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Evaluating Proportions of Undetected Geological
Events in the Case of Erroneous Identifications!

Jerry L. Jensen,” Jeffrey D. Hart,’ and Brian J. Willis*

Some geological events occur infrequently but still have a significant impact upon reservoir char-
acteristics. By their very nature, however, it can be difficult to properly estimate the proportions of
uncommon events because they may not appear during limited sampling. For example, even with 40
observations and an event proportion of 0.05, there is a 0.13 chance that no events will be observed.
We provide some results and guidance concerning methods to estimate proportions when such events
are not detected. Two cases are discussed, estimating proportions without errors in identification and
estimating proportions when errors may arise.

It is well-known that the distribution of possible proportions in the error-free case can be
calculated using Bayesian analysis. If one assumes a standard uniform distribution as the prior for
the proportion, Bayesian analysis gives a Beta distribution for the posterior. The situation becomes
more complicated, however, when detection errors are included, the true proportion has a distribution
consisting of several Beta distributions. The difference in results between the error-free and with-
error situations can be considerable. For example, when 10 error-free observations are made and no
uncommon events are detected, there is a 0.50 chance that the true proportion exceeds 0.06 and a 0.10
chance that it exceeds 0.19. Including the effects of erroneous identifications, however, increases the
median proportion to 0.09 and the upper decile to 0.27.

We also examine the case where there may be prior geological information, which can be
incorporated by amending the prior distribution of the proportion. We find that the use of such a prior
makes little difference unless there are very few observations or there are major differences between
the anticipated and the observed proportions.

KEY WORDS: rare events; Binomial distribution; Beta distribution; erroneous detection; Bayes
theorem.

INTRODUCTION

The ability of fluids to move through a hydrocarbon reservoir may reflect not
only the mean rock permeability but also can depend critically on the abundance
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and lateral continuity of high- and low-permeability constituents within the rock
volume. Where the rock is very heterogeneous, showing pronounced local variabil-
ity in permeability, extreme-value permeability constituents may fundamentally
control fluid movement, even where they comprise a small fraction of the rock
volume.

Sensitivity of interwell- and field-scale reservoir permeability to infrequent
extreme-value permeability rock constituents is observed in many geologic set-
tings. For example, at smaller scales, sparse sandy burrow fills cutting a succes-
sion of otherwise continuous horizontal shale beds (Gingras and others, 1999),
or dissolution vugs within an otherwise low-permeability carbonate (Lucia and
Conti, 1987) can significantly increase the ability of fluids to move through
the rock compared with that which would be predicted using average values.
Similarly at larger scales, isolated high-permeability gravel lags concentrated
along channel bases of fluvial deposits (Tye and others, 1999), formed dur-
ing transgressive ravinement of shoreline sands (Caddel and Moslow, 2004)
or as washed beds in debris-flow dominated fan deposits (Blair and McPher-
son, 1994), to give just a few examples, can result in sparse, isolated very
high-permeability zones within stratigraphic units of significantly lower average
permeability.

The sensitivity of reservoir behavior to infrequent extreme-value permeabil-
ity rock constituents can be particularly pronounced in cases where the overall
reservoir interval becomes more marginal and the mean rock constituents “tighter.”
For example, many of the lower Cretaceous units in western Canada are too quartz
cemented to produce commercial quantities of gas where they comprise only sand-
stone, but units cut locally by even very-sparse, widely distributed “clean” gravels
prove very economic under the right completion regime (Williams, Lerche, and
Maubeuge, 1998).

It is critical to develop suitable methods to estimate the proportion of in-
frequent high-permeability constituents where they have paramount influence on
reservoir behavior, even for cases where these constituents are rarely or never di-
rectly observed. Sensitivity of large-scale permeability to these infrequent events
can be explained using percolation theory. In three-dimensional cases, only 10% or
12% of a particular rock type need to be present to satisfy the percolation threshold
(Korvin, 1992, p. 22-23). Large clusters of a rock type can form at even smaller
proportions. Numerical simulation studies (e.g., Desbarats, 1987) also show this
effect.

A statistical procedure, based on the binomial distribution, can pro-
vide helpful error bounds on viable estimates of the proportions. Here,
we review those results and extend them for the case where errors arise
during the identification of these events, e.g., the situation where well
logs may be used for facies identification but erroneous identifications are
made.
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ERROR-FREE EVENT IDENTIFICATION

In many reservoir characterization problems, uncertainties can be handled as-
suming they have a Gaussian (normal) distribution (e.g., Hurst and Rosvoll, 1991;
Worthington, 2002). Proportions, however, may not be suited to this approach
because values may be close to 0 or 1 and uncertainties based on the normal
distribution may give non-physical values below 0 or more than 1. An approach
using the binomial distribution gives better results.

The binomial distribution is well- known (e.g., Haas and Formery, 2002;
Johnson, Kotz, and Kemp, 1993, p. 134-135) for describing the probabil-
ities of outcomes in binary systems, assuming that outcomes are indepen-
dent. If we have a system with two events, a and b, and make n measure-
ments, the probability of observing type a, n, times is given by the binomial
distribution

prob(n,) = ,Cp, (x)™ (1 — x)" "), (1)

where x is the true proportion of type a in the system, 0 < x < 1, and ,C,, is
the number of ways that we can obtain n, observations of type a out of n total
observations. Without specifically assigning numbers for n, n,, and x, we can
extract two important results from Equation (1).

1. If x =0, there is no chance we will have any observations of event a. This
equation must therefore assume that we make no mistakes in identifying
events. We treat this problem later.

2. If x > 0, there is a chance that we will not have any observations of a.
That is,

prob(n, = 0) = (1 — x)™. )

The second result is the one that suggests that we may have a problem
when we want to identify infrequent but important events. For example, x
may be small (e.g., 0.05) and n» modest (say, 40), so that prob(n, =0) =
0.13, which indicates that there is more than 1 chance in 10 that there will
be no observations of a. Here is where we need some help when assign-
ing appropriate values to proportions of these uncommon events in reservoir
models.

From the analysis of well log, core, or other data, we can obtain values for
n and n,. With these two quantities and Bayes theorem (using a uniform prior),
the Beta distribution gives the probability distribution of x, which we need for our
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Figure 1. Integral of Equation (3) shows wide variation in possible
value of the true proportion of event a, even when having observed no
occurrences.

reservoir models (e.g., Lee, 1997, p. 77):

1!
probxo < x < xp+ Ax) = — X DL (e gemar, )
(na)!(n —ny)!

where 0 < xo < 1. The integral of Equation (3), the cumulative distribution
function, shows especially well how n affects uncertainty about x. With n = 50
observations and n, = 0 (no appearances of event a), there remains a 0.50 chance
that the true proportion of type a is greater than 0.013 (Fig. 1). Smaller values of
n give even larger median values of x. Thus, for example, if we have observed
no occurrences of holes in a shale or fault, we still may want to include a small
number of them in our reservoir models to evaluate their importance.

The above analysis assumes independence of the observations and a constant
proportion x. These assumptions may not strictly hold for sampling of geological
attributes (e.g., Haas and Formery, 2002). Johnson, Kotz, and Kemp (1993, p. 135)
report, however, that the binomial model is fairly robust to mild departures and
still gives useful results.

To this point, our Bayesian analysis has used a uniform prior distribution. The
frequentist approach, which avoids prior probabilities altogether, gives a nearly
identical result: the interval [0, 1 — a'/"] for a 100(1 — a) degree of confidence in
x (Bickel and Doksum, 1977, p. 180-182). Later, we examine the sensitivity of
results to the uniform prior.
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EVENT IDENTIFICATION WITH ERRORS

We explicitly define two variables, E and F, in the event identification prob-
lem. Suppose that the true event identity is given by F, where FF = +1 when
type a is present and F = —1 when b is present. As in the error-free case,
prob(F = +1) = x. Suppose also that a Bernoulli error variable E is present, and
prob(E = +1) = g and prob(E = —1) =1 — g. E and F are assumed indepen-
dent and their product, G = EF, defines another variable representing the apparent
event observed at a particular location. When E = 41, G = F and the apparent
event is the same as the event which actually exists at a location. When £ = —1,
a mistake is made and the wrong event is observed. G is a Bernoulli variable with
the probabilities

prob(G = +1)=xqg + (1 —x)(1 — gq) (4a)
and
prob(G = —1) = x(1 — gq) + (1 — x)q. (4b)

When g = 1, we have the error-free case as discussed above.
Similar to the error-free case, using Equations (4) for n measurements of G
we have

prob(ny)e = 4 Co,[xq + (1 = x)(1 — @I [x(1 — g) + (1 — x)g]" ™" (5)

where the subscript e denotes error. Comparing Equations (1) and (5), the differ-
ence prob(n, = 0), — prob(n, = 0) is a function of both x and ¢, and may be either
positive or negative. In the case of concern here, where x is small (e.g., less than
0.2) and assuming that our process of event identification is reasonably error-free,
e.g., g exceeds 0.7 as in Kapur, Lake, and Sepehrnoori (2000), the difference is
negative.

It is of interest to know what effect errors have on a common estimator of
the proportion. In Bayesian analyses, a common point estimate is the mode of the
posterior, which in our case of a uniform prior is simply the maximum likelihood
estimate. It is easily verified that when ¢ is known, the maximum likelihood
estimate is

0 ng <n(l —q)
PO 700 Rl (6)
2g — 1

1 ng, = nq
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where we are assuming that ¢ > 1/2. In the error-free case, the maximum like-
lihood estimate is just the proportion n,/n. It follows that for infrequent events,
ignoring errors tends to overestimate the true proportion. This can be seen from
the fact that ¥ < n,/n whenever n,/n < 1/2. The only time the error-free and
error-possible estimates agree (for n,/n < 1/2) is when n, = 0.

The overestimation phenomenon has the potential to be misleading. One
might take it to mean that very small values of n, provide greater than usual
evidence that x is very small. Indeed this is not the case, as can be seen by
examination of the posterior distribution of x. The example to follow and our
application show that identification errors (when x is small) tend to increase the
median and upper decile of the posterior distribution of x.

If ¢ is not known exactly and we want to characterize it with a distribution,
then the distribution of x becomes more complicated. Suppose we assume that ¢
has a Beta distribution of the form

I'(c+d .
prob(go < g < qo + Agq) = %(qr“(l — ¢ 'Aq (7)

where ¢ and d are parameters that determine the shape and I'(-) is the gamma
function (I'(s + 1) = s! for s a non-negative integer). For example c = d = 1 gives
a uniform distribution for ¢, while ¢ = 2 and d = 1 is a triangular distribution.
Using Equations (5) and (7) with Bayes theorem and a uniform prior for x, we
obtain the following a posteriori distribution for x when n, = 0:

1T 2T — O d+j
problrn < x < xo-+ Ar) = - 3" " Rn)-(? I i)r(]j)+(1)Jr .

®)

j=0

x (x0) (1 — x0)" ) Ax

where

r=Y T+c—HId+))
j=0

The distribution of x (Eq. 8) is a combination of Beta distributions. The values of
c and d have an important effect on the result. Small values of c and d (e.g.,c =2
and d = 1) give a distinctly bimodal distribution with modes at x = 0 and x = 1 for
any sample size. Larger values can still suffer bimodality, but the mode at x = 1
is much smaller for medium and large sample sizes (n > 20) and non-existent for
small samples. The mode at x = 1 is a logical consequence of the case of a highly
error-prone identification process which is showing no occurrences of event a.
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Figure 2. Integral of Equation (8) for the case ¢ = 13.3 and d =
4.44 (solid lines) shows large variation in possible true proportion
of event a, when having observed no occurrences and having a
detection method which may make mistakes. Dashed lines are the
error-free case.

Following Lee (1997, p. 79-80), we choose ¢ and d to reflect experience
about the accuracy of detecting event a by solving for ¢ and d using

E(q) =c/(c+d) (9a)

and

Var (q) = (cd)/[(c + d)*(c +d + 1)] (9b)

where E(-) and Var(-) are the expectation and variance, respectively. For example,
using Equation (9) with E(g) = 0.75 and Var(q) = 0.01 gives ¢ = 13.3 and
d = 4.44. As expected, comparing the cumulative distribution of x for the error-
possible case with the error-free case shows a wider range of plausible values,
particularly when n is 20 or less (Fig. 2). When n = 10, ¢ = 13.3, and d = 4.44, for
example, the error-free distribution of x has a median of 0.06 and a 90th percentile
of 0.18 while the median and 90th percentile for the error-possible distribution of
x is 0.086 and 0.27, respectively.



110 Jensen, Hart, and Willis

EFFECT OF PRIOR KNOWLEDGE UPON RESULTS

Bayesian analysis has often provided a powerful mechanism for combining
data with prior knowledge (e.g., Kapur, Lake, and Sepehrnoori, 2000; Newendorp,
1972). Would prior information materially help the prediction of x? The derivation
of Equation (2) uses Bayes theorem and assumes a uniform prior distribution for
x (Lee, 1997, p. 77). That is, before we make any observations at the well, we
assumed that

prob(xp < x < x9 + Ax) = Ax.

Experience or other information could be incorporated by changing the prior
distribution. If that distribution can also be expressed as a Beta distribution,

I'e + B)

@=D(1 _ y)B-D
11(0[)”}3)(%0) (I =x)" " Ax

prob(xp < x < x9 + Ax) =

where « and § are parameters, then the posterior probability of x also has a Beta
distribution

r
prob(xp < x < xo + Ax) = T ’(1“;('2 iz)_ - (10)

X(Xo)(a+n“71)(1 _ xO)(ﬂ+n7na71)Ax.

For small n,, the value of @ can be quite influential on the posterior distribution.
Thus, if we were expecting n, to be large (e.g., « = 3 and 8 = 1), this information
would have a significant effect on the x distribution. Otherwise, where we are
expecting x and n, to be small, so that @ < 2, the resulting distribution for x will
not be substantially changed by the choice of @ and 8. For example, if « = 1 and
B = 2 (a triangular distribution), there is little difference between the posterior
distributions even for the n = 5 case (Fig. 3). These results agree with Lee (1997 ,
p. 87) and suggest that the results we give assuming a uniform prior are insensitive
to this assumption.

APPLICATION

In a field study involving a fault block with only two wells, we evaluated well
logs and observed facies a of proportion 0.15 at Well 1 but none at Well 2. The
evaluation at Well 2 consisted of a meter-by-meter assessment over the reservoir
interval of 42 m. Assuming our identification method made no errors, application of
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Equation (3) when n = 42 shows prob(x < 0.05) = 0.89 and prob(x < 0.016) =
0.50. Consequently, models with facies a proportions in the range 0-0.05 were
used to evaluate the performance of the well and identify the range of uncertainties
in the predictions. From several wells in other fault blocks, a detailed core analysis
was available for comparison with the well log facies predictions, and we found the
log evaluations of facies a were accurate 0.7 of the time with a standard deviation
of 0.11. Using this information, Equation (8) shows prob(x < 0.06) = 0.90 and
prob(x < 0.018) = 0.50, values which are close to the no-error case.

CONCLUSIONS

The case of determining the true proportion of small-probability (uncommon)
events has been analyzed for the case where there may be identification errors.
These events can affect reservoir performance and their presence may need to be
accurately evaluated for useful reservoir models. We found that

e There is a significant probability that such events will not appear at a well,
even with a large number of observations and no identification errors,
while still being present at neighboring locations.

e The proportion of an event is a random variable with a Beta distribution,
irrespective of sample size.

e Errors in event detection cause the unadjusted maximum likelihood esti-
mates of the proportion of uncommon events to be too large.

e If the error rate for event detection is known, the posterior distribution of
the proportion of uncommon events is a mixture of Beta distributions.
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Figure 3. Triangular prior pdfs (open circles) and posterior pdfs using
uniform (crosses) and triangular prior (black line) for the case n = 5.
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e For surveys with detection errors and moderate or large sample num-
bers (i.e., 20 or more), the posterior distribution of the proportion is
bimodal. Surveys with modest sample numbers (fewer than 20) may
not be bimodal.

e Prior knowledge, or lack thereof, about the probability of an uncommon
geological event can be modeled by a Beta distribution and then incor-
porated into a statistical analysis via Bayes theorem. This knowledge,
however, has little effect on the posterior distribution unless the prior is
very sharp.
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