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Abstract

Ultrapotassic rocks in the Bucak area of Isparta Angle, SW Turkey, show unusually low SiO2 (46.8–49.2 wt.%) and high MgO
(10.4–11.6 wt.%) contents, and lamproitic affinity (K/Na, N2.5; Mg#, 73–75; Al2O3, 9.2–11 wt.%, CaO 7.4–10.6 wt.%, Cr, 525–
675 ppm; Ni, 442–615 ppm). They are made up by phlogopite (30–40 vol.%), leucite (25–30 vol.%), olivine (5–20 vol.%), which
rarely contain Cr-spinel, clinopyroxene (5–10 vol.%), sanidine (5 vol.%) and richterite, with accessory apatite, magnetite and
ilmenite. One sample also include negligible sodalite in groundmass, which is unusual mineral in lamproites. Mineral phase
variation and textures record discrete phases of pre-eruptive crystallization: (1) early appearance of (Cr-spinel-bearing) olivine, Ti
poor phlogopite±apatite at pressures of ca. 1.0–2.0 GPa, at or close to the lithospheric Mechanical Boundary Layer (MBL), and (2)
later appearance of Ti rich phlogopite, clinopyroxene, richterite, leucite, sanidine, and other minor phases, at pressures of ca. 0.1–
1.0 GPa, indicating discrete, pressure-specific fractionation events. The Bucak silica poor ‘leucite’ lamproites were probably
generated by partial melting of phlogopite-bearing, refractory peridotite at pressures of ca. 1.5–2 GPa, higher than those proposed
for SiO2-saturated ‘phlogopite’ lamproites (ca. 1–1.5 GPa) from Afyon, to the North. The depth (total pressure) of melt segregation
probably dominates over volatile partial pressures (e.g. of CO2, F, H2O) in determining the SiO2-undersaturated character of Bucak
magmas.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Ultrapotassic (peralkaline to lamproitic) magmatic
activity affected SW Turkey in several regions between
ca. 14.8 Ma and 4.6 Ma, e.g. Afyon-Sandikli (Besang et
al., 1977; Keller, 1983; Aydar et al., 1995, 1996; Aydar,
1998; Savascin and Oyman, 1998; Francalanci et al.,
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1990, 2000; Akal and Helvaci, 2002), Bodrum (Pe and
Gledhill, 1975; Gulec, 1991; Robert et al., 1992),
Denizli (Ercan et al., 1983, 1985, 1996; Savascin and
Gulec, 1990; Gulec, 1991; Paton, 1992), and Isparta-
Bucak (Lefevre et al., 1983; Yagmurlu et al., 1997;
Francalanci et al., 1990, 2000; Doglioni et al., 2002),
marking the transition from subduction- to collision-
related tectonic regimes (Fig. 1).

Plagioclase-rich ultrapotassic rocks from Bodrum
and Denizli are relatively rich in Al2O3 (Robert et al.,
1992; Ercan et al., 1983) while lamproites from
Afyon-Sandikli comprise assemblages of phlogopite,
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Fig. 1. Simplified map showing the distribution of metamorphic basement rocks, ophiolitic complexes, Neogene volcanics and lamproite occurrences
from Western Anatolia. Data source: metamorphic basements from Bozkurt and Oberhansli (2001); ophiolites after Robertson (2002); Neogene
volcanics modified from Ercan et al. (1996), and Isparta Angle lamproitic occurrences after Besang et al. (1977), Keller (1983), Aydar et al. (1995),
Aydar (1998), Savascin and Oyman (1998), Ercan et al. (1983, 1985), Gulec (1991), Francalanci et al. (1990, 2000), Akal and Helvaci (2002) and
Robert et al. (1992).
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K-richterite, olivine, diopside, sanidine, apatite and
calcite (Akal and Helvaci, 2002). In contrast, lam-
proites from the Bucak region are distinguished by
their near-primary magmatic character, SiO2 contents
ranging 46.8–49.2 wt.%, and MgO, 10.4–11.6 wt.%.
However, while their liquidus phase assemblages have
not been characterized in detail (Lefevre et al., 1983;
Yagmurlu et al., 1997; Francalanci et al., 1990, 2000),
the available whole-rock data suggest that many of
these ultrapotassic magmas tap refractory (i.e. basalt-
depleted) mantle sources. In this paper, the first of
two, we present electron microprobe data for the
Bucak lamproitic mineral phases, significantly on the
genetic conditions of these SiO2-undersaturated
magmas.

2. Geological setting

Bucak lamproites are exposed ca. 50 km south of
Isparta within the tectonically complex ‘Isparta Angle’
region (Fig. 1). The Isparta Angle comprises several
structural components—the Menderes Massive, Afyon
‘metabasement’ (including the Alanya massif) (Boz-
kurt and Oberhansli, 2001), Neo-Tethyan ophiolite
fragments (including the Lycian, Antalya and Beyse-
hir-Hoyran nappes; Robertson, 2000, 2002), and the
distinctive Afyon-Isparta Neogene volcanic province
(Kocyigit, 1984; Aydar et al., 1995, 1996, 2003;
Aydar, 1998; Yagmurlu et al., 1997; Doglioni et al.,
2002) (Fig. 1). The appearance of potassic and
ultrapotassic magmatic activity appears to have
coincided with an episode of post-collision lithosphere
extension and the initiation of strike-slip, transten-
sional faulting (Kocyigit, 1984; Savascin and Oyman,
1998; Aydar, 1998; Yagmurlu et al., 1997; Francalanci
et al., 2000; Kocyigit et al., 2002; Doglioni et al.,
2002; Aydar et al., 2003; Cihan et al., 2003; Gursoy
et al., 2003; Vaughan and Scarrow, 2003). The
volcanic activity appeared during the Late Miocene
and Pliocene following sporadic calcalkaline activity
in the Early Miocene, to be succeeded in the
Quaternary by a short episode of alkali basalt
eruptions (Aydar, 1998). Although the Isparta Angle
lies more than 200 km north of both the Hellenic and
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Cyprian subduction systems (Fig. 2), it appears to
represent an extensional (‘back-arc’) response to
northward African plate subduction (Kocyigit, 1984;
Glover and Robertson, 1998a,b; Papazachos and
Papaioannou, 1999; Doglioni et al., 2002). In general,
igneous activity in the southern part of the Isparta
Angle comprises two types: (1) SiO2-saturated
trachyte-trachyandesites, within and to the south of
the Gölcük-Isparta region (Lefevre et al., 1983; Alici
et al., 1998), and (2) SiO2-undersaturated activity in
the vicinity of Bucak (Lefevre et al., 1983; Franca-
lanci et al., 2000), between 4.07±0.2 and 4.7±0.13
Ma (Lefevre et al., 1983) (Fig. 2). The latter
Fig. 2. Main Neotectonic lineaments and structural units of Isparta Angle (a
landsad image of Bucak area. EAFZ: East Anatolian Fault Zone, NAFZ: No
penetrated Mesozoic and Tertiary sediments and
Late Cretaceous ophiolite remnants (Hancer and
Karaman, 2001) and is mostly preserved as small-
volume dikes and lavas.

3. Petrography

Porphyric, gray-greenish Bucak rocks are made up
by phlogopite (30–40 vol.%), leucite (25–30 vol.%),
olivine (5–20 vol.%) (with rare Cr-spinels), clinopyr-
oxene (5–10 vol.%), sanidine (5 vol.%), apatite,
subsidiary amounts of richterite, Fe–Ti oxides and
unidentified Ca–Ti niobates. One sample includes
fter Glover and Robertson, 1998b), and simplified geological map—
rth Anatolian Fault Zone.
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negligible sodalite in groundmass, which is unusual
mineral in lamproites. Phologopite present mostly as a
groundmass phase, and to a lesser extent as an early
formed phenocryst phase (Fig. 3a). Early formed
phlogopite and olivine are the only phenocryst phases
in the Bucak rocks. Olivine occurs in different forms
as anhedral or subhedral hopper type, skeletal and
polyhedral crystals (Fig. 4a), and scarcely rounded
microphenocrysts in the groundmass, which are
related to rapid growth of olivine in a cooling
magma (Donaldson, 1976, 1979). The following
textural relations were observed in Bucak rocks: Cr-
Fig. 3. (a) Mantled Type I phlogopite (phl) phenocryst (in centre) enclosed by
(leucites—leu and clinopyroxenes—cpx). (b, c and d) The formation of ro
resorption (or breakdown) of groundmass Type II phlogopite (phl).
spinel inclusions in olivine (Fig. 4b); olivine mantled
by phlogopite, a typical feature of H2O-rich ultra-
potassic magmas (Arima and Edgar, 1983; Luth,
1967), and peritectic reaction is evidenced for
phlogopite formation by reaction of olivine with
potassic melt (Luth, 1967; Carmichael, 1967; Mitchell,
1981; Wagner and Velde, 1986; Conticelli et al., 1992)
(Fig. 4a); apatite inclusions in groundmass phlogopite;
richterite in the groundmass; formation of prismatic
clinopyroxene microphenocrysts and rounded leucite
by resorption (or breakdown) of phlogopite (Fig. 3b, c
and d); leucite rimmed by groundmass sanidine (Fig.
resorbed groundmass (Type II) phlogopite and its resorption products
unded twin free leucite (leu) and prismatic clinopyroxenes (cpx) by



Fig. 4. (a) Skeletal olivine (ol) rimmed by phlogopite (phl) phenocrysts; (b) anhedral Cr-spinel (Cr-sp) inclusions in resorbed olivine phenocrysts; (c)
the groundmass sanidine (Snd) as mesostas, and a reaction rim between leucite (leu) and sanidine indicating the sanidine inversion from leucite; (d)
the formation of magnetite (Mag) by the breakdown of resorbed phlogopite, coexist with leucite and clinopyroxenes.
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4c); formation of Fe–Ti oxides by breakdown of
phlogopites (Fig. 4d). Following the appearance of Cr-
rich spinel, the crystallization sequence is marked by;
olivine, Type I phlogopite, and apatite, prior to Type II
phlogopite, richterite, diopside, and leucite, which
formed as a resorption product of the micas, and,
eventually, groundmass sanidine, leucite, and Fe–Ti
oxides.

4. Analytical methods

Major and trace element analyses of selected
8 unaltered rock samples were carried out at the
University of Lausanne (Switzerland), using Philips
PW 2400X-ray fluorescent spectrometer. Rare earth
elements have been analyzed by ICPMS (inductively
coupled plasma emission spectrometer). Detection
limit and range for trace elements are 0.5 ppm and
0.007–0.012 ppm respectively. Accuracy and preci-
sion was evaluated by analyzing international refer-
ence samples AGV-1, BHV-0, MFTH, QLO, GSP,
STM. Mineral compositions were determined using
(1) a JEOL-5900 SEM-EDS electron microprobe (at
Lakehead University, Canada) for which operating
conditions were 15 kV and 20 nA, and (2) a
CAMECA-SX-51 electron microprobe (at Heidelberg
University, Germany) for which operating conditions
were 15 kV and 20 nA, and counting time of usually
10 s. Electron beam size was 1 μm except when
analyzing feldspar for which a 10 μm beam was
required. Natural and synthetic oxide and silicate
standards were used. Correction procedures were
performed with CAMECAS' PAP software for on-
line data reduction.
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5. Whole-rock chemistry and classification

Analyzed rocks are phonotephrites, according to Le
Maitre et al. (2002) classification, but whole-rock
compositions define these rocks as ultrapotassic (K2O/
Na2ON2.5) in type (Table 1; Fig. 5a), with SiO2 ranging
between 46.80 and 49.19 wt.%, Al2O3 9.19–11 wt.%,
CaO, 7.34–10.60 wt.% and MgO 10.39–11.64 wt.%. Ni
contents range 442–615 ppm, Cr 525–675 ppm and
Mg# (Mg/Mg+Fe2+) 73–75 are consistent with near-
Table 1
Representative major oxide (wt.%), trace element and REE (ppm) composit

Sample no. B3-TB-a B5T-a BT1-a B-7T

Major
SiO2 48.45 47.18 47.83 48
TiO2 1.99 1.51 1.71 1
Al2O3 10.63 9.69 9.19 10
Fe2O3tot 6.91 7.24 7.16 6
MnO 0.12 0.16 0.11 0
MgO 10.60 11.67 11.19 10
CaO 8.52 9.52 8.52 8
Na2O 1.85 1.30 2.13 2
K2O 6.05 6.84 6.57 6
P2O5 1.28 1.53 1.42 1
Cr2O3 0.09 0.11 0.08 0
NiO 0.06 0.08 0.07 0
L.O.I. 2.85 3.31 2.98 1
Total 99.39 100.14 99.04 99
Mg# 73.22 74.18 73.60 73

Trace
Ba 2380 1971 2268 2302
Sr 1878 1595 1582 1928
Rb 525 236 367 268
Zr 960 1001 1026 929
Nb 166 200 203 161
Y 24 27 22 23
Th 24 22 21 22
Ta 10 9 10 8
Hf 20 19 19 18

REE
La 160.32 132.56 132.65
Ce 293.47 230.21 246.72
Pr 31.16 24.58 26.40
Nd 115.12 90.21 96.88
Sm 16.08 13.42 13.91
Eu 4.28 3.34 3.69
Gd 10.72 9.11 9.72
Tb 1.16 1.12 0.94
Dy 5.24 5.70 4.79
Ho 0.86 0.95 0.75
Er 2.22 2.48 2.01
Tm 0.24 0.31 0.25
Yb 1.55 2.28 1.52
Lu 0.23 0.31 0.26

Mg#=atomic 100⁎ (Mg/Mg+Fe2+), assuming that Fe3+/∑Fe=0.85.
primary magmas equilibrated with peridotitic mantle
sources. The MgO-rich, Al2O3-poor character and
extreme enrichment in Ba (1608–2528 ppm), Sr
(1582–2290 ppm), F (6200–6900 ppm) and Zr (473–
1026 ppm) are typical of lamproites (Foley et al., 1987;
Mitchell and Bergman, 1991) and conform to Group I in
the ultrapotassic classification scheme of Foley et al.
(1987) (Fig. 5b). Although still lamproitic in character
(i.e. showing MgON3 wt.%, Al2O3b13 wt.%, and
K2O/Na2ON1.5) other ultrapotassic rocks exposed in
ions of Bucak rocks

-a B5T B7T B-1 B-2

.86 49.19 47.98 48.90 46.80

.72 1.77 1.64 1.75 1.70

.37 10.82 11.00 10.30 10.80

.72 6.81 7.29 6.82 7.30

.12 0.11 0.12 0.10 0.10

.50 10.39 11.64 11.20 11.50

.23 8.39 9.11 7.34 10.60

.60 1.95 1.64 2.23 1.60

.74 6.32 4.81 7.40 5.80

.34 1.56 1.42 1.11 1.60

.08 0.09 0.08 0.11 0.09

.06 0.06 0.07 0.09 0.06

.79 1.68 2.11 1.60 2.30

.15 99.11 99.13 99.10 100.25

.59 73.12 74.00 74.54 73.74

2284 2528 1608 1983
1997 2290 1584 2103
604 338 293 328
990 882 616 473
173 146 184 146
24 26 24 26
24 16 16 16
10 6 8 10
19 18 23 17



Fig. 5. Bucak ultrapotassic rocks (filled circle) plotted on (a) K2O (wt.%) versus Na2O (wt.%), (b) CaO (wt.%) versus Al2O3 (wt.%)—classification of
ultrapotassic rocks (Foley et al., 1987) (fields from Tuscany lamproites after Conticelli et al., 1992 and other lamproite occurrences after Altherr et al.,
2004; references therein), and (c) MgO (wt.%) versus SiO2 (wt.%) and (d) K2O+Na2O/Al2O3 (molar) versus SiO2 (wt.%) diagrams. For comparison
data also include other Isparta Angle ultrapotassic rocks (IAUP—dashed line) having lamproitic affinity (assuming MgON3 wt.%, Al2O3b13 wt.%
and K2O/Na2ON1.5), after Besang et al. (1977), Keller (1983), Ercan et al. (1983, 1985), Gulec (1991), Robert et al. (1992), Aydar et al. (1996) and
Akal and Helvaci (2002). RPL and lamproite fields on diagram ‘d’ after Bergman (1987) and Mitchell and Bergman (1991).
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the Isparta Angle (referred to as IAUP) (e.g. Bodrum,
Denizli and Afyon-Sandikli) appear to be transitional
to ‘Roman’ shoshonitic types (Fig. 5a, b and d).
However, the Bucak compositions differ significantly
from these, showing lower SiO2 and higher MgO, Cr,
Ni contents, suggesting they represent near-primary
magmas (Fig. 5c).

Compared to other reported silica-poor ultrapotassic
rocks with lamproitic affinity from the Mediterranean
region (e.g. Jumilla, SE Spain, Venturelli et al., 1991
and Macedonia–Yugoslavia, East European, Cvetkovic'
et al., 2004; Altherr et al., 2004), the Bucak lavas show
low Th (16–24 ppm), and high Ta (6–10 ppm), Nb
(160–200 ppm) and REE contents, the latter being
strongly fractionated (Ce/Nd, 2.4–2.5, cf. 1.51–1.74 in
Mediterranean types, Foley et al., 1987) and lacking
negative Eu anomalies (Fig. 6a and b). Their relatively
high P2O5 (1.1–1.62 wt.%) contents resemble those of
lamproites from Jumilla, Spain (1.55–2.26 wt.%;
Venturelli et al., 1991) and from Macedonia–Yugosla-
via, East European (up to 1.73 wt.%; Cvetkovic' et al.,
2004; Altherr et al., 2004).

In general, SiO2-undersaturated lamproitic ultrapo-
tassic rocks are relatively uncommon in circum-
Mediterranean provinces such as Italy (49.3–58.1 wt.
%; Venturelli et al., 1984b, 1988; Peccerillo et al., 1988;
Conticelli and Peccerillo, 1992; Conticelli et al., 1992,
2002; Conticelli, 1998) and SE Spain (46.1–60.5 wt.%.,
Venturelli et al., 1984a, 1991; Turner et al., 1999),
exceptions being Jumilla (SE Spain) (SiO2=46.87–



Fig. 6. (a) Spider diagram of the Bucak rocks normalized to primitive
mantle, (b) REE condritic patterns of the Bucak rocks. The Jumilla
(Venturelli et al., 1991), Tuscany (Conticelli et al., 1992) and
Macedonia–Yugoslavia (Altherr et al., 2004) lamproite compositions
are reported for comparison. Normalized values after Sun and
McDonough (1989).
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52.70 wt.%,; Venturelli et al., 1991) and Macedonia–
Yugoslavia (East European) (SiO2=46.8–51.1 wt.%;
Cvetkovic' et al., 2004; Altherr et al., 2004). With
respect to composition of SiO2-poor olivine lamproites
from West Kimberley, Western Australia (SiO2=40–44
wt.%; CaOb6 wt.%; Al2O3b5 wt.%; MgON20 wt.%;
TiO2N3 wt.%) (Jaques et al., 1986; Wagner and Velde,
1986), Bucak lamproite major element compositions
resemble those of leucite lamproites from the Leucite
Hills, Wyoming (SiO2=49–52 wt.%; Carmichael,
1967) and Gaussberg, Antarctica (SiO2=43–55 wt.%;
Murphy et al., 2002) (Fig. 5b, see also Fig. 14a), and are
therefore called ‘leucite’ lamproite.

Moreover, in contrast to the ‘enriched’ isotopic
compositions of lamproites from Mediterranean
occurrences (Spain, Italy, Eastern Europe; Venturelli
et al., 1984b; Nelson et al., 1986; Conticelli et al.,
1992, 2002; Conticelli, 1998; Turner et al., 1999;
Peccerillo, 1999; De Astis et al., 2000; Cvetkovic' et
al., 2004; Altherr et al., 2004) (87Sr/86Sr, 0.70784–
0.7221, 143Nd/144Nd, 0.5119–0.5124) the Isparta
Angle lamproites (e.g. from Bodrum, Denizli,
Afyon and Bucak) are characterized by a lower Sr
(0.70363–0.7079) and higher Nd (0.5124–0.5128)
ratios (Keller, 1983; Gulec, 1991; Robert et al., 1992;
Francalanci et al., 2000).

6. Mineral chemistry

Excluding sodalite observed only in one sample,
absence of plagioclase and coexisting olivine, phlog-
opite, diopside, richterite, leucite and sanidine in the
matrices of Bucak lamproites are nonetheless typical
(Foley et al., 1987; Mitchell and Bergman, 1991)
despite the lack of phases such as priderite and
wadeite. In contrast to SiO2-saturated Afyon-Sandikli
lamproites (which include phlogopite, K-richterite,
olivine, diopside, sanidine, apatite and calcite) ultra-
potassic rocks from Denizli and Bodrum reflect
significantly higher modal plagioclase. However,
MgO-rich SiO2 undersaturated lamproites from
Jumilla in SE Spain (Venturelli et al., 1991) are
leucite-free and relatively rich in analcime and
carbonates, while those from the Yugoslavia and
Macedonia (Eastern Europe) include pseudobrookite-
armalcolite, melanite and sphene (Cvetkovic' et al.,
2004; Altherr et al., 2004). Mineral phase composi-
tions of the Bucak lamproites are described below.

6.1. Micas

Phlogopites in the Bucak rocks occur as two types
(Table 2; Fig. 7), Type I, a high-Mg, Ti poor variety
(with Mg#, 85.9–91.6; Al2O3, 12.19–14.14 wt.%;
Cr2O3, up to 1.82 wt.%; FeO, 3.7–6.22 wt.%; TiO2,
2.15–2.98 wt.%) and Type II, a low-Mg, Ti rich variety
occurring as resorbed laths in the groundmass (with
Mg#, 70.87–85.6; Al2O3, 9.03–13.04 wt.%; Cr2O3, up
to 0.11 wt.%; FeO, 5.63–11.37 wt.%; TiO2, 6.25–10.45
wt.%). Type I phologopite is often mantled by Type II,
which is Ti rich (6.78–7.11 wt.%), Mg# (85.6–86.6) and
Al2O3 (11.93–12.1 wt.%) poor (with composition
similar to Type II phl) around the Ti poor (2.43–2.51
wt.%), Mg# (89.56–91.6) and Al2O3 (13.34–13.4 wt.%)
rich core.

Type I mica show notably higher F (1.52–3.25 wt.%)
and SiO2 (39.61–40.84 wt.%) contents, and lower Ba



Fig. 7. Ti, Al, Fe and Cr (a.p.f.u.) versus Mg# (Mg/ (Mg+Fe2+)
diagrams of micas from Bucak lamproites, and comparison to micas
from peridotite massifs–peridotite xenoliths (PM) and crustal
xenoliths (CM). Note that Type I micas fall well within the peridotitic
field and Type II phlogopites are not consistent with the composition
of crustal micas. Data source for PM and CM; micas in selected
granulite xenoliths (Kempton et al., 1995; Conticelli, 1998; Upton et
al., 2001; Rickers et al., 2001; Embey-Isztin et al., 2003); in selected
veined spinel harzburgite, spinel dunite and garnet peridotite xenoliths
(Wulff-Pedersen et al., 1996, 1999; Zhang et al., 2000; Van
Achterbergh et al., 2001; Gregoire et al., 2002), and in peridotite
massif (Zanetti et al., 1999; Rizzo et al., 2001).

Table 2
Representative chemical compositions (wt.%) of phlogopites from
Bucak lamproites

Type I phlogopite Mantled Type I
phlogopite

Type II phlogopite

Core
(N=9)

Rim
(N=10)

Core
(N=2)

Rim
(N=2)

Core
(N=18)

Rim
(N=11)

SiO2 40.11 40.71 40.45 39.11 39.44 39.75
TiO2 2.15 2.47 2.43 6.78 6.25 6.36
Al2O3 13.22 12.68 13.34 12.10 10.56 10.48
Cr2O3 1.17 0.93 1.19 0.01 b0.01 b0.01
FeO 6.22 4.72 3.87 6.11 5.97 5.63
MnO 0.07 0.04 0.04 0.07 0.08 0.04
MgO 21.26 22.25 23.72 20.45 21.18 21.04
CaO 0.04 0.03 0.01 0.05 0.12 0.07
BaO 0.32 0.23 0.26 2.20 2.11 1.78
Na2O 1.43 0.41 0.55 0.61 0.49 0.64
K2O 8.53 9.86 9.74 8.72 9.10 9.02
F 3.25 2.14 2.15 1.92 2.44 1.36
Total 97.44 96.27 97.46 95.93 95.63 94.39

Structural formulas based on 24 oxygens
Si 5.850 5.798 5.748 5.650 5.754 5.800
Ti 0.266 0.234 0.260 0.736 0.686 0.698
Al 2.146 2.250 2.232 2.058 1.814 1.800
Fe2 0.568 0.752 0.460 0.738 0.728 0.686
Cr 0.106 0.134 0.134 0.002 – –
Mn 0.004 0.008 0.004 0.008 0.010 0.004
Mg 4.872 4.580 5.026 4.404 4.608 4.576
Ca 0.004 0.006 0.002 0.008 0.018 0.010
Ba 0.012 0.018 0.014 0.124 0.120 0.102
Na 0.126 0.400 0.152 0.170 0.138 0.182
K 1.766 1.572 1.766 1.608 1.694 1.678
Cations 15.72 15.75 15.80 15.51 15.57 15.54
Mg# 89.56 85.90 91.62 85.65 86.36 86.96
K/Al 0.823 0.699 0.791 0.781 0.934 0.932

FeO=as total Fe, Mg#=(Mg/ (Mg+Fe))⁎100; b: below detection
limit; N: number of analyzes; –: not calculated.
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(up to 0.4 wt.%) contents relative to Type II micas (F,
0.51–2.67 wt.%; Si, 38.46–39.75 wt.%; Ba, 1.42–3.22
wt.%). Although Types I and II phl display little or no
zonation between core and rim compositions, the
composition of core of mantled crystals has higher
Mg#, Si, Al, F and Cr2O3 (0.27–1.19 wt.%) contents
and lower Ti and Ba abundances than rims, which are
close to Type II phl.

Two types (Type I and Type II) of phlogopite
bearing lamproites were also defined from Leucite
Hills (Carmichael, 1967), Jumilla (SE Spain; Venture-
lli et al., 1991), South Tuscany (Italy, Conticelli et al.,
1992), and Macedonia and Yugoslavia (East Europe-
an; Altherr et al., 2004), which show similarity with
two types of Bucak micas. Bucak micas display
consistency with the micas from typical lamproites
and peridotitic xenoliths (Figs. 7 and 8). In contrast,
they differ significantly from the micas of Roman
province lavas and crustal xenoliths, which are
characterized by the higher Al2O3 contents (Figs. 7
and 8).



Fig. 8. Variation of TiO2 (wt.%) and Al2O3 (wt.%) in phlogopite from
the Bucak lamproites. The fields of phlogopites from kimberlites,
selected lamproites and MARID xenoliths are modified from Mitchell
and Bergman (1991), and references therein. LH-P: phenocrystal
plogopites from Leucite Hills. RPT: phlogopites from Roman Province
Types.

Table 3
Representative chemical compositions (wt.%) of leucites in Bucak
rocks

Low Fe, high Al-
bearing leucite

High Fe, low Al-
bearing leucite

SiO2 55.44 55.77 55.35 54.57
Al2O3 21.7 22.78 21.57 21.26
Fe2O3 1.57 1.48 2.19 2.27
Na2O 0.06 0.18 0.06 0.09
K2O 20.06 20.52 20.4 20.58
CaO n.a. n.a. 0.02 b0.01
BaO 0.2 0.13 0.02 b0.01
SrO n.a. n.a. b0.01 0.01
Total 99.03 100.90 99.60 98.78

Structural formulas based on 6 oxygens
Si 2.035 2.011 2.02 2.015
Al 0.938 0.967 0.927 0.924
Fe 0.048 0.045 0.06 0.063
Na 0.004 0.013 0.004 0.006
K 0.939 0.944 0.95 0.969
Ca – – 0.001 –
Ba 0.003 0.013 – –
Sr – – – –
Cations 3.967 3.993 3.962 3.977

Fe2O3 as total Fe; b: below detection limit; na: not analyzed; –: not
calculated.
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6.2. Leucite

Leucite appears as two compositional types in the
Bucak lavas: (1) Fe2O3-poor (b2 wt.%) and Al2O3-rich
(21.7–22.78 wt.%) and (2) Fe2O3-rich (N2 wt.%) and
Al2O3-poor (21.26–21.55 wt.%) type (Table 3). In
general, high Fe2O3 (N1 wt.%) and low Na2O (0.04–
0.09 wt.%), and low CaO (b0.02 wt.%) contents are
typical of lamproitic leucites (Mitchell, 1985; Jaques et
al., 1986). The high SiO2 (54.57–56.77 wt.%) and K2O/
Al2O3 (0.9–0.97) ratios in the Bucak leucites also
indicate their similarity to lamproite leucite, with respect
to those in Roman Province lavas (Mitchell and
Bergman, 1991).

6.3. Clinopyroxene

Clinopyroxene microphenocrysts, including intersti-
tial crystals in micas and groundmass, cover a wide
compositional range (Table 4; Fig. 9), and show high
Mg# and Cr (Mg#, 82.53–91.57; Cr2O3, up to 1.31 wt.
%), low Ti, Na, and Zr contents (TiO2, 0.68–1.42 wt.%;
Na2O, 0.09–1.76 wt.%; ZrO2, b0.27 wt.%) diopside
cores, Mg#–Cr poor (Mg# 58.57–87.64; Cr2O3, b0.35
wt.%), Ti–Na–Zr rich (TiO2, 0.84–2.93 wt.%; Na2O,
0.65–6.76 wt.%; ZrO2, up to 2.62 wt.%) (diopside)
augite rims (Table 4; Fig. 9). Core to rim CaO contents
(ca. 21.1–23.38 wt.% to ca.14.39–23.1 wt.%) decrease
with increasing Fe+3 (ca. up to 4.71 wt.% to ca. up to
14.33 wt.%). Al2O3 contents in diopsides are low and
range from 0.25–1.98 wt.% in cores to 0.35–3.01 wt.%
in rims.

The low Al2O3 contents of diopsides is character-
istic of lamproitic Cpx phase (Cellai et al., 1994;
Bindi et al., 1999), and the tetrahedral site of
clinopyroxenes in Bucak rocks is usually not filled
with Si+Al cation sums which is typically found
from that of lamproitic and kamafugitic rocks
(Mitchell, 1981; Venturelli et al., 1988; Cellai et
al., 1994; Conticelli, 1998; Bindi et al., 1999). Based
on the Titotal versus Altotal (a.p.f.u) of pyroxene
variation diagram from lamproites and Roman
Province lavas (modified from Mitchell and Berg-
man, 1991; Conticelli, 1998; Perini et al., 2000;
Perini and Conticelli, 2002), the trend is from core of
Bucak clinopyroxene through their rim and fits well
with the lamproite field (Fig. 10). Aegirine augites
(Mg# 46.73–56.63) have been described as late-stage
interstitial plates in Type II phl and in groundmass
from Bucak lamproites (Table 4). TiO2, ZrO2 and
Na2O contents of these clinopyroxenes exhibit
significant variety (TiO2, 3.94–4.35 wt.%; ZrO2,
3.91–6.82 wt.%; Na2O, 8.63–9.07 wt.%). Na-rich
aegirine augite was only found in Leucite Hills
lamproites (Mitchell and Bergman, 1991) and in



Table 4
Representative chemical compositions (wt.%) of clinopyroxenes from Bucak rocks

Core Rim Core Rim Core Rim Core Rim Core Rim Core Rim Interstitials Inclusions in mica

SiO2 52.78 52.94 53.73 53.29 53.06 53.57 53.96 53.68 52.33 53.55 53.10 50.60 51.20 50.71 53.84 53.38
TiO2 1.05 2.64 1.42 2.83 1.27 2.93 0.82 2.08 1.35 1.79 0.91 1.77 3.94 4.35 1.22 1.25
Al2O3 0.81 0.54 0.49 0.62 0.83 0.77 0.25 0.69 1.48 0.35 1.68 3.01 0.71 0.74 0.52 0.72
FeO 1.64 4.16 1.78 0.00 0.56 2.00 1.87 3.08 4.08 3.11 2.13 1.29 0.00 2.29 1.83 1.77
Fe2O3 3.37 9.59 4.71 14.33 4.66 11.28 1.81 10.11 0.00 9.10 2.38 6.07 12.48 13.54 3.42 3.55
Cr2O3 0.45 0.28 0.16 b0.01 0.21 b0.01 0.13 0.01 b0.01 b0.01 b0.01 b0.01 b0.01 b0.01 b0.01 b0.01
MnO 0.12 b0.01 0.15 0.19 0.14 0.15 b0.01 0.14 b0.01 b0.01 0.24 b0.01 b0.01 b0.01 0.13 0.06
MgO 17.28 10.59 15.93 10.22 17.05 9.78 17.76 11.46 16.59 11.52 17.20 16.00 8.23 7.11 16.65 16.77
CaO 22.01 12.87 21.10 13.18 22.56 12.30 22.96 14.39 23.01 15.26 22.60 21.70 7.86 7.47 22.32 22.21
Na2O 0.71 5.64 1.76 6.72 0.99 6.76 0.50 5.17 0.09 4.84 0.51 0.98 9.07 8.63 1.13 1.03
ZrO2 0.25 0.84 b0.01 1.11 b0.01 2.62 b0.01 0.66 0.27 0.45 n.a. n.a. 6.82 3.91 b0.01 0.06
Total 100.50 100.10 101.20 102.50 101.30 102.20 100.10 101.50 99.20 99.97 101.00 101.00 100.30 98.75 101.10 100.80

Structural formula based on 6 oxygens
Tsi 1.926 1.979 1.946 1.947 1.916 1.987 1.963 1.972 1.937 1.990 1.930 1.840 1.995 1.983 1.949 1.938
Tal 0.035 0.021 0.021 0.027 0.035 0.013 0.011 0.028 0.063 0.010 0.070 0.130 0.005 0.017 0.022 0.031
Tfe3 0.039 0.000 0.033 0.026 0.048 0.000 0.026 0.000 0.000 0.000 0.000 0.030 0.000 0.000 0.029 0.031
M1Al 0.000 0.003 0.000 0.000 0.000 0.021 0.000 0.002 0.002 0.005 0.000 0.000 0.028 0.017 0.000 0.000
M1Ti 0.029 0.074 0.039 0.078 0.035 0.082 0.022 0.057 0.038 0.050 0.030 0.050 0.115 0.128 0.033 0.034
M1Fe3 0.053 0.270 0.095 0.368 0.078 0.315 0.023 0.279 0.000 0.254 0.060 0.130 0.366 0.398 0.064 0.066
M1Fe2 0.000 0.055 0.001 0.000 0.000 0.042 0.000 0.034 0.045 0.053 0.000 0.000 0.000 0.042 0.004 0.000
M1Cr 0.013 0.008 0.005 0.000 0.006 – 0.004 – – – – – – – – –
M1Mg 0.905 0.590 0.860 0.555 0.881 0.541 0.950 0.628 0.915 0.638 0.910 0.820 0.478 0.415 0.898 0.900
M2Mg 0.035 0.000 0.000 0.002 0.037 0.000 0.013 0.000 0.000 0.000 0.020 0.050 0.000 0.000 0.000 0.008
M2Fe2 0.050 0.076 0.053 0.000 0.017 0.020 0.057 0.061 0.081 0.044 0.070 0.040 0.000 0.033 0.051 0.054
M2Mn 0.004 – 0.005 0.006 0.004 0.005 – 0.004 – – 0.010 – – – 0.004 0.002
M2Ca 0.861 0.516 0.819 0.516 0.873 0.489 0.895 0.566 0.913 0.607 0.880 0.850 0.328 0.313 0.870 0.860
M2Na 0.050 0.409 0.124 0.476 0.069 0.486 0.035 0.368 0.006 0.349 0.040 0.070 0.685 0.654 0.080 0.070
Cat. 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
Mg# 86.88 59.54 82.53 58.57 86.52 58.93 90.08 62.67 87.90 64.51 87.72 80.92 56.64 46.73 85.85 85.74

Fe+2, Fe+3 separation after Droop (1987). Mg#=(Mg/ (Mg+Fe))⁎100; b: below detection limit; n.a.: not analyzed; –: not calculated.
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Fig. 10. Altotal versus Titotal expressed as atoms per formula unit (a.p.f.u.)
for clinopyroxenes from Bucak lavas. Lamproite and Roman Province
fields are adapted fromMitchell and Bergman (1991), Conticelli (1998),
Perini et al. (2000) and Perini and Conticelli (2000).

Fig. 9. Diagram of pyroxenes from Bucak lamproites.
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Jumilla (SE Spain) silica-undersaturated lamproites
(Venturelli et al., 1991).

6.4. Olivine

Olivine in Bucak rocks occur as two types:
phenocryst and groundmass microphenocryst, and
display consistent zoning (Table 5). Two types of
olivine have also been found in Italian (Conticelli,
1998; Conticelli et al., 1992) and French lamproites
(Wagner and Velde, 1986). The core of olivine
phenocrysts ranges from Fo92 to Fo90 with rims
ranging from Fo90 to Fo89 (Table 4). Relative to rim
(CaO, 0.16–0.22 wt.%; MnO, 0.28–0.47 wt.%), the
core has higher MgO, and lower CaO (0.11–0.18 wt.
%) and MnO (0.11–0.28 wt.%) contents (Fig. 11). The
Fo contents of groundmass microphenocrysts range
between 90 and 91, with higher CaO (0.12–0.16 wt.
%) and MnO (0.2–0.53 wt.%) contents than pheno-
cryst cores.

6.5. Cr-spinel

Cr-spinels of Bucak lavas are primary spinels
falling into the compositional group-2 of the classifi-
cation of Mitchell (1985) (Table 6). Presence of Cr-
spinel inclusions (Cr# Cr/Cr+Al, N90) in olivine is a
typical feature of lamproites (Mitchell and Bergman,
1991).

6.6. Amphibole

According to Hawthorne (1983) classification,
poiklitic groundmass amphiboles are richterite (Table
7). Although the high Ti and low Na/K contents of
lamproite amphiboles appear to be characteristic
(Mitchell and Bergman, 1991) (Fig. 12), amphiboles
from Bucak and Jumilla lamproites are characterized
by relatively high Ti contents and higher Na/K ratios
(Table 7).

6.7. Sanidine

Sanidine in Bucak lamproites is a late stage
product confined to the groundmass and varies in
composition between Or69.1 and Or81.5 (Table 8). This
phase is relatively rich in BaO (0.95–2.76 wt.%),
Na2O (2.01–3.16 wt.%) and Fe2O3 (1.66–2.40 wt.%)
and poor in SrO (up to 0.58 wt.%), and in common
with those from Jumilla lamproites, are characterized
by relatively low CaO contents (0–0.045 wt.% for
Bucak; b0.06 wt.% for Jumilla), compared to most
other circum-Mediterranean lamproites (N0.5) (Con-
ticelli, 1998).

6.8. Fe–Ti oxides

Two types of magnetite, Cr-rich and Cr-poor,
may be recognized in the Bucak lavas (Table 9),
occurring as inclusions in phlogopite and in the
groundmass and showing resorption textures. How-
ever, there is no apparent correlation of these with
Fe, Al, and Ti variation, or with ulvospinel content
(Fig. 13), raising the possibility that they result from
breakdown of phlogopites (see Petrography). Ilmen-
ite is also present as late stage groundmass phase
(Table 9).



Table 5
Representative chemical compositions (wt.%) of olivines in Bucak rocks

Phenocrystal Groundmass microphenocrystal

Core Rim Interval Rim Core Interval Core Core Core

SiO2 41.22 41.29 41.15 41.29 41.23 41.30 41.23 40.63 40.96
TiO2 0.01 0.04 b0.01 0.02 0.02 0.01 b0.01 b0.01 0.04
Al2O3 0.02 0.03 0.02 0.02 0.02 0.02 0.03 0.04 0.02
Cr2O3 0.09 0.08 0.10 0.07 0.12 0.06 0.10 0.07 0.03
FeO 8.46 8.93 9.39 8.92 7.69 8.26 8.82 8.89 8.66
MnO 0.29 0.43 0.20 0.28 0.16 0.23 0.38 0.45 0.29
MgO 48.30 47.94 48.89 49.20 49.88 49.49 48.89 48.55 48.60
CaO 0.17 0.19 0.13 0.16 0.12 0.11 0.15 0.12 0.14
Na2O 0.05 0.04 b0.01 b0.01 0.02 0.01 0.05 0.04 0.01
K2O 0.01 0.01 0.01 0.01 b0.01 b0.01 0.01 b0.01 b0.01
Total 98.71 99.09 99.99 99.97 99.46 99.90 99.84 98.95 98.98

Structural formula based on 4 oxygens
Si 1.016 1.017 1.006 1.007 1.006 1.007 1.008 1.004 1.009
Al 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Cr – – – – – – – – –
Ti – 0.001 – – – – – – 0.001
Fe2 0.174 0.184 0.192 0.182 0.157 0.168 0.180 0.184 0.178
Mn 0.006 0.009 0.004 0.006 0.003 0.005 0.008 0.009 0.006
Mg 1.775 1.760 1.782 1.789 1.815 1.799 1.782 1.788 1.785
Ca 0.004 0.005 0.003 0.004 0.003 0.003 0.004 0.003 0.004
Na 0.002 0.002 – – 0.001 – 0.002 0.002 –
K – – – – – – – – –
Cat. 2.98 2.98 2.99 2.99 2.99 2.99 2.99 2.99 2.99
Mg# 91.07 90.53 90.27 90.77 92.04 91.46 90.83 90.67 90.93

FeO as total Fe, Mg#=(Mg/(Mg+Fe))⁎100; b: below detection limit; –: not calculated.
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6.9. Apatite

Abundant apatite occurs as prismatic, needle-like
microphenocrysts in the groundmass as well as
inclusions in phlogopites. Analyzed apatites show
CaO contents of 53.23 wt.%, P2O5, 43.8 wt.% and
SrO, 2.97 wt.%.
Fig. 11. Diagrams of Fo versus (a) CaO (wt. %), and (b)
6.10. Other accessory phases

Sodalite, unusual and nonobserved mineral in
lamproites, was only found in the altered groundmass
of one sample, showing contents of Na2O 8.63–9.07 wt.
%, Cl 6.46 wt.%, Al2O3 30.81 wt.%, SiO2 41.35 wt.%,
and K2O 1.78 wt.%. Other accessory phases include
Mn (wt. %) variation in olivines from Bucak lavas.



Table 6
Representative chemical compositions (wt.%) of Cr-spinels in olivine from Bucak rocks

SiO2 0.21 0.08 0.11 0.08 0.20 0.07 0.03 0.07
TiO2 1.28 1.22 1.26 1.20 1.26 1.40 1.31 1.09
Al2O3 3.51 3.38 3.41 3.23 3.21 3.88 3.72 2.92
FeO 18.62 17.46 18.46 17.44 19.77 19.44 18.15 18.03
Fe2O3 8.15 9.91 9.14 9.67 7.95 7.85 9.59 10.05
Cr2O3 55.95 54.79 55.45 54.24 58.13 57.66 55.16 53.77
MnO 0.28 0.28 0.31 0.26 0.26 0.23 0.32 0.28
MgO 9.13 9.71 9.22 9.48 9.48 8.78 9.37 9.85
CaO 0.06 0.02 0.04 0.02 0.03 0.04 0.02 0.02
Na2O b0.01 0.01 0.03 0.01 b0.01 0.01 0.04 0.01
Total 97.19 96.86 97.43 95.63 100.30 99.36 97.71 96.09

Structural formulas based on 4 oxygens
Si 0.007 0.003 0.004 0.003 0.007 0.002 0.001 0.003
Al 0.146 0.140 0.141 0.136 0.129 0.158 0.153 0.123
Ti 0.034 0.032 0.033 0.032 0.032 0.036 0.034 0.029
Fe2 0.548 0.515 0.543 0.521 0.566 0.561 0.531 0.538
Fe3 0.216 0.263 0.242 0.260 0.205 0.204 0.252 0.270
Cr 1.556 1.525 1.540 1.531 1.572 1.571 1.524 1.515
Mn 0.008 0.008 0.009 0.008 0.008 0.007 0.009 0.008
Mg 0.479 0.510 0.483 0.505 0.484 0.452 0.489 0.524
Ca 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001
Na – 0.001 0.002 0.001 – 0.001 0.003 0.001
Cations 2.997 2.998 2.999 2.998 3.004 2.993 2.997 3.012
Cr# 0.914 0.916 0.916 0.918 0.924 0.909 0.909 0.925

Cr#=Cr / (Cr+Al); b: below detection limit; –: not calculated.
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small quantities of (unidentified) calcium–titanium
niobate.

7. Discussion

7.1. Petrogenetic implications

A detailed interpretation of the lamproitic whole-
rock compositions is presented separately (Coban and
Flower, in press). However, before discussing petroge-
netic implications of the mineral data, whole-rock
variation is briefly reviewed in terms of relevant
experimental studies. Such studies have concluded
that SiO2-undersaturated lamproites represent partial
melts of refractory, phlogopite-bearing, peridotite under
H2O-saturated or undersaturated conditions at pressures
up to ca. 5 GPa (Luth, 1967; Wendlandt and Eggler,
1980; Foley, 1989a,b; Foley et al., 1986a,b). Projections
of the Bucak whole-rock compositions on to the Ks–
Fo–Qz and Ne–Fo–Qtz planes in the Ks–Fo–Qz–Ne
system (cf. Luth, 1967; Wendlandt and Eggler, 1980;
Foley, 1989a) (Fig. 14a and b) plot close to the
experimental H2O-saturated phlogopite–harzburgite
peritectic (involving incongruent melting of phlogopite)
between pressures of ca. 1.7 and 2.0 GPa, equivalent to
depths of about 50−60 km (Foley et al., 1986a). In
contrast, projections of IAUP whole-rock compositions
indicate magma segregation pressures of ca. 1–1.5 GPa
(ca. 30–45 km depth).

7.1.1. Thermobarometry: high pressure and low
pressure phases

In general, SiO2-undersaturated melts have been
interpreted to reflect combined effects of relatively high
total pressure and/or high PCO2 (±F/H2O) rather than
PH2O (e.g. Foley et al., 1986b). The analyzed Bucak
lamproitic phase compositions provide thermobaro-
metric constraints on magmatic crystallization condi-
tions. For example, the relatively low Ca and Mn
contents of olivine cores relative to their rims (at both
high and low temperatures) suggest that crystallization
occurred over a range of pressure conditions (Simkin
and Smith, 1970; Adams and Bishop, 1986; Kohler and
Brey, 1990). Geobarometers based on Cr-spinel com-
position (e.g. O'Neill, 1981; Web and Wood, 1986) and
using the PERIDOT algorithm (Nasir, 1996) indicate
that Cr-spinel began crystallizing between 1.7 and 2.0
GPa, and ca. N1 GPa interpreted from coexisting olivine
(Kohler and Brey, 1990). Mg# and Cr# values in the
Bucak Cr-spinels resemble those of (higher pressure)
kimberlite- rather than (lower pressure) alkali basalt-
born xenoliths (Basu and McGregor, 1975), confirming



Table 8
Representative chemical compositions (wt.%) of K-feldspars from
Bucak rocks

SiO2 63.46 63.87 62.62 63.69 63.88
Al2O3 18.04 18.41 18.71 18.32 18.04
Fe2O3 2.40 1.66 1.79 1.66 2.03
BaO 1.81 1.77 2.76 1.74 0.95
CaO n.d. 0.05 0.01 0.03 n.d.
Na2O 2.32 3.16 3.07 3.10 2.01
K2O 12.42 10.88 10.44 11.09 13.46
SrO n.a. 0.31 0.58 0.21 n.a.
Total 100.50 100.10 99.98 99.83 100.40

Structural formula based on 8 oxygens
Si 2.957 2.952 2.923 2.953 2.967
Al 0.990 1.002 1.028 1.000 0.987
Fe 0.094 0.058 0.063 0.058 0.079
Ba 0.033 0.032 0.050 0.032 0.017
Ca n.d. 0.002 0.000 0.001 n.d.
Na 0.210 0.283 0.278 0.279 0.181
K 0.738 0.642 0.622 0.656 0.797
Sr n.a. 0.008 0.016 0.006 n.a.
Cations 5.022 4.98 4.98 4.99 5.03
Ab 22.20 30.50 30.90 29.80 18.50
An 0.00 0.20 0.00 0.10 0.00
Or 77.80 69.30 69.10 70.10 81.50

Fe2O3=as total Fe; n.a.: not analyzed; n.d.: not determined.

Table 7
Representative chemical compositions (wt.%) of amphiboles from
Bucak lamproites

SiO2 53.01 54.36 53.81 50.98 52.46
TiO2 3.09 2.63 3.57 5.82 5.01
Al2O3 1.82 1.69 2.12 2.26 2.18
Cr2O3 0.16 b0.01 b0.01 b0.01 b0.01
FeO 6.15 6.20 6.61 7.79 6.77
MnO 0.06 0.08 0.12 0.05 0.19
MgO 19.33 19.41 18.69 17.17 17.87
CaO 4.86 4.64 4.48 5.03 5.35
Na2O 7.22 7.27 6.93 6.79 6.62
K2O 1.79 1.84 1.94 2.38 2.01
F 1.43 1.21 1.95 1.06 0.76
Totala 97.49 98.12 98.27 98.27 98.46

Structural formula based on 23 oxygens
TSi 7.552 7.668 7.593 7.312 7.439
TAl 0.305 0.281 0.352 0.382 0.364
TTi 0.143 0.051 0.055 0.306 0.197
CTi 0.188 0.228 0.324 0.322 0.337
CCr 0.018 – – – –
CFe2 0.733 0.731 0.780 0.934 0.803
CMn 0.007 0.010 0.014 0.006 0.023
CMg 4.106 4.082 3.932 3.671 3.777
BCa 0.742 0.701 0.677 0.773 0.813
BNa 1.258 1.299 1.323 1.227 1.187
ANa 0.737 0.690 0.573 0.661 0.633
AK 0.325 0.331 0.349 0.435 0.364
Cations 16.11 16.07 15.97 16.03 15.94
Mg# 84.85 84.81 83.45 79.72 82.47

FeO=as total Fe. aTotal does not include F. Mg#=(Mg/ (Mg
+Fe2))⁎100; b: below detection limit; –: not calculated.
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their relatively high pressure (N1.0 GPa) origins.
Olivine core crystallization temperatures (ca. 920–
1050 °C) are higher than those (ca. 850–950 °C)
Fig. 12. Ti–Na/K (expressed as a.p.f.u.) variations of composition of
amphiboles in Bucak lamproites. MARID, Minette and lamproite
fields modified from Mitchell and Bergman (1991). Amphibole
compositions from Jumilla (SE Spain, Venturelli et al., 1991)
lamproites are reported for comparison.
estimated for their rims (e.g. O'Neill and Wall, 1987;
Ballhaus et al., 1991).

Experimental studies of phlogopite in the pressure
range 1.0–5.0 GPa indicate that Ti, Cr, and BaO
contents decrease with increasing pressure (Forbes and
Flower, 1974; Arima and Edgar, 1983; Foley, 1989b,
1990, 1993; Righter and Carmichael, 1996; Konzet,
1997). While contents of these elements in the Bucak
Type I phlogopites are lower than those in Type II micas,
they are significantly higher than in phlogopites
reported from garnet–peridotite and olivine lamproite
(Carswell, 1975; Dawson and Smith, 1977; Delaney et
al., 1980; Foley, 1989a,b). This suggests that the Bucak
Type I micas probably began crystallizing at pressures
of ca. 1.0–2.0 GPa, equivalent to upper mantle (cf.
Foley, 1989a,b, 1993) prior to their resorption and
mantling by Type II phlogopite (at ca. 1.0–0.5 GPa).

The presence of apatite as inclusions in the latter
indicates their early appearance, more or less contem-
poraneous with Type I phlogopite, in the crystallization
sequence (Haggerty et al., 1994; Green, 1995).

Cr# and Mg# of pyroxenes strongly depend on
pressure (Thompson, 1974; Ramsay, 1992; Nimis,
1998). Nimis (1995) geobarometer was estimated on
clinopyroxenes in Bucak rocks, and pressures obtained
range between 1.05 and 0.1 GPa (from core to rim).
According to Foley (1989b), crystallization of clinopyr-
oxene in leucite lamproites is restricted with 0.5 GPa,



Table 9
Representative chemical compositions (wt.%) of Fe–Ti oxides from Bucak rocks

Magnetites in phlogopites Magnetites in groundmass

TiO2 9.83 10.84 8.68 10.27 8.55 7.76 5.16 4.38 7.41 7.14 10.24 12.45 11.95 12.72
Al2O3 0.05 0.07 0.36 0.13 0.36 0.48 0.20 0.28 0.08 0.06 0.06 0.00 0.00 0.00
FeO 34.99 36.80 33.03 34.89 33.23 33.50 28.87 27.64 28.82 29.35 36.32 37.29 39.12 38.19
Fe2O3 47.77 45.04 50.73 48.07 49.25 52.90 57.83 58.10 51.98 52.48 47.50 42.07 43.33 41.01
Cr2O3 1.65 1.33 1.66 1.12 2.60 2.15 0.11 1.21 0.40 0.41 0.91 0.04 0.12 0.57
MnO 0.79 1.08 0.70 0.92 0.79 0.65 0.68 0.62 1.36 1.36 0.72 1.14 0.98 1.48
MgO 2.17 1.27 2.95 2.75 2.71 2.77 3.23 3.51 3.62 3.13 1.64 0.50 0.36 0.75
Total 97.46 96.58 98.29 98.20 97.59 100.20 96.40 96.01 93.81 94.10 97.63 94.09 96.01 95.19

Structural formula based on 4 oxygens
Al 0.002 0.003 0.016 0.006 0.016 0.021 0.009 0.013 0.004 0.003 0.003 0.000 0.000 0.000
Ti 0.284 0.318 0.247 0.293 0.245 0.217 0.150 0.128 0.220 0.212 0.296 0.375 0.355 0.379
Fe2 1.124 1.200 1.045 1.107 1.061 1.043 0.933 0.895 0.952 0.971 1.169 1.250 1.292 1.265
Fe3 1.379 1.320 1.443 1.371 1.413 1.480 1.680 1.691 1.544 1.561 1.375 1.268 1.287 1.221
Cr 0.050 0.041 0.050 0.034 0.078 0.063 0.003 0.037 0.012 0.013 0.028 0.001 0.004 0.018
Mn 0.026 0.036 0.022 0.030 0.026 0.020 0.022 0.020 0.046 0.046 0.023 0.039 0.033 0.050
Mg 0.124 0.074 0.166 0.156 0.154 0.154 0.186 0.203 0.213 0.185 0.094 0.030 0.021 0.044
Cations 2.999 2.999 2.998 2.999 2.999 2.998 2.996 3.000 2.997 3.000 2.998 3.000 2.999 3.000

Ilmenite
TiO2 50.73 50.21 50.46
FeO 39.65 38.49 39.24
Fe2O3 6.96 8.40 7.52
MgO 3.35 3.74 3.44
Total 100.70 100.80 100.70

Structural formula based on 3 oxygens
Ti 0.94 0.92 0.93
Fe2 0.81 0.79 0.81
Fe3 0.13 0.15 0.14
Mg 0.12 0.14 0.13
Cations 2.00 2.00 2.00
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implying, by analogy, that the Bucak clinopyroxenes
crystallized at relatively low pressures, consistent with
petrographic observation of their growth at the expense
of phlogopite. Relatively high TiO2 contents of aegirine
also suggest crystallization temperatures of b600 °C
(Ferguson, 1977).

Erlank et al. (1987) emphasized that agpaitic index
(K+Na/Al) of K-richterite is ≫1 (up to 8) indicating
the dominant role in the mantle source. However, Bucak
amphiboles contain lower K range between 0.32 and
0.43 a.p.f.u. (Table 7). The major compositional trend in
the Ti-bearing amphiboles is an increase in K pfu from
0.67 at 1.0 GPa/900 °C to 1.03 at 8.0 GPa/1100 °C
(Konzet, 1997). Thus, Bucak amphiboles were probably
crystallized under the low P/T conditions (less than 1.0
GPa/900 °C). Konzet (1997) indicate that Ti in
amphibole decreases continuously with increasing
pressures. TiO2 of the low K-richterites from Bucak
lava range between 2.63 and 5.73 wt.%, that indicate
also low pressure crystallization conditions.
Experimental studies in Ks–Fo–Si suggest that
leucite appears as a reaction product of phlogopite at
pressures of ca. 0.3 GPa or less (Luth, 1967) while
experimental data for the Or–Ab–An system indicate
sanidine may also be a late-stage breakdown product
of phlogopite at relatively low temperatures (ca. 600–
700 °C). Oxides are possibly derived from breakdown
of phlogopites as late-stage phases.

In general, core to rim compositional variation trends
in the analyzed Bucak mineral phases indicate a
polybaric crystallization history, commencing with Cr-
spinel, olivine, Type I phlogopite, and apatites at
pressures of ca. 1.0–2.0 GPa, followed by the
appearance of Type II phlogopite, clinopyroxene, K-
poor richterite, leucites, sanidines, and other minor
phases at pressures of ca. 0.1–1.0 GPa (Table 10).

7.1.2. Oxygen fugacity
Estimates of ambient magmatic oxygen fugacity (fO2)

can be derived from phlogopite and Cr-spinel



Fig. 13. Plots of several major elements (a, b, c and d) showing magnetite compositions in Bucak rocks. The field of Usp-Mt (d) is after Spencer and
Lindsley (1981).
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compositions (Mitchell and Bergman, 1991; Foley et al.,
1986b; Foley, 1989b, 1992b). Average K2O/Al2O3 ratios
ranging from 0.79 to 0.88 in Types I and II phlogopites
and Fe+3/∑Fe ratios in Cr-spinel inclusions ranging from
0.26 to 0.34, close to mode at 0.30±0.05 (Ballhaus et al.,
1991), indicate fO2 conditions between those of the QFM
and Ni–NiO buffers, while fO2 estimates based on
coexisting olivine–spinel compositions (Ballhaus et al.,
1991; Nell andWood, 1991) are equivalent to +2 log fO2

units. These data are in agreement with those found for
ultrapotassic magmas from phlogopite-bearing sources.
Additionally, relative enrichment in Na and Fe+3 and
depletions in Ca and Fe+2 in aegirine-rich pyroxenes are
also consistent with fO2 conditions exceeding those of
the QFM buffer at late stage (Nash andWilkinson, 1970;
Stephenson and Upton, 1982), while the observed
enrichment in Zr may be attributed to its high solubility,
along with F, in peralkaline melts (Watson, 1979; Collins
et al., 1982; Kogarko and Lazutkina, 1988). Rapid
equilibrium crystallization may have further facilitated
Zr partitioning into interstitial aegirine-rich pyroxenes
(Duggan, 1988), reflecting the combined roles of oxygen
fugacity and peralkalinity.

7.1.3. Magmatic phase equilibria
Establishing whether olivine phenocrysts had equil-

ibrated with primitive lamproitic melt, their analyzed
compositions can be compared with those inferred from



Fig. 14. Projection for compositions of Bucak and Isparta Angle ultrapotassic rocks (IAUP) (a) in the KAlSiO4–Mg2SiO4–SiO2 system and (b) in the
NaAlSiO4–Mg2SiO4–SiO2 system. Data sources: for Ks–Fo–Si projection after Foley et al. (1986a), Foley (1989a,b), Gupta and Green (1988) and
Luth (1967). For Ne–Fo–Qtz projection after Foley et al. (1986a,b) (references therein); for other Isparta Angle ultrapotassic rocks having lamproitic
affinity (assuming MgON3 wt %, Al2O3b13 wt % and K2O/Na2ON1.5), after Besang et al. (1977), Keller (1983), Ercan et al. (1983, 1985, 1996),
Gulec (1991), Robert et al. (1992), Aydar et al. (1996) and Akal and Helvaci (2002).
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experimental partitioning data for Mg and Fe+2, i.e.
KD=100⁎ ((Fe

+2/Mg)Ol⁎ (Mg / Fe+2)Liq) = 0.29±0.03
(Roder and Emslie, 1970; Roder, 1974; Ulmer, 1989;
Grove and Juster, 1989). KD values interpolated for the
Bucak olivines range between 0.29–0.33 (for Cr-spinel
bearing olivine cores) and 0.34–0.42 (for phenocryst
rim and groundmass olivines), suggesting that only Cr-
spinel-bearing olivine cores were in equilibrium with
the host magma. Fo–Cr# covariance in both chromite
and olivine core compositions fall within or close to the
olivine–spinel mantle array (OSMA) (Arai, 1994) (Fig.
15). The correspondence of high Cr# and low Al2O3

(2.92–3.88 wt.%) in Cr-spinels, and high olivine Fo
contents (Fo92–91) thus strongly suggest that the erupted
Bucak lamproites represent primary or near-primary
partial melts of a relatively refractory peridotite source
(cf. Jaques and Green, 1980; Arai, 1999; Kamenetsky et
al., 2001; Green et al., 2001), similar to that of Italian
lamproites (Conticelli et al., 2004).
Table 10
Summary of the polybaric crystallization conditions of mineral phases
in Bucak lamproites

High-pressure (2.0–1.0 GPa) Low-pressure (1.0–0.1 GPa)

Cr-spinel Type II phlogopite
Olivine Clinopyroxene
Type I phlogopite K-poor richterite
Apatite Leucite

Sanidine
Fe–Ti oxides
The Bucak Type I phlogopites resemble those from
peridotite xenoliths rather than aluminous micas in
magmas affected by crustal wall rock reaction (see Fig.
7) (e.g. Brigatti and Gregnanin, 1987) while Cr2O3

versus TiO2 covariance in the Type I phlogopites is
similar to that of metasomatic phlogopites in xenoliths
entrained by kimberlites (e.g. Aoki, 1975; Carswell,
1975; Dawson and Smith, 1977; Smith et al., 1979;
Delaney et al., 1980; Harte et al., 1987; Erlank et al.,
1987; Gregoire et al., 2002), olivine nephelinites
(Wagner et al., 1996), olivine lamproites (Mitchell and
Bergman, 1991; Conticelli, 1998), alkali basalts (Ionov
and Hofmann, 1995) and massif peridotites (Zanetti et
al., 1996; Rizzo et al., 2001) (Fig. 16).

According to experimental evidence (Foley et al., 1986a;
Foley, 1989a,b, 1990, 1992a, 1993), with increasing fO2

and/or increasing pressure, the contents of Al2O3 and BaO
in micas increase and those of SiO2, K2O, and F decrease.
The TiO2 content of phlogopite also increases significantly
with fO2 under more oxidizing conditions (Foley, 1989b,
1993). Micas in Bucak lava show significant differences
among Al, Ba, K/Al, F and Si ratios (Table 2; see also
Mineral chemistry). While Type I micas have relatively
lower Ba, K/Al (0.9–0.7; mean, 0.79) and higher F, Al
and Si (≈39.61–40.8 wt.%), Type II phl and rim of
mantled Type I micas have higher K/Al (1.06–0.7; mean,
0.88) and lower F, Ba and Si (≈38–39.5 wt.%) ratios
(Table 2; Figs. 7 and 17). Since Type I phl from the
Bucak lamproite show higher contents of Al, Ti, F and Si
and lower Ba contents than those of Type II phl, it was



Fig. 15. Variation diagram of Cr/(Cr+Al) in spinel inclusions versus
the Fo content of olivines from Bucak lavas. The field of olivine spinel
mantle array (O.S.M.A.) is drawn after Arai (1994).

Fig. 17. K/Al versus F (wt.%) variations of composition of Type I and
Type II phlogopites in Bucak lamproites.
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probably equilibrated at higher oxygen fugacities than the
latter. Thus, the chemical transition from Type I to Type II
phl cannot be explained by the increasing fO2. As
mentioned above (see Thermobarometry: high pressure
and low pressure phases), it is suggested that change in
the crystallization pressure of micas probably played a
more important role than fO2. The rim of mantled Type I
phl, and Type II phl show a sharp decrease in Al, with
respect to Type I phl (see Fig. 7). This type of trend, for
which Al2O3 abundances in mica decrease sharply, was
Fig. 16. TiO2 (wt.%) versus Cr2O3 (wt.%) diagram of Type I
phlogopites in Bucak lamproites. Fields adapted from Rizzo et al.
(2000) (references therein). (A, B) Mica from peridotite xenoliths in
kimberlite; (C) mica from Horoman peridotite complex; (D) mica from
veined peridotite xenoliths in kimberlite from Bultfontein; (E) mica
from Serre ultramafic rocks; (F) mica nodules andMARID xenoliths in
kimberlite; (G) mica from ultramafic–mafic xenoliths in basalt from
Kerguelen Islands. Symbols as in Fig. 7.
also found in West Kimberley, Smoky Butto and Spanish
lamproites (Mitchell, 1981, 1985; Jaques et al., 1986) and
was attributed by Foley (1990) to relatively H2O-rich
conditions.

The Mg# (79.7–84.5) of Bucak amphiboles are close
to Mg#'s expected from the amphiboles in equilibrium
with mantle peridotite (Aoki, 1975; Sudo and Tatsumi,
1990; Foley, 1991; Zanetti et al., 1996; Niida and Green,
1999; Tieopolo et al., 2000).

The Cr-rich diopsidic clinopyroxenes in Bucak
lamproites resemble those in metasomatic PKP (Phlog-
opite–K-richterite–Peridotite) and MARID (Mica–Am-
phibole–Rutile–Ilmenite–Diopside) xenoliths (Fig. 18),
Fig. 18. Al2O3 (wt.%) versus FeO (wt.%) plot of the clinopyroxenes
(open circle) from Bucak lamproites. Primary, PKP (phlogopite/K-
richterite-bearing peridotites) and MARID fields after Wagner et al.
(1996) (references therein).
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their low Al2O3 contents suggesting strongly depleted,
metasomatized spinel lherzolite (rather than garnet–
lherzolite) sources (Nimis, 1998).

8. Summary and conclusions

Pliocene lamproitic volcanism in Bucak, southwest-
ern Turkey marks a late stage of post-collision igneous
activity in the Afyon-Isparta ultrapotassic province,
associated with extensional thinning of the lithosphere
(Saunders et al., 1998) and the development of shallow
asthenosphere (Ilkisik, 1997; Bayrak and Nalbant, 2001,
Al-Lazki et al., 2004). The lamproites comprise
magmatic assemblages of Cr-spinel, olivine, Type I
and Type II phlogopite, diopsidic pyroxene, richterite,
leucite, sanidine and Fe–Ti oxides. Whole-rock geo-
chemical features (e.g. Mg# ranging from 73 to 75)
suggest the Bucak lamproites represent primary (or
near-primary) SiO2-undersaturated, ultrapotassic mag-
mas, essentially unaffected by crustal wall rock
contamination (e.g. low Sr-isotope ratios, 0.70385;
steep REE patterns; low Th contents and absence of
negative Nb anomaly), formed by partial melting of
metasomatized, refractory peridotite.

The presence of phlogopite and amphibole indicate
relatively high contents of H2O and F while analogue
experimental studies suggest that these magmas were
generated by H2O-saturated, incongruent melting of
phlogopite–harzburgite, at pressures of ca. 1.7 and 2.0
GPa (ca. 50–60 km depth (e.g. Foley et al., 1986a)). In
contrast, projections of SiO2-saturated lamproite com-
positions from Afyon, to the north, indicate magma
segregation pressures of ca. 1–1.5 GPa (ca. 30–45 km
depth). While the source composition and pressure of
partial melt segregation were clearly dominant factors
determining the SiO2-undersaturated character of Bucak
lamproites, petrographic relationships and mineral
phase compositional variation strongly suggest the
effects of polybaric crystallization, early appearance of
Cr-rich spinel being followed by olivine, Type I (Ti-
poor) phlogopite, and apatite, prior to the appearance of
Type II (Ti-rich) phlogopite, richterite diopsidic clin-
opyroxene, and leucite (the latter two formed as
resorption products of phlogopite), and, eventually,
sanidine and Fe–Ti oxides. Cr-spinel and olivine
phenocryst cores began crystallizing between ca. 1.0
and 2.0 GPa and temperatures of ca. 920–1050 °C. Type
I micas probably began crystallizing at pressures of ca.
1.0–2.0 GPa, prior to their resorption and mantling by
Type II phlogopite (at ca. 1.0–0.5 GPa). Apatite
inclusions in the latter suggest their near-contempora-
neous appearance with Type I phlogopite.
Melts forming K-rich phlogopite and richterite are
considered to be a common metasomatic agent of the
upper mantle. To generate partial melts with high
concentrations of incompatible elements (light REE,
Ba, Sr), the mantle source must have been previously
enriched in these elements. Metasomatized peridotites
are considered to be representative of enriched
subcontinental lithosphere. However, the restriction of
asthenospheric low velocities to the region beneath
Isparta (Al-Lazki et al., 2004) suggest that the magmatic
source region probably occupies a thermal boundary
between the subcontinental lithosphere and shallow
asthenosphere.

Compared to other lamproite magmatic products in
the region, those from Bucak are distinguished by the
assemblage of phlogopite (30–40%), leucite (25–30%),
olivine (5–20%), clinopyroxene (5–10%), and sanidine
(5%), with accessory richterite, apatite and Fe–Ti oxides
although they are comparable to other silica-poor
circum-Mediterranean ultrapotassic rocks with lamproi-
tic affinity (e.g. from Jumilla, SE Spain and Macedonia
and Yugoslavia, Eastern Europe). Estimates of mag-
matic fO2 ratios (between or close to FMQ or Ni–NiO
buffer conditions) suggest relatively oxidized crystalli-
zation conditions during their emplacement, consistent
with those inferred for ultrapotassic magmas elsewhere.
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