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On the Use of Non-Euclidean Distance Measures
in Geostatistics1

Frank C. Curriero2

In many scientific disciplines, straight line, Euclidean distances may not accurately describe prox-
imity relationships among spatial data. However, non-Euclidean distance measures must be used
with caution in geostatistical applications. A simple example is provided to demonstrate there are no
guarantees that existing covariance and variogram functions remain valid (i.e. positive definite or
conditionally negative definite) when used with a non-Euclidean distance measure. There are certain
distance measures that when used with existing covariance and variogram functions remain valid, an
issue that is explored. The concept of isometric embedding is introduced and linked to the concepts
of positive and conditionally negative definiteness to demonstrate classes of valid norm dependent
isotropic covariance and variogram functions, results many of which have yet to appear in the main-
stream geostatistical literature or application. These classes of functions extend the well known classes
by adding a parameter to define the distance norm. In practice, this distance parameter can be set
a priori to represent, for example, the Euclidean distance, or kept as a parameter to allow the data
to choose the metric. A simulated application of the latter is provided for demonstration. Simulation
results are also presented comparing kriged predictions based on Euclidean distance to those based
on using a water metric.

KEY WORDS: conditionally negative definite, euclidean distance, isometric embedding, positive
definite, spatial dependence.

INTRODUCTION

Characterizing spatial dependence of random processes via the covariance or vari-
ogram function is cornerstone to many geostatistical related applications. Because
these functions represent a second moment structure they must be of specific
type, positive definite for covariance functions and conditionally negative defi-
nite for variograms. Available to practitioners are parametric families of known
valid covariance and variogram functions. Under the pragmatic assumptions of
stationarity and isotropy, covariance functions and variograms are functions of
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the straight line, Euclidean inter-point distance. There is a large body of literature
pertaining to the validity and mathematical characterization of covariance and
variogram functions (Christakos, 1984; Schlather, 1999). A topic less covered is
the concept of using different (non-Euclidean) measures of inter-point distance to
characterize isotropic spatial dependence.

Reasons to consider a non-Euclidean distance could include physical prop-
erties of how the process under study disperses or has come to exist in space, such
as in the use of geodetic distances on the earth’s surface (Cressie, Gotway, and
Grondona, 1990, Banerjee, 2005). Sampling non-convex spatial domains such as
irregular waterways suggests a water distance measure honoring boundaries and
flow patterns (Cressie and Majure, 1997a,b, Little, Edwards, and Porter, 1997;
Rathbun, 1998; Kern and Higdon, 2000; Loland and Host, 2003; Krivoruchko and
Gribov, 2004; Ver Hoef, Peterson, and Theobald, 2006). Distances based on travel
times is another possible consideration (Krivoruchko and Gribov, 2004). In other
applications (Dominici, Samet, and Zeger, 2000) focus is on regression coeffi-
cients and covariance or variograms functions are commonly used to characterize
residual spatial variation, which may be quite complicated, for example due to
contagious agents and/or a combination of missing covariates, as well as being
dependent on the spatial design of sampled locations. In practice our goal is to
characterize spatial dependence as best as possible and consideration to possible
non-Euclidean distances to describe proximity relationships among spatial data
may prove beneficial.

The purpose of this paper is to demonstrate some of the technical details
involved in using a non-Euclidean inter-point distance to characterize isotropic
spatial dependence. A simple motivating example is provided in Section 2 to
caution against the naive use of a non-Euclidean distance measure with existing
covariance and variogram functions. In Section 3, the mathematical concepts of
distance metrics and isometric embedding are introduced. These concepts are
then integrated with the concepts of conditional negative definiteness and positive
definiteness to create classes of valid covariance and variogram functions that
can be used with certain non-Euclidean distance measures (Section 4). These
functions extend the well known classes by adding a parameter to define the
distance measure used. In practice, this distance parameter can be set a priori to
represent, for example, the Euclidean distance, or kept as a parameter to allow
the data to choose the distance metric. Simulated applications of the latter are
provided for demonstration in Section 5 as well as results comparing kriged
predictions based on Euclidean distance to those based on using a water metric.

MOTIVATING EXAMPLE

As a motivating example consider a simple four point regular grid configu-
ration in �2 with unit spacing, points represented by (xi, yi), i = 1, . . . , 4, and
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consider using the “city block,” distance measure defined by dij = |xi − xj | +
|yi − yj |, as an alternative to the straight line or Euclidean distance measure. This
yields the following matrix of inter-point city block distances,

⎛
⎜⎜⎜⎜⎝

0 1 1 2

1 0 2 1

1 2 0 1

2 1 1 0

⎞
⎟⎟⎟⎟⎠

,

which when used with the Gaussian covariance function, 20 exp(−d2
ij /4), nugget,

sill, and range parameters arbitrarily set at (0,20,4) respectively, results in the
following variance-covariance matrix,

⎛
⎜⎜⎜⎝

20.00 15.58 15.58 7.36

15.58 20.00 7.36 15.58

15.58 7.36 20.00 15.58

7.36 15.58 15.58 20.00

⎞
⎟⎟⎟⎠ .

The characteristic roots (eigenvalues) of a positive definite matrix must be posi-
tive, and conversely, if one root is negative the matrix cannot be positive definite
(Graybill, 1983). The characteristic roots of this matrix are (58.52, 12.64,

12.64,−3.80), implying the Gaussian covariance function is no longer positive
definite when used city block distances. Using the same matrix of city block
distances and parameter settings, the same conclusion can be drawn from other
known covariance functions such as the spherical, rational quadratic, and various
forms from the Matern class. On the contrary, the exponential covariance func-
tion, τ 2 + σ 2 exp(−dij /φ) with positive parameters (τ 2, σ 2, φ) remains positive
definite in dimensions ≥1 when used with the city block distance measure. This
fact is straight forward to show since the exponential covariance function with
the city block distance measure in �N reduces to the product of one dimensional
exponential covariance functions based on the Euclidean distance measure in �1

and hence positive definite, a separable covariance function as noted by Cressie
(1991, p. 68).

The message from this example is clear, there are no guarantees that the
common set of positive definite functions used in geostatistical related applica-
tions to represent covariances will remain positive definite (and hence valid) when
used with distance measures other than the Euclidean distance. This message also
pertains to the pool of known valid isotropic variogram functions (see subsequent
text). It is therefore essential that applications involving a non-Euclidean dis-
tance measure provide proof that the proposed family of covariance or variogram
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functions remain valid when used with the alternative distance measure. Attention
to such detail has been less than consistent in the literature.

The water distance used in Cressie and Majure (1997a,b) is actually calcu-
lated as though the process was an irregular one dimensional transect by assuming
the winding streams have negligible width for their application. In some instances,
distances calculated along such a structure can be shown to be equivalent to Eu-
clidean distances along a corresponding “stretched out” one dimensional transect
(isometric embedding). However, this representation is lost if the original winding
stream structure branches off as it appears to do in their application. Ver Hoef,
Peterson, and Theobald (2006) do consider such a stream network (again approx-
imated by assuming zero width) and develop a moving average based covariance
function that is shown to be valid with resulting stream distances. Their work also
incorporates flow patterns upstream and downstream. The water distance used
in Little, Edwards, and Porter (1997) and Rathbun (1998), is computed account-
ing for water body width, however the validity of its use with known variogram
functions is suspect. The water distance used in Kern and Higdon (2000) hinges
on satisfying conditions of a metric, which is demonstrated above as not being
sufficient. Gneiting (1999) discusses results that justify the great-arc distance used
in Cressie, Gotway, and Grondana (1990). The non-Euclidean distance used in
Dominici, Samet, and Zeger (2000) is binary, locations within a common geo-
graphic region are given a distance one and infinity otherwise. The consequence
being that spatial correlation is constant within geographic regions and zero be-
tween regions. Such binary distances can always be represented as Euclidean
distances between points in some higher dimension, and thus are valid to use pro-
vided the correlation function is valid in the higher dimension. This example and
the stretched out stream scenario describes the concept of isometric imbedding,
the formal definition of which is provided next. Development of valid functions
to characterize spatial dependence with non-Euclidean distance measures would
be very useful in a variety of geostatistical application areas.

DEFINITIONS AND NOTATION

Let the spatial process be represented by the random field

{Z(s) : s ∈ D ⊂ �N },

where s ∈ �N is a generic spatial location varying continuously over a region D.
Characterizing the second moment structure of such processes plays a key role in
statistical inference and is usually carried out with the covariance or variogram
function, which represents the Cov(Z(si), Z(sj )) and the V ar(Z(si) − Z(sj )),
respectively, ∀ si , sj ∈ D. It is well known that these functions must be of a
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specific type, positive definite for covariance functions and conditionally negative
definite for variograms. Probably less well known is the connection between
these definitions and the concept of isometric embedding (Wells and Williams,
1970). Some general definitions regarding distance measures are provided before
reviewing these connections.

Let S represent an arbitrary collection of objects, such as spatial locations
s ∈ �N , and define the real valued function d(·, ·) to represent a distance function
operating on S × S such that d : S × S → [0,∞). The distance function d is said
to satisfy the conditions of a metric if:

d(si , sj ) ≥ 0 and d(si , sj ) = 0 iff si = sj ,

d(si , sj ) = d(sj , si), and
d(si , sj ) ≤ d(si , sk) + d(sk, sj ) (Triangle inequality)

for all si , sj , sk ∈ S.
For example, consider the Euclidean distance measure, known to be a metric,

in �2 between points s1 = (x1, y1) and s2 = (x2, y2),

d(s1, s2) =
√

(x1 − x2)2 + (y1 − y2)2.

Clearly the distance between s1 and s2, d(s1, s2), is always positive and zero
only when the two locations coincide (condition 1 of a metric). Computing the
distance between locations s1 and s2 is the same as computing the distance between
locations s2 and s1 (condition 2 of a metric). The shortest distance between two
points is a straight line, so the Euclidean distance between locations s1 and s2

would satisfy the triangle inequality (condition 3 of a metric). The city block
distance from the previous section is another example of a metric distance. The
concept of isometric embedding is now defined.

DEFINITION 1. Let dij = d(si , sj ) represent distance between points si and sj

of some metric space represented by (S, d). The metric space (S, d) is said to
be isometrically embedded in a Euclidean space of dimension N∗ if there exists
points s∗

i and s∗
j and a function φ such that

dij = d(si , sj ) = ‖s∗
i − s∗

j‖,

for all si , sj ∈ S and where φ(s) = s∗.

Isometric embedding in a Euclidean space (hereafter referred to as embed-
ding), thus defines the situation when a metric distance function is equivalent to
a Euclidean distance metric. The ramifications for the topic at hand is readily
apparent. If a non-Euclidean distance function (meaning non-Euclidean in the
dimension the process is observed) is embeddable, then the distance function
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used with existing covariance and variogram functions will retain the positive
and conditionally negative definite properties provided these functions are valid
in the embedding dimension. The winding stream scenario mentioned previously
provides an example. Suppose distances between geographic coordinates s ∈ �2

along the stream are calculated assuming the stream has no width, like traveling
through the center of the stream. If the stream doesn’t branch off then these dis-
tances are equivalent to a set of Euclidean distances calculated from a new set of
locations s∗ ∈ �1, located along the stretched out stream now in one dimension.
Stream distances under these conditions are thus embeddable in a one dimensional
Euclidean space. Contrary to this simple example, the embedding dimension N∗

is often assumed to be much larger than the observed dimension N .
Although it is necessary that a distance function d satisfy the conditions of a

metric for embedding (since Euclidean distance is a metric), it is clearly not suf-
ficient as was previously demonstrated. The following theorem, due originally to
Schoenberg (1937), see also Young and Householder (1938), provides a necessary
and sufficient condition for the embedding of a finite metric space.

THEOREM 1. (Schoenberg, 1937). The finite metric space (S, d), where S =
{s0, s1, . . . , sn} n > 2, is embeddable in �n if and only if

(1/2)
n∑

i=1

n∑
j=1

{
d(s0, si)

2 + d(s0, sj )2 − d(si , sj )2} ξiξj ≥ 0 (1)

for all choices of real numbers ξ0, ξ1, . . . , ξn.
As pointed out in (Wells and Williams, 1970), the quadratic form condition

(1) is equivalent to

n∑
i=0

n∑
j=0

d(si , sj )2ξiξj ≤ 0, (2)

for all choices of real numbers ξ0, ξ1, . . . , ξn such that
∑n

0 ξi = 0. This is pre-
cisely the conditionally negative definite property used to characterize variograms
(Christakos, 1984; Cressie, 1991). Therefore, a distance function d is embeddable
if and only if d2 is conditionally negative definite. Put another way, for a given
distance function d, d1/2 is embeddable, and hence preserves the positive and
conditionally negative definite properties of covariance and variogram functions
that are valid in all dimensions, if and only if d is conditionally negative definite.
This explains another less well known fact that the square root of the variogram (or
any conditionally negative definite function) is equivalent to a Euclidean metric.
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The embedding and conditionally negative definite property are linked to
positive definiteness by the following result (e.g. Wells and Williams, 1970),

exp(−ad(·)) is positive definite ∀a > 0iff d(·) is conditionally negative definite

(3)

Note, the multiplication and addition by positively restricted parameters (τ 2, σ 2),
for example τ 2 + σ 2 exp(−ad(·)) do not change the result.

In practice spatial processes are usually assumed stationary. Letting h =
si − sj , ∀ si , sj ∈ D, second-order stationarity is defined for Z(s) by a constant
mean and covariance a function of h, denoted by the covariance function C(h).
Intrinsic stationarity is defined as a constant mean and variance of the increments
Z(si) − Z(sj ) to be a function of h, denoted by the variogram 2γ (h), γ (h) the
semivariogram. Isotropy further assumes covariance functions and variograms to
only be a function of distance with the notation ‖h‖ used to denote Euclidean
distance. Geometric anisotropy refers to the linear transformation of coordinates
to achieve isotropy, denoted by ‖Ah‖, with matrix A representing in geostatistical
terminology the rotation and stretching transformation of coordinates h (Cressie,
1991).

As reviewed in the literature, the positive definite property fully charac-
terizes the class of valid covariance functions. Hence, the eigenvalue approach
used in Section 2 provides a simple way to exclude candidate models. Valid
variograms are necessarily conditionally negative definite as in (2) and also must
grow more slowly than ‖h‖2 (Matheron, 1973; Christakos, 1984). Since the square
root of a conditionally negative definite function must represent a Euclidean met-
ric, the multidimensional scaling technique of Mardia, Kent, and Bibby (1995,
Theorem 14.2.1, p. 397) can be used for verification. By recasting the quadratic
form condition (1) into a matrix that must be positive semi-definite, this theorem
provides a straight forward computational method for determining if a given dis-
tance matrix can be represented as a Euclidean metric. This approach was applied
to the motivating example in Section 2 to establish that the Gaussian and other
referenced corresponding variograms (excluding the exponential) are no longer
conditionally negative definite when used with the city block metric.

NORM DEPENDENT COVARIANCE AND VARIOGRAM FUNCTIONS

There are certain covariance and variogram functions that retain their positive
definite and conditionally negative definite properties when used with distance
measures other than Euclidean. Many of these results have yet to appear in the
mainstream geostatistical literature or application. Introduced first is the concept
of a vector norm which is closely related to a distance metric.
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A vector norm is a function f : �N → [0,∞) that satisfies the following
properties:

f (h) ≥ 0 h ∈ �N (f (h) = 0 iff h = 0)
f (h + h∗) ≤ f (h) + f (h∗) h, h∗ ∈ �N

f (αh) = |α|f (h) α ∈ �, h ∈ �N .

A vector norm becomes a distance metric by defining d(si , sj ) = f (h), with
h = si − sj as is the customary notation used in geostatistics. The common α-
norm distance metrics for α ≥ 1 are defined as

‖h‖α = (|h1|α + |h2|α + · · · |hN |α)1/α, (4)

where h = (h1, . . . , hN )′. When α =1, 2, and ∞, for example, we have

‖h‖1 = |h1| + |h2| + · · · |hN | (Manhattan or City Block)

‖h‖2 = (
h2

1 + h2
2 + · · ·h2

N

)1/2
(Euclidean)

‖h‖∞ = Max|hi | (Supremum).

Note, ‖h‖ without the subscript is taken to represent the Euclidean distance and
for α < 1, ‖h‖α no longer satisfies the conditions of a metric.

The demonstration following hinges on results from Richards (1985) who
provides the following sufficient conditions for which certain power transforms
of α-norms are conditionally negative definite. For related mathematical develop-
ments see also Koldobskii (1992) and Zastavyni (1993, 2000).

Proposition Richards (1985).

(a) On �2, ‖h‖β
α is conditionally negative def inite if

(i) 0 < β ≤ 1, 1 ≤ α ≤ ∞, or
(ii) 0 < β ≤ α ≤ 2.

(b) On �N, N ≥ 3, ‖h‖β
α is conditionally negative def inite if

(i) 0 < β ≤ α ≤ 2, and if

(ii) α > 2 it is not conditionally negative def inite f or β > 1.

These results in combination with Schoenberg’s Theorem and (3) can now be used
to a create class of valid covariance and variogram functions that can be used with
non-Euclidean norm dependent measures of distance. Greater flexibility is gained
with processes restricted to �2, and since most applications involve analyzing data
in �2 these extensions are stated separately.
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To illustrate, the above results in combination with (3) leads to the following
class of norm dependent isotropic powered exponential covariance functions. For
h ∈ �2, the functions

C(h) = τ 2 + σ 2 exp(−‖h‖β
α/φ), 0 < β ≤ 1, 1 ≤ α ≤ ∞

or
0 < β ≤ α ≤ 2

and for h ∈ �N, N ≥ 3, the functions

C(h) = τ 2 + σ 2 exp
( − ‖h‖β

α/φ
)
, 0 < β ≤ α ≤ 2,

are positive definite and hence valid covariance functions for τ 2, σ 2 > 0. The usual
isotropic exponential and Gaussian covariance functions based on the Euclidean
distance measure can be obtained by setting (α, β) to (2,1) and (2,2) respectively.
Fixing α = 2 provides the current definition of the powered exponential covariance
function (Stein 1999, p. 32–33). Setting α = β = 1 demonstrates the city block
metric with the exponential covariance function, whereas α = 1 and β = 2 (city
block metric with the Gaussian covariance function) is not admissible, as was
demonstrated previously with the motivating example. For h ∈ �2, all norms are
admissible provided 0 < β ≤ 1.

Combining the results from Richards (1985) and Schoenberg’s Theorem pro-
vides conditions for which ‖h‖β/2

α is embeddable and thus can be used with existing
isotropic covariance and variogram functions that are valid in all dimensions. This
approach is applied to the Matern class of covariance functions isotropic with
respect to Euclidean distance (Cressie, 1991), which is now shown for h ∈ �2, to
include the functions

C(h) = τ 2 + σ 2
{(

2κ−1	(κ)
)−1(

‖h‖β/2
α /φ

)κ

Kκ

(
‖h‖β/2

α /φ
)}

, 0 < β ≤ 1, 1 ≤ α ≤ ∞
or

0 < β ≤ α ≤ 2

and for h ∈ �N, N ≥ 3, to include the functions

C(h) = τ 2 + σ 2
{(

2κ−1	(κ)
)−1(‖h‖β/2

α /φ
)κ

Kκ

(‖h‖β/2
α /φ

)}
, 0 < β ≤ α ≤ 2,

for τ 2, σ 2 > 0, where Kκ (·) represents the modified Bessel function of the third
kind of order κ . Setting α = β = 2 provides the class of Matern covariance func-
tions isotropic with respect to Euclidean distance and for κ = 0.5,∞ in this case
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the Matern covariance function reduces to the exponential and Gaussian covari-
ance function respectively. Again, for h ∈ �2, all norms are admissible provided
0 < β ≤ 1. However, unlike for the powered norm dependent exponential co-
variance function above, the exact form of the Matern covariance function is not
retained due the exponent β/2 which equals 1 only when α = β = 2.

Forms of other existing covariance functions can be used to demonstrate other
classes of norm dependent isotropic covariance functions in a similar fashion.
Assuming second-order stationarity, relation γ (h) = C(0) − C(h) demonstrates
corresponding classes of norm dependent isotropic (semi)variogram functions.

Assuming only intrinsic stationarity, the embedding approach can also be
used to demonstrate classes of norm dependent conditionally negative definite
functions. For example, consider the power variogram function isotropic with
respect to Euclidean distance currently defined for h ∈ �N, N ≥ 1, to be

2γ (h) = τ 2 + φ‖h‖δ, 0 < δ < 2,

for τ 2, φ > 0. Substituting the embeddable norms ‖h‖β/2
α for the Euclidean norm

‖h‖ in above yields the following class of norm dependent isotropic conditionally
negative definite functions. To ensure identifiability, the functions are parameter-
ized with a single exponent parameter λ = βδ/2. For h ∈ �2, the functions

2γ (h) = τ 2 + φ‖h‖λ
α, 0 ≤ λ ≤ 1,≤ α ≤ ∞,

or
0 < λ < 2, λ ≤ α ≤ 2,

and for h ∈ �N, N ≥ 3, the functions

2γ (h) = τ 2 + φ‖h‖λ
α, 0 < λ < 2, λ ≤ α ≤ 2,

for τ 2, φ > 0, are conditionally negative definite. Setting α = 2 provides the fam-
ily of power variogram functions isotropic with respect to Euclidean distance.
For h ∈ �2, all norms yield a conditionally negative definite function provided
0 ≤ λ ≤ 1.

Note, for intrinsic stationarity care was taken not to refer to the class of norm
dependent conditionally negative definite functions as valid variograms. As stated
previously there is a growth condition variograms must satisfy (Matheron, 1973).
This condition would need to be evaluated for the more general norm dependent
class of conditionally negative definite functions before labeling these functions as
valid variograms. Pragmatically speaking though, the greater mathematical flexi-
bility achieved by assuming intrinsic stationarity over second-order stationarity is
not often realized in applications.
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SIMULATED APPLICATIONS

Two simulation applications are provided demonstrating different aspects
concerning the use of a non-Euclidean distance measure to characterize isotropic
spatial dependence in geostatistics. The first example considers norm dependent
distance measures and investigates whether data can be used to choose the distance
norm. The second application considers the winding stream scenario and compares
kriged predictions based on Euclidean distance to those using the stream distance.
All simulated data were Gaussian with mean zero (assumed unknown) and spa-
tial covariance structures as described. The simulations are kept simple only to
highlight these concepts, with more application specific details provided in future
work. All computing was performed in R (R Development Core Team, 2005)
with necessary modifications applied to functions from the geoR (Ribeiro and
Diggle, 2001) contributed package. The simulated stream design was generated
using ArcGIS Desktop (Environmental Systems Research Institute, 2004).

Norm Dependent Distances

Data were simulated on a 10 × 10 regular grid (n = 100) with unit spacing.
The norm dependent exponential covariance function

C(h) = τ 2 + σ 2 exp(−‖h‖α/φ) 1 ≤ α ≤ ∞

τ 2, σ 2, φ > 0, obtained by fixing the exponent parameter β = 1, was used to
characterize spatial structure. Covariance parameters τ 2, σ 2, and φ were set at 0,
10, and 2 respectively. Four scenarios were considered based on setting the distance
norm parameter α = 1, 2, 3, and 4 with 1000 data sets simulated for each setting.
For each data set, parameters were estimated via restricted maximum likelihood
considering (a) the distance norm parameter α to be fixed at 2 representing isotropy
with respect to Euclidean distance and (b) allowing the distance norm parameter
α to vary 1 ≤ α ≤ ∞ representing isotropy with respect to a non-Euclidean norm
dependent distance. Ratios of the minimized negative log restricted likelihoods
based on using the Euclidean distance (a) to that from allowing the data to choose
the distance norm (b) are used to compare the two approaches. Distributional
summaries for the distance norm parameter α when it was estimated are also
presented. Results summarized for each scenario are listed in Table 1.

For isotropy with respect to the non-Euclidean distance norm α = 1 (city
block metric), the approach based on allowing the data to estimate the distance
norm resulted in minimized negative log restricted likelihoods about 4.2% smaller
than the approach based on assuming isotropy with respect to Euclidean distance
α = 2 fixed. Distributional summaries for the estimated α were targeted to their
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true value of α = 1, noting this to be on the boundary of the parameter space.
For isotropy with respect to Euclidean distance α = 2, both approaches produced
minimized negative log restricted likelihoods that were relatively equal most of the
time. However, more variability is seen in the estimated α parameter. For isotropy
with respect to the α = 3, 4 norm distances there were surprisingly no apparent
difference in the minimized negative log restricted likelihoods casting doubt as to
whether data can help distinguish the distance norm as is suggested with results
from α = 1, 2. The estimated α norms for these scenarios displayed even more
variability.

Note for some simulated data sets (0.9%, 5.2%, and 10.5% for those simu-
lated under α = 2, 3, 4 respectively) the distance norm parameter α was estimated
very high causing calculations in the norm distance measure (4) to be beyond
computer accuracy. For the two dimensional spatial design considered here this
occurred when α was estimated higher than 300. The α parameter was therefore
restricted to be 0 ≤ α ≤ 300 when minimizing log likelihoods. The results listed
in Table 1 exclude these cases. Their inclusion, in terms of the ratio of the mini-
mized negative log restricted likelihoods, produced results that were qualitatively
indistinguishable from those presented. Excluding these cases as can be expected
though have a more profound effect on summaries for the estimated α-norm pa-
rameter, providing more favorable support for the proposal of data driven distance
norm estimation. Even so, these results overall for such a proposal are less than
convincing.

It was thought that for this spatial design α values greater than 300 might
effectively be interpreted as infinity and distance calculations using (4) for α >

300 be calculated using ‖h‖∞ (the supremum norm). Estimated large α norm
parameters may be similar in spirit to the situations where the range and sill
parameters are sometimes estimated (via a likelihood based approach) far outside
our expected parameter space but end up producing a variogram shape consistent

Table 1. Distributional Summaries for the Ratios of the Minimized Negative Log Restricted
Likelihoods (NLRL) Based on Using the Euclidean Distance to that from Allowing the Data to

Choose the Distance Norm

Ratio NLRL(α = 2) to NLRL(α̂) Estimated norm parameter α̂

Distance norm Mean 5th % tile 95th % tile Median Mean 5th % tile 95th % tile

α = 1 1.043 1.013 1.080 1.000 1.042 1.000 1.248
α = 2 1.002 1.000 1.009 1.908 2.259 1.191 3.744
α = 3 1.005 1.000 1.017 2.977 4.993 1.662 10.912
α = 4 1.010 1.000 1.026 4.004 7.809 2.132 21.477

Note. Summaries for the estimated α norm parameter also included the median since these distribu-
tions were skewed unlike the distributions of NLRL ratios. Results presented for each α norm setting
α = 1, 2, 3, 4 were summarized over the 1000 simulated data sets for each scenario.
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Figure 1. α-norm distance buffers, α = 1, 2,∞.

with the data. Addressing these and possibly other technical issues can be included
in future more comprehensive investigations.

It is worth noting some numerical comparisons between distance norms to
further explore issues related to their involvement in geostatistics. For example,

‖h‖α1 ≥ ‖h‖α2 for α1 ≥ α2.

A geometric interpretation of which is provided by letting s0 represent a point
of origin and consider other locations si a fixed α-norm distance from s0, say
‖s0 − si‖α = d. The diagram shown in Fig. 1 displays the shapes of the distance
buffers around s0 such that for all locations si , ‖s0 − si‖α = d, for α = 1, 2,∞.
For α = 2 Euclidean norm, all points within a distance d of s0 fall within a circle
of radius d (i.e. radial distance). In contrast, all points within an α-norm distance
d of s0, α = 1,∞, correspond to diamond and square shaped buffers respectively.
Shapes for distance buffers based on α norms not shown fit respectively within
those displayed.

In terms of the traditional graphical approach towards characterizing spatial
dependence Fig. 2 displays estimated variograms using the method of moments
estimator (Cressie, 1991), adjusted to consider isotropy with respect to ‖h‖α

distances. Using a simulated data set from above for α = 2, isotropy with respect
to Euclidean distance, shown are estimated variograms based on α = 1, 2, 3, 4.
Immediate from Fig. 2 is the similarity in estimates, especially for the more
important distances near the origin. This is an artifact not only of the sample design
but that distance norms themselves not being very different for relatively small
distances. Add to this the practice of distance binning, common for real data not
sampled on a regular grid, that may further mask any differences when considering
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Figure 2. Omnidirectional variogram estimates for a data set simulated with
isotropic spatial dependence based on the Euclidean distance measure, α = 2 norm.
Shown are the method of moments variogram estimates using various α norm dis-
tances, α = 1, 2, 3, 4.

different norm dependent distance measures to characterize spatial dependence.
Interpretations from this visual inspection only applies to the method of moments
variogram estimator and similar graphical procedures used to characterize spatial
dependence.

Stream Distance versus Euclidean Distance

To provide a demonstration of kriging with different distance measures a
winding stream design was generated as follows. Shown highlighted in Fig. 3
(left) is the Potomac River running from Washington, DC through the Potomac
River Branch tributary of the Chesapeake Bay. The solid line drawn through the
center of this waterway is an example of the winding stream scenario that doesn’t
branch off and has no width, whether the width is negligible is not an assumption
addressed here. The full length of the generated stream shown is 134 miles in terms
of stream distance (traveling along the line), compared to the straight line Euclidean
distance of 70 miles between the two dimensional geographic coordinates at each
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Figure 3. Shown on the right is the Chesapeake Bay region and its tidal tributaries with the fixed
monitoring stations used in the collection of water quality parameters. Shown highlighted on the left
is the Potomac River running from Washington, DC through the Potomac River Branch Tributary with
the generate stream and accompanying 100 sample locations used for the simulated application.

end of the line. The Euclidean distance measure along such a stream can intersect
land, a clear motivation for considering the stream distance. Placed along this
generated stream are 100 locations approximately 1.3 miles apart (stream miles).
This design was chosen because, as previously demonstrated, distances from such
a stream configuration represent a special case of isometric embedding since
these distances are actually equivalent to Euclidean distances in the transformed
(stretched out) one dimensional space and hence valid for use in geostatistics. The
technique provided in Mardia, Kent, and Bibby (1995, Theorem 14.2.1, p. 397)
was used to generate these one dimensional coordinates which were used below
for the analysis based on stream distances.

Simulation results are used to compare kriging based on stream distances
and Euclidean distances. Spatial data were simulated at the 100 locations based
on stream distance with an exponential variogram, nugget and sill fixed at 0 and
10 respectively and effective range parameter varied from 15, 30 and 90 stream
miles, representing shorter to longer range spatial dependence. For each simulated
data set a hold out sample of 25 locations were randomly selected. Based on
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Table 2. Root Mean Squared Error in Predictions (RMSEP) for
Kriging Based on Stream Distance Compared to Those Based

on Euclidean Distance

Ratio RMSEP Euclidean
to RMSEP Stream

Spatial dependence Mean 5th % tile 95th % tile

Shorter 1.042 0.946 1.232
Medium 1.103 0.936 1.442
Longer 1.141 0.941 1.612

Note. Shown are distributional summaries, mean, 5t and 95t per-
centiles, for the ratio RMSEP for Euclidean distance to RMSEP
for stream distance from the 1000 iterations for each spatial
dependence range setting, Shorter (effective range 15 miles),
Medium (effective range 45 miles), and Longer (effective range
90 miles).

the remaining 75 locations variogram parameters were estimated (via restricted
maximum likelihood) and used to krige at the 25 hold out locations. Variogram
estimation and kriging were performed using the stream distance and Euclidean
distance (based on the two dimensional geographic coordinates). Using the hold
out data at the 25 locations root mean squared error in predictions (RMSEP) were
calculated for the two kriging approaches as a measure of prediction accuracy,
RMSEP based on stream distance and RMSEP based on Euclidean distance. For
each spatial dependence range this process iterated through 1000 simulated data
sets. For each iteration the ratio of Euclidean RMSEP to stream RMSEP was
generated.

Results summarized in Table 2 show on average kriging using the stream
distance provides more accurate predictions to those based on Euclidean distance.
For shorter range spatial dependence (15 miles) kriging based on stream distance
produced predictions that were 4.2% more accurate than those based on Euclidean
distance. This effect increased to 10.3% for medium range spatial dependence
(45 miles) and 14.1% for longer range spatial dependence (90 miles). The pattern
across spatial dependence ranges is intuitive, since the difference between stream
and Euclidean distances in this design are less for locations close and greater for
locations further away. Kriging with longer range spatial dependence is influenced
more by data further away (compared to shorter range spatial dependence) and
hence is impacted more by the appropriate distance metric.

The Chesapeake Bay region and its tidal tributaries shown in Fig. 3 (right) is
the spatial setting of a large water-quality assessment that is being conducted by
the Chesapeake Bay Program, which is the six state-federal partnership leading
efforts to restore the Bay. Water quality parameters such as dissolved oxygen,
turbidity, and chlorophyll are used to assess the ecological health of the Bay and
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are routinely collected from a fixed network of monitoring stations, also shown in
Fig. 3 (right). To fully assess water quality within the Bay and support decisions on
attainment of established standards, water quality measures need to be interpolated
to areas between those sampled at the fixed monitoring stations (EPA, 2003). For
this endeavor geostatistics is an application motivating the use of a water distance
measure more sophisticated than a negligible width winding stream network.
Developing geostatistical methods that are valid with such a distance measure as
well a resource for computing these types of distances are topics currently under
investigation.

DISCUSSION

A simple example was used to demonstrate there are no guarantees that the
existing pool of isotropic covariance and variogram functions remain valid when
used with a distance measure other than Euclidean. It is therefore essential to
establish the validity of these functions when an alternative measure of distance is
proposed. By linking the concepts of isometric embedding, conditionally negative
definiteness, and positive definiteness, an approach for demonstrating classes of
norm dependent isotropic covariance and variogram functions was provided. An
appealing proposition from this is that in practice data can be used to estimate the
distance norm, as was demonstrated with the simulated application in the previous
section. However, those results and the discussion following are not convincingly
supportive of such an approach with further work necessary to address more
technical issues. On the contrary, results from the simulated stream application
demonstrated benefits in terms of kriging accuracy when considering a distance
measure more appropriately suited for the spatial setting that was different from
the usual straight line Euclidean distance.

Define the non-Euclidean distance problem in geostatistical related applica-
tions to include issues arising from the proposed use of a non-Euclidean distance
(at least non-Euclidean in the dimension the process is observed) to characterize
isotropic spatial dependence via a covariance or variogram function. As demon-
strated here, existing isotropic functions are likely norm dependent, such as Eu-
clidean distance or the extensions outlined in Section 4. Not considered here are
the situations involving a distance measure d that is not necessarily a norm func-
tion, for example distances traveled through complex waterways or roads, such
as in the Chesapeake Bay water quality assessment application. Establishing the
validity of C(d) or 2γ (d) as functions of isotropic spatial dependence, either for
known covariance and variogram functions or for newly developed classes of such
functions, may be mathematically challenging. Methods for dealing with such
situations has not received much attention. Another point not to be overlooked
is the calculation of such distances, which may prove nontrivial compared to the
straight forward calculations involved in norm dependent distance measures.



924 Curriero

One approach for using a general non-Euclidean distance measure d for
geostatistical applications could be based on multidimensional scaling (MDS).
Multidimensional scaling (Mardia, Kent, and Bibby, 1995) is a multivariate sta-
tistical technique concerned with the problem of constructing a set of points so
that the Euclidean distance between these points matches (exact or most often
approximate) a set of given distances that are likely not Euclidean. The concept
of isometric embedding relates to the situation when such a configuration can be
found for an exact match. For geostatistical applications a matrix of non-Euclidean
inter-point distances (such as those traveled through complex waterways) would
be approximated by the Euclidean distance between a set of points (often in a
much higher dimension) generated by multidimensional scaling. The analysis
would proceed using the approximate Euclidean distances hence avoiding issues
of covariance/variogram function validity. In a sense transforming the application
to the new Euclidean space determined by the multidimensional scaling. Sampson
and Guttorp (1992) propose a similar approach to a different problem.

For dealing with non-Euclidean distance measures in geostatistics, such an
MDS approach was originally proposed in Curriero (1996), more recently applied
in Loland and Host (2003), Schabenberger and Gotway (2005), and could serve
as an approach in the Chesapeake Bay Program’s water quality assessments. A
potential drawback of this approach is based on the fact that the multidimensional
scaling Euclidean distance approximation does not consider spatial variation di-
rectly, that is it only considers approximating inter-point distances and ignores
the outcome data. Further, it is sample design dependent, in the sense that adding
and/or deleting a location (and hence a series of distances) can change the distance
approximation elsewhere. Combining the sampling and prediction locations is a
solution to the latter but this increases (often dramatically) the number of distances
to be approximated and hence could adversely effect the MDS accuracy. In addi-
tion, there are two classes of MDS algorithms, those attempting to approximate
the provided set of non-Euclidean distances (metric MDS) and those attempting
to just preserve the rank ordering of distances (non-metric MDS). Which of these
methods if any is preferred for the non-Euclidean distance problem in geostatistics
is an open question.

Its worth mentioning a few valid criticism on using non-Euclidean distance
measures to describe proximity relationships among spatial data. First, in the norm
dependent case when the data are used to guide the distance norm, one to two extra
parameters (α for the norm and β for its power) require estimation in addition to
the usual range, sill, and nugget parameters. Issues of identifiability and reliable
estimation which have not been addressed here certainly come into play. Although
in regards to reliable estimation the same can be said for the two extra rotation
and stretching parameters involved with geometric anisotropy. Alternatively, the
distance norm parameter α and/or β can be set a priori to represent several possible
choices and evaluated. A second issue is the fact that for geostatistical applications
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characterizing spatial dependence is most crucial for smaller distances near the
origin of the covariance or variogram function. It may be such that non-Euclidean
inter-point distances are very close to their Euclidean counterparts at these smaller
distances, a fact that is certainly true for distance norms, and became evident when
combined with the strength of spatial dependence in the kriging results from the
simulated stream application.
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