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Abstract For many applications data on the transmissiv-
ity distribution of individual fractures are necessary, i.e.,
discrete fracture network (DFN) modelling of groundwa-
ter flow and transport of solutes in fractured rock and de-
sign and performance of rock grouting. Using borehole
data from the Äspö Hard Rock Laboratory, Sweden, it is
shown that evaluated fracture transmissivities from three
boreholes at Äspö can be well described by a Pareto or
power-law distribution. Evaluated distribution parameters
for the three boreholes are similar, which indicates that the
Pareto distribution is a robust tool to assess three fracture
transmissivity distributions. Using the evaluated distribu-
tion parameters random simulations of the original interval
test data show that the approximate lognormal distributions
of these are reproduced. This strengthens the credibility of
the approach. It is shown how the distribution parameters
can be assessed from incomplete data using the properties
of the distribution. Finally, Pareto distribution transmissivi-
ties also imply Pareto distribution apertures of the fractures.

Résumé Pour beaucoup d’applications sont nécessaires
des données sur la distribution des transmissivités des frac-
tures individuelles; des exemples sont la modélisation de
l’écoulement et du transport dans les roches fracturés ainsi
que l’analyse de performance de la cimentation des roches.
Les données des forages analysées dans le Laboratoire des
roches dures d’Äsprö-Suède ont montré que la distribution
des transmissivités des fractures estimée pour trois forages
d’Äsprö est en accord avec les lois de Pareto ou de puis-
sance. paramètres pour trois forages ont des valeurs sem-
blables ce qu’indique que la loi de Pareto peut bien évaluer
la distribution des transmissivités des fractures. Les simula-
tions aléatoires réalisés sur l’intervalle original des données
qui ont utilisé les paramètres estimés des distributions ont
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bien reproduit la distribution log-normale approximée. Ce
résultat a consolidé la confiance dans l’approche faite. On
a montré que les paramètres de la distribution peuvent être
estimés à partir de données incomplètes si on utilise les
propriétés de la distribution. Finalement, la distribution de
Pareto pour les transmissivités implique la même loi pour
la distribution de l’épaisseur des fractures.

Resumen Los datos sobre la distribución de la transmisivi-
dad en fracturas individuales, son necesarios para muchas
aplicaciones, Ej. Modelación de redes de fracturamiento
discreto (RFD) para flujo de agua subterránea y transporte
de solutos en roca fracturada y para el diseño y ejecución de
operaciones de cementación en roca. Mediante el uso del
Laboratorio de Rocas Duras de Äspö en Suecia, se ha de-
mostrado que las transmisividades por fractura evaluadas
en tres perforaciones en Äspö pueden ser descritas bien
por una distribución Pareto o Potencial. Los parámetros de
distribución evaluados para las tres perforaciones son sim-
ilares, lo cual indica que la distribución Pareto es una her-
ramienta adecuada para evaluar tres distribuciones de trans-
misividad por fractura. Mediante el uso de simulaciones al
azar, de los parámetros de distribución evaluados, a partir de
los datos del intervalo de la prueba original, se muestra que
las distribuciones lognormal ası́ aproximadas de aquellos,
pueden ser reproducidas. Esto refuerza la credibilidad del
método. Se demuestra como los parámetros de distribución
pueden ser evaluados a partir de datos incompletos, us-
ando las propiedades de la distribución. Finalmente, las
transmisividades con distribución Pareto, también impli-
can aberturas de las fracturas con distribución Pareto.
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Introduction

For many applications data on the transmissivity distribu-
tion of individual fractures are necessary. The most obvi-
ous case is discrete fracture network (DFN) modelling of
groundwater flow and transport of solutes in fractured rock
(see a.o. Dershowitz et al. 1998). Other applications are de-
sign and performance of rock grouting (Fransson 2001a).

The transmissivity of a fracture is here, in analogy with
the transmissivity of an aquifer, defined as the flux of
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groundwater parallel to the fracture plane through a unit
width of the fracture and under unit gradient. The trans-
missivity of a borehole interval is in the context of this
paper thus the sum of the transmissivities of the fractures
penetrated by the borehole.

The transmissivities of fractures intersecting a borehole
are not readily measured. The reason is the great range
of values that typically can stretch over several orders of
magnitude. The measurement resolution will thus not be
good enough to identify the tightest fractures by normal
measurement techniques. This is even more pronounced
since a standard packer test normally straddles at least a
few metres of the borehole, which makes the more pervi-
ous fractures to obscure the influence of the less pervious
ones. Knowing transmissivities of hydraulic packer tests
and the number of fractures in each test section an ap-
proximate transmissivity distribution can be derived (Osnes
et al. 1988; Axelsson et al. 1990; Fransson 2002). Recently
the development of the Posiva Flowlog (Rouhianen 1993)
has made it possible to measure directly at least the trans-
missivities of the most conductive fractures.

The use of these methods is fairly complicated and there
is a strong need for a method based on packer test data,
that is simple to use, robust and based on few parameters,
and that reproduces patterns and magnitudes of input data.
It is believed that such a feasible method can be based
on the Pareto statistical distribution. In the following, data
will be used from three boreholes, KLX02, KLX01and
KA2598A, in fractured granite at the Äspö Hard Rock
laboratory (Stanfors et al. 1999), Sweden, to evaluate its
use.

Borehole data

As an example, the cored borehole KLX 02 (Ludvigsson
et al. 2002) between 206 and 341 m depth was chosen.
For this interval there are sequential flow logging tests of
3-m intervals as well as detailed differential flow-logs of
0.5-m intervals taken overlapping with an 0.1 m displace-
ment as well as cores where the fractures were mapped.
A plot of the empirical cumulative distribution function
(CDF) of the 3 m transmissivity measurements is shown in
Fig. 1. The plot has a rather typical outlook. It is close to
the shown lognormal distribution having the same statis-
tics but it could also be argued that it is a combination of at
least two distinct lognormal distributions. The frequencies
of the number of fractures of the tested intervals are shown
in Fig. 2. It can be noted that the correlation between the
number of fractures per interval and the transmissivity or
the log transmissivity is weak with correlation coefficients :
R(ni, Ti) = 0.28 and R(ni, log Ti) = 0.52. Here ni and Ti are
the number of fractures and measured transmissivity in the
test interval, i.

The assessment of transmissivities to individual frac-
tures is in principle not possible since each measurement
in general straddles several fractures. The Posiva flowlog,
however, in general, measures the major fracture in each
measured interval, as will be explained later, since in a

Fig. 1 Cumulative distribution plot of 3 m transmissivities for
KLX02 206–341 m and the corresponding lognormal distribution,
mlog T = −8.21, slog T = 1.59

Fig. 2 Frequencies of 3-m intervals with different numbers of frac-
tures in KLX 02 206–341 m. m = 5.5, s = 4.9

small sample the major fracture is most likely to dominate
the transmissivity of the interval. This makes it possible,
knowing the number of fractures, to construct a truncated
distribution of the fracture transmissivities.

Several methods to derive fracture transmissivity distri-
butions from fixed interval hydraulic tests have been de-
vised (Osnes et al. 1988; Dershowitz et al. 1998; Fransson
2002). All of them assume that the fractures can be seen as
independent sub-parallel features and that the sum of the
fracture transmissivities adds up to the transmissivity of
the tested section. The assumption of fractures being inde-
pendent and not interconnected is a simplification, which
follows the assumption of two-dimensional flow. The eval-
uated transmissivity value depends upon the tested length
but is also influenced by the duration of the test. Early time
transmissivities are likely to give a better representation of
fractures found close to the borehole.

In this text Fransson’s method is used since it does not as-
sume a pre-chosen distribution function. A simple method,
also devised by Fransson (2002), that gives points on the
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cumulative distribution curve is to use combinatorics to
calculate the probability that all fractures in an interval is
smaller than a preset value, T. Assuming that the probabil-
ity of any fracture for having a transmissivity less than T is
P(T). The probability that all in an interval will be smaller
is:

PT = P (T )ni (1)

Here ni is the number of fractures in interval i. Again as-
suming that the dominating fracture determines the trans-
missivity of the interval, the expected number of intervals,
IT out of I, having a transmissivity smaller than T will be:

IT ≈
N∑

n=1

P (T )ni (2)

This equation can readily be solved for P(T) by the Newton-
Raphson iteration method using the ranked interval trans-
missivity and fracture frequency data. All three methods
will be applied to the data from borehole KLX 02 to deter-
mine parameters of the Pareto distribution.

The Pareto distribution

The Pareto or Power-Law distribution has been used for en-
sembles where a few entries show very high values whereas
the bulk shows low to extremely low values. An overview
of the theory and use of the Pareto distribution is given by
Adamic (2002). Examples of Pareto distributed parameters
are annual personal income of individuals, magnitudes of
earthquakes and number of hits at web sites. A related re-
lation is Zipf’s law that relates the frequency of occurrence
of an event to its rank, originally applied to the frequency
of use of words in English texts. The property of a few
occurrences of large values together with a bulk of very
small values is also typical for transmissivities of fractures
in fractured crystalline rocks (Fransson 2001a).

Pareto’s law can be given in terms of the CDF (Adamic
2002):

P (x) = P [X < x] = 1 − (m/x)k ,

m > 0, k > 0, x ≥ m (3)

Here m represents the smallest value in the sample and k
is the Pareto distribution parameter. As a consequence the
probability density function, PDF, will be:

pX (x) = kmk x−(k+1) (4)

Introducing a hypothetical minimum transmissivity Tmin in
Eq. (1) gives:

P (Tn) = P [T < Tn] = 1 − (Tmin/Tn)k (5)

In this case, a definition of the Pareto distribution based on
the maximum fracture transmissivity value, Tmax, will be
more practical to use, since normally very little is known
of the transmissivities of the tightest fractures.

P (Tmax) = 1 − (Tmin/Tmax)k (6)

Another way to assess the values of the CDF is to use a
rank based plotting probability like Weibull’s formula (see
Chow 1964):

P(Tn) = n

N + 1
(7)

Here Tn is the transmissivity with number n in size-sorted
sample of total number N. Thus:

P (Tmax) = N

N + 1
(8)

Equations (5) and (8) give:

T k
min = T k

max

N + 1
(9)

Inserting Eqs. (9) in (6) gives:

P (Tn) = 1 − (Tmax/Tn)k

N + 1
(10)

Rearranging and taking the log of Eq. (10) gives:

log [1 − P (Tn)] = log
[
T k

max

/
(N + 1)

] − k log (Tn) (11)

The Pareto distribution is thus easily recognised in a log-
log plot as a straight line with a slope –k, which makes
it possible to determine the distribution coefficient readily.
The Tmin-value can be assessed by the intersection of the
line with the 1−P(Tn)−1 line. Tmax can then be calculated
using Eq. (9) .

Evaluation of the parameters of the Pareto
distribution

Figure 3 shows a plot of fracture transmissivities from
KLX02 206–341 m evaluated by Fransson’s nonparamet-
ric method, the Posiva flowlog and by combinatorics. Data
from the different methods lie close to each other in the
range where reasonably good field data can be obtained by
hydraulic tests. For all data sets a power law trend-line has
been fitted by the least square method giving the parameters
k and T k

max/(N + 1).
The goodness of fit is measured by the calculated R2

values. When fitting the function for the non-parametric
evaluation data they were truncated at T=10−10 m2/s as
evaluated values for the very low transmissivities are not
very reliable, as pointed out by Fransson (2002).
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An interesting comparison can be made with other bore-
holes in the Äspö HRL. Figure 4 shows a comparison of
Pareto distributions for the borehole KLX02 206–341 m,
injection tests in 3-m intervals in KLX01 106–691 m and
inflow measurements to 2-m intervals of a pump test of KA
2598A (Vidstrand 1999), all evaluated by combinatorics.
All can be described well with the power-law regression
lines. The evaluated parameters of the distributions are
given in Table 1. As can be seen they are reasonably similar
for all the boreholes.

Fig. 3 Evaluation of the parameters of the Pareto distribution for
fracture transmissivity data for KLX 02 206–341 m

Fig. 4 Comparison of evaluated fracture transmissivities from three
boreholes at Äspö HRL

Table 1 Parameters for the fracture transmissivity distributions
for the boreholes KLX02 206–341 m, KLX01 106–691 m and KA
2598A at the Äspö HRL

Borehole (m) N k Tmax (m2/s)

KLX02 206–341 256 0.393 5.10E-05
KLX01 106–691 1637 0.442 7.19E-05
KA 2598A 1-90 315 0.531 7.21E-05

Some properties of the Pareto-Transmissivity
distribution

Tn can be determined from Eqs. (7) and (10) to be:

Tn = Tmax //[[1 − n/ (N + 1)] · (N + 1)]1/k

= Tmax/(N − n + 1)1/k (12)

or using the rank r = N − n + 1:

Tr = Tmax/r
1/k (13)

The sum of all transmissivities, Ttot, will then be:

Ttot = Tmax ·
[

1

11/k
+ 1

21/k
+ 1

31/k
· · · · · · · · · + 1

N 1/k

]

= Tmax · S (k, N ) (14)

S (k, N ) =
N∑

r=1

1

r1/k
(15)

The infinite series has a finite sum for k≤0,5 where
S (1/2, ∞) = π2/6 (Råde and Westergren 1990). In gen-
eral, only a few exact values for the infinite series can be
calculated, i.e., S (1/4, ∞) = π4/90 and S(1/6, ∞) =
π6/945 etc. However, the sum is readily calculated in a
spreadsheet for any value of N and k and its magnitude can
easily be read out from Fig. 5.

Fig. 5 S(k, N) as a function of k and N
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This gives some general indications on the relation be-
tween the most conductive fracture, Tmax and the transmis-
sivity of a tested section Ttot:

– If k and N are approximately known Tmax can easily be
estimated from Ttot.

– If the section contains few fractures Tmax is always of the
same order of magnitude as Ttot.

– If k<0.5, Tmax is always of the same order of magnitude
as Ttot.

– For very fractured sections where k>0.5 Tmax is up to an
order of magnitude smaller than Ttot but still makes up a
significant portion of it.

Simulated hydraulic tests

A way to test the credibility of the Pareto distribution as a
way to assess the fracture transmissivity distribution along a
borehole is to simulate transmissivity values for hydraulic
tests, i.e., intervals of a series of packer tests, and then
compare the resulting distribution to patterns of real test
sequences. Many authors (a.o. Gustafson and Krásny 1994)
have pointed out that data from packer tests tend to be
lognormal distributed and therefore a simple comparison
to a lognormal distribution was made.

Using the Pareto distribution a random transmissivity
value, Tn, for each fracture, ni, in an interval, i, can be
generated as:

Tni = Tmax/ (N · rnd)(1/k) (16)

Here N is the total number of fractures and rnd ∈ (0, 1] is
a random number. Tmax is the transmissivity of the largest
fracture. Figure 6 shows a cumulative distribution plot of
packer interval transmissivities for intervals with the same
numbers of fractures as the tested intervals of borehole
KLX 02 206–341 m as shown in Fig. 2. The parameters
for the Pareto distribution for this borehole are given in
Table 1.

Fig. 6 Cumulative distribution plot of simulated transmissivities
of test intervals with fracture frequencies as in borehole KLX02
206–341 m and Pareto distributed fracture transmissivities. Pareto
parameters: k=0.393, Tmax=5.1×10−5 m2/s and N=256

As a comparison, data from borehole KLX02 are
shown in the figure. Although the fit is not perfect,
the CDFs are very similar and an assumption of log-
normal distributed interval transmissivities cannot be
rejected.

Fracture apertures

A general relation transmissivity and hydraulic aperture of
a fracture is the so-called cubic law (Brown 1987). It can
be directly derived from the laminar flow between parallel
smooth plates. Knowing that fractures have no smooth sur-
faces, the hydraulic aperture can be seen as an equivalent
measure of the hydraulic fracture width. It has also shown
to be a realistic estimate of the effective aperture for grout
penetration (Fransson 2001b). The hydraulic aperture of
the fracture according to the cubic law will be:

b = 3

√

T · 12µw

ρwg
= C · T 1/3 (17)

Here ρw is the density of water and µw is the viscosity.
C is a proportionality-constant. Inserted in Eq. (10) using
Eq. (13) we obtain the aperture br of the fracture with rank
r as:

br = C · [Tmax/r
1/k]1/3 = C · T 1/3

max/(r
1/k)1/3 (18)

br = bmax/r1/3k (18b)

Here bmax is the hydraulic aperture of the largest frac-
ture. The hydraulic apertures thus follow another Pareto-
distribution with the parameter 3k.

Conclusions

An analysis of field data from boreholes of the Äspö HRL
have shown that the Pareto or power-law distribution is a
feasible and robust tool to assess the transmissivity distri-
bution of fractures penetrated by the borehole. The distribu-
tion accurately reproduces the common observation that a
few conductive fractures give the major contribution to the
borehole transmissivity and that there are many fractures
with a very low transmissivity.

The parameters of the distribution can readily be eval-
uated from fixed-interval water pressure tests or detailed
flow-logging. From the tested boreholes, however, one can
suspect that the value of the distribution parameter, k, in
the relatively sparsely fractured granitic rocks at Äspö has
a rather narrow range. Given the value of k the other param-
eters of the distribution can be estimated from the borehole
transmissivity and the fracture intensity. From the previous
text, it is obvious that the order of magnitude of the value
of Tmax is very much determined by the total transmissivity
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of the tested section, i.e., the whole borehole. Principally N
is known if if there is a core from the borehole mapped or if
the fracture intensity can be estimated. It may be suspected,
however, that there is a positive correlation between N and
k since intuition says that the more fractures there are, the
smaller will the most conductive fracture be as a portion of
the totals.

Finally, the Pareto distribution should be used as an em-
pirical tool until there is strong evidence that geological
processes produce this kind of relationships.
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Notation
bmax The hydraulic aperture of the largest fracture (m)
br The hydraulic aperture of the fracture with rank

r (m)
C Proportionality constant (−)
I The number of tested intervals (−)
IT The number of intervals having a transmissivity

smaller than T. (−)
i Interval number (−)
k Pareto distribution parameter (−)
m Sample average, smallest value of a Pareto dis-

tributed value (x)
N Total number of fractures in a tested borehole (−)
n Order number of a size-sorted sample (−)
ni Number of fractures in the tested interval i (−)
P(X) The probability that a member of a sample is

smaller than X (−)
PT The probability that all fracture transmissivities

of a tested interval are smaller than a pre-chosen
value (−)

pX(x) The probability density of a Pareto distribution
(−)

R Correlation coefficient (−)
r The rank of a value in an ordered sample (−)
rnd A random number (−)
S(k, N) Pareto sum (−)
s Sample standard deviation (x)
T Transmissivity (m2/s)
Ti Transmissivity of the tested interval i (m2/s)
Tmax Transmissivity of the largest facture (m2/s)

Ttot Transmissivity of the whole borehole (m2/s)
x Dummy variable (x)
µw The viscosity of water (Pa s)
ρw The density of water (kg/m3)
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