Such an approach has led to interesting findings in differ-
ent fields, such as medicine (Ivanov et al. 1999) and the economy
(Struzik 2001). In our next studies we are planning to follow such a
‘local’ approach to study the complexity of earthquake time-series.
Moreover, by using a 2-D wavelet transform, we would like to extend
our research from time-series to spatial patterns of seismicity.
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