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Abstract: Frequency-magnitude statistics for natural hazards can greatly help in probabilistic 
hazard assessments. An example is the case of earthquakes, where the generality of a power-law 
(fractal) frequency-rupture area correlation is a major feature in seismic risk mapping. Other 
examples of this power-law frequency-size behaviour are landslides and wildfires. In previous 
studies, authors have made the potential association of the hazard statistics with a simple 
cellular-automata model that also has robust power-law statistics: earthquakes with slider-block 
models, landslides with sandpile models, and wildfires with forest-fire models. A potential expla- 
nation for the robust power-law behaviour of both the models and natural hazards can be made in 
terms of an inverse-cascade of metastable regions. A metastable region is the region over which an 
'avalanche' spreads once triggered. Clusters grow primarily by coalescence. Growth dominates 
over losses except for the very largest clusters. The cascade of cluster growth is self-similar 
and the frequency of cluster areas exhibits power-law scaling. We show how the power-law 
exponent of the frequency-area distribution of clusters is related to the fractal dimension of 
cluster shapes. 

The f requency-  size statistics of a number of natural 
hazards appear to satisfy power-law (fractal) 
scaling to a good approximation under a wide 
variety of conditions (for a review, see Malamud 
2004). These include earthquakes (Aki 1981; 
Turcotte & Malamud 2002), volcanic eruptions 
(Pyle 2000), wildfires (Malamud et al. 1998, 
2005; Ricotta et al. 1999), landslides (Guzzetti 
et al. 2002; Malamud et al. 2004), asteroid 
impacts (Chapman & Morrison 1994; Chapman 
2004) and potentially floods (Turcotte & Greene 
1993; Turcotte 1994; Malamud et al. 1996; 
Malamud & Turcotte 2006). In this paper, we will 
consider the f requency-area  statistics of three 
of these natural hazards: earthquakes, landslides, 
and wildfires. In each case the 'noncumulative'  
number of events N with area A satisfies the 
power-law relation 

N ~ A -/3 (1) 

to a good approximation and over many orders 
of magnitude, where/3  is a constant. A number of 
simple cellular-automata models have also been 
shown to exhibit robust power-law behaviour 
(e.g. see Malamud & Turcotte 2000), including 
the slider-block, sandpile, and forest-fire models. 
In this paper we will first discuss the f requency-  
area statistics of earthquakes, landslides, and 

wildfires. We will then discuss the f requency-  
area statistics of the slider-block, sandpile, and 
forest-fire cellular-automata models. Finally, in 
the context of real wildfires and the forest-fire 
model, we will advance a potential explanation 
for the robust power-law behaviour of both in 
terms of an inverse-cascade of metastable regions. 

Earthquakes 

The first natural hazard that was recognized to 
exhibit power-law frequency-area statistics was 
earthquakes. For more than fifty years it has been 
accepted that the rate at which earthquakes occur 
in a region generally satisfies the Gutenberg-  
Richter (1954) f requency-magni tude relation 

log ]//CE = --bM + log h (2) 

where/r  is the cumulative number of earthquakes 
with a magnitude greater than or equal to M in a 
specified area and time, and b and h are constants. 
Aki (1981) showed that Eq. (2) is equivalent to 
the power-law relation: 

NcE ~ AE -(t~-l) (3) 

where AE is the earthquake rupture area and 
(/3 - 1) = b in Eq. (2). The equivalent f requency-  
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Fig. 1. Cumulative frequency statistics of earthquakes in southern California (figure after Rundle et al. 2003). 
Shown are the cumulative number of earthquakes, NCE, occurring in southern California, with magnitudes greater 
than or equal to M as a function of M. Also shown is the equivalent square root of the rupture area, AlE/2. Twenty 
individual years are considered, with data from the Southern California Seismic Network: (a) 1983-1987, (b) 
1988-1992, (c) 1993-1997, (d) 1998-2002. The solid straight lines in (a) to (d) are the Gutenberg-Richter power- 
law relation (Eq. 2) with b = 1.0 and ti = 2.5 x 105 yr -1, fit to all the data from 1983-2002. The larger number of 
earthquakes in 1987, 1992, 1994, and 1999 can be attributed to the aftershocks of the Whittier-Narrows, Landers, 
Northridge, and Hector Mine earthquakes, respectively. During the other sixteen years, when there are not a large 
number of aftershocks, the data closely represent the background seismicity in southern California, and are nearly 
uniform from year to year, with very similar power-law exponents. 

area distribution for Eq. (3) that is noncumulative 
has a power-law exponent of /3, the same as in 
Eq. (1). 

As just one example of Gutenberg-Richter  
scaling, in Figure 1 we consider regional seismicity 
in southern California on a yearly basis, as given 
by Rundle e t  al.  (2003). Plotted for each individual 
year in the period 1983-2002 are the cumulative 
numbers of earthquakes ]VcE with magnitudes 
greater than or equal to M as a function of M. 
Also include is the Gutenberg-Richter  power-law 
relation (Eq. 2) (fit to all data, 1983-2002) with 
b = l . 0 a n d d =  2 . 5 x  105 yr - ] ,  shown as solid 
straight lines in Figures l a - d .  There is generally 
good agreement between each individual year's 
data and the Gutenberg-Richter  relation (solid 

line) for the whole period of record. The exceptions 
can be attributed to the aftershock sequences of 
the 1987 Whittier-Narrows, 1992 Landers, 1994 
Northridge, and 1999 Hector Mine earthquakes. 
During the sixteen other years when there are not 
a large number of aftershocks, the data closely 
represent the background seismicity in southern 
California, and are nearly uniform from year to 
year, with very similar power-law exponents. 
Earthquakes have been shown to satisfy power- 
law frequency-s ize  statistics over many regions 
around the world and over many orders of 
earthquake magnitude (Frohlich & Davis 1993; 
Kossobokov e t  al. 2000), although some authors 
question the validity for the very largest earth- 
quakes (Scholz 1997). 
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Landslides 

The second natural hazard we consider is the land- 
slide, a complex natural phenomenon that constitute 
a serious hazard in many countries (see also 
Turcotte et al. 2006 in this volume, which discusses 
landslide statistics in much more detail). Landslides 
are generally the result of triggers such as intense 
rainfall or earthquakes, with the trigger resulting 
in a landslide event that may include anything 
from just one single landslide up to many tens of 
thousands. A triggered landslide event can be 
quantified using landslide inventories, which nor- 
mally includes a tabulation of landslide areas, 
spatial position, and landslide type. 

Malamud et al. (2004) considered the frequency- 
area statistics of three 'fresh' triggered landslide 
events. The inventories for each landslide event 
were substantially complete, consisting of (1) 
more than 11,000 landslides triggered by the 17 
January 1994 Northridge (California) earthquake; 
(2) more than 4000 landslides triggered by a rapid 
snowmelt event in the Umbria region of Italy in 
January 1997; and (3) more than 9000 landslides 
triggered by heavy rainfall in Guatemala during 
late October and early November 1998. They con- 
sidered the probability densities p(AL) of landslide 
areas AL, defined as 

1 6NL 
p(AL) -- (4) 

NLT 8AL 

where ~NL is the number of landslides with areas 
between AL and AL q-~AL, and NLT is the total 
number of landslides in the inventory. 

Malamud et al. (2004) showed that the three sets 
of probability densities were in excellent agreement 
with each other, and correlated well with a three- 
parameter inverse gamma probability distribution 
function (pdf), which for medium and large land- 
slide areas can be approximated by 

p(AL) "-~ aF(/3 - 1) (5) 

where AL is the area of individual landslides, a 
and 13 are constants, and F ( / 3 -  1) is the gamma 
function of/3 - 1. 

The tail of the probability distribution for large 
landslide areas is a power-law with exponent /3, 
equivalent to Eq. (1). Malamud et al. (2004) used 
a maximum-likelihood fit of the inverse-gamma 
distribution to the three sets of landslide probabi- 
lity densities, taking a = 1.28 x 10-3km 2 and 
/3 = 2.40. Thus the power-law exponent for the 
medium and large landslides (the 'tail' of the dis- 
tribution) is /3=2.40.  The three inventories 

considered by Malamud et al. (2004) contained 
4000-11,000 landslides. To examine further the 
'general' landslide distribution given by Eq. (5) 
Turcotte et al. (2006) (in this volume) examined a 
much smaller, but still substantially complete, 
inventory of 165 landslides triggered by rainfall in 
the region of Todi, Central Italy, and found a very 
similar power-law exponent/3. 

There is accumulating evidence (for a review, 
see Guzzetti et al. 2002) that the frequency-area 
distribution of medium and large landslides 
decays as an inverse power of the landslide area. 
This behaviour is observed despite large differences 
in landslide types, sizes, distributions, patterns, and 
triggering mechanisms. 

Wildfires 

Our final example of a natural hazard that 
follows power-law frequency-area statistics to a 
good approximation is the wildfire. Malamud 
et al. (1998) considered four wildfire data sets 
from the USA and Australia. The four data sets 
come from a wide variety of geographic regions 
with different vegetation types and climates. In 
each case, the noncumulative number of fires per 
year plotted as a function of burned fire area AF 
correlated well with the power-law relationship 
(Eq. 1), with/3 = 1.3-1.5. 

Malamud et al. (2005) carried out a comprehen- 
sive study of the frequency-area statistics of 
88,916 wildfires on United States Forest Service 
lands in the conterminous USA during the period 
1970-2000, examining the statistics both spatially, 
as a function of ecoregion, and temporally. 
Ecoregions are land units classified by climate, veg- 
etation, and topography. As the wildfire inventories 
used were not 'complete' (there are many more 
'smaller' wildfires than measured), probability den- 
sities as defined in Eq. (4) were not appropriate for 
the analyses and they used frequency densities 
f(AF) defined as 

6NF 
f(AF) -- 6AF (6) 

where AF is the wildfire burned area, and 6NF the 
number of wildfires in a 'bin' of width 6AF. The 
frequency densities f(AF) are then the number of 
wildfires per 'unit' bin. The frequency density 
f(AF) in Eq. (6) is equal to the probability density 
p(AF) introduced in Eq. (4) multiplied by the total 
number of wildfires in the inventory NFT. For 
each of eighteen different ecoregions examined in 
the conterminous USA, Malamud et  al. (2005) 
found that the noncumulative number of fires per 
year plotted as a function of burned fire area AF 
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Fig. 2. Normalized frequency-area wildfire statistics for (a) Mediterranean and (b) Subtropical ecoregion divisions, 
for the period 1970-2000 (figure after Malamud et al. 2005). Shown (circles) are normalized frequency densitiesf(AF) 
(number of wildfires per 'unit bin' of 1 km 2, normalized by database length in years and USFS area within the 
ecoregion) plotted as a function of wildfire area AF. Also shown for both ecoregions is a solid line, the best least-squares 
fit to Eq. (1), with coefficient of determination r 2. Dashed lines represent lower/upper 95% confidence intervals, 
calculated from the standard error. Horizontal error bars are due to measurement and size binning of individual 
wildfires. Vertical error bars represent two standard deviations ( ___ 2 s.d.) of the normalized frequency densitiesj~(AF). 

correlated well with the power-law relationship 
(Eq. 1), with 13 = 1.30-1.81.  Two examples are 
given in Figure 2, showing the two extremes of 
values obtained by the authors. 

In Figure 2a are presented the f requency-area  
statistics for 16,423 wildfires in the Subtropical  
ecoregion division (within the southeastern part 
of the USA) and in Figure 2b, 475 wildfires in 
the Medi terranean ecoregion division (within 
California, USA). In both cases, excellent corre- 
lations are obtained with the power-law relationship 
(Eq. 1), with /3 = 1.81 _ 0.07 (___2 s.d.) for the 
Subtropical  ecoregion and /3 = 1.30 _ 0.05 
( + 2  s.d.) for the Medi terranean ecoregion. One 
of the purposes of this paper is to examine this 
variability of the power-law exponent/3. 

A number of other authors (e.g. Niklasson & 
Granstrom 2000; Minnich 2001" Ricotta et al. 
2001) have also found good correlations of the 
f requency-area  distributions of wildfires with the 
power-law relation (1), although others disagree 
(Cumming 2001; Reed & McKelvey 2002). 
Millington et al. (2006), another chapter in this 
volume, give a detailed discussion and review of 
power-law scaling in wildfire areas. In addition to 
wildfire areas, some authors (Sole & Manrubia 
1995a, b) have found that the f requency-area  
distributions of clusters of trees in forests also 
follow power-law statistics. 

Considering the many complexities of the 
initiation and propagation of wildfires, it is remark- 
able that the f requency-area  statistics are similar 
under a wide variety of environments. The 

proximity of combustible material varies widely. 
The behaviour of a particular wildfire depends 
strongly on meteorological conditions. Fire-fighting 
efforts extinguish many fires. Despites these com- 
plexities, the power-law f requency-area  statistics 
of actual wildfires seems very robust. 

Cellular-automata models 

Cellular-automata (CA) models are lattice-based 
models that have simple 'rules', but often exhibit 
complex behaviour. At each time step, a series of 
nearest-neighbour rules of interaction are applied, 
and individual cells are updated in the next step. A 
brief history of cellular automata is given by Sarkar 
(2000). A number of 'simple' CA models have 
been shown to exhibit robust power-law statistics 
(for reviews see Turcotte 1999; Malamud & Turcotte 
2000). We will discuss three of these here, the sand- 
pile, forest-fire, and slider-block models. 

We begin with the sandpile model introduced by 
Ba k  et al. (1988) in the context of his discussions on 
self-organized criticality. In this model there is a 
square grid of boxes and at each time step a particle 
is dropped into a randomly selected box. When a 
box accumulates four particles, they are redistribu- 
ted to the four adjacent boxes, or in the case of 
edge boxes, lost from the grid. Redistributions can 
lead to further instabilities, with 'avalanches' of 
particles lost from the edges of the grid. Because 
of this 'avalanche' behaviour, this was called a 
'sandpile' model. This is a cellular-automata 
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model because the boxes are the cells and the 
nearest-neighbour redistribution rules constitute 
the automata. This CA model, and others like it, 
generate 'avalanches' with a power-law frequency- 
size distribution, and contains a steady-state 
'input', with the 'output' occurring in the 
'avalanches'. The noncumulative frequency-area 
distribution of model avalanches was found to 
satisfy the power-law distribution given in Eq. (1) 
with /3=  1.0-1.3 (Bak et al. 1988; Kadanoff 
et al. 1989; Turcotte 1997). 

A second CA model with robust power-law stat- 
istics is the forest-fire model (Bak et  al. 1990; 
Drossel & Schwabl 1992a, b). In the simplest 
version of this model, a square grid of sites is 
considered. At each time step either a tree is planted 
on a randomly chosen site (if the site is unoccupied) 
or a spark is dropped on the site. If the spark is 
dropped on a site with a tree, that tree and all 
adjacent sites with trees are 'burned' in a model 
'forest fire'. The firing frequency f is the inverse 
number of attempted tree drops on the square grid 
before a model match is dropped on a randomly 
chosen site. If f = 1 / 100, there have been 99 attempts 
to plant trees (some successful, some unsuccessful) 
before a match is dropped at the 100th time step. 
Two examples of model fires are given in Figure 3. 
For a broad range of grid sizes and firing frequencies 
(discussed in more detail in the next section), the fre- 
quency-area distribution of the small and medium 
model fires again satisfies Eq. (1) with /3 = 1.19 
(Grassberger 2002). 

A third CA model that exhibits robust power-law 
statistics is the slider-block model (Burridge & 
Knopoff 1967; Carlson & Langer 1989). In this 
model, an array of slider blocks are connected to 

a constant velocity driver plate by puller springs 
and to each other by connector springs. The 
blocks exhibit st ick-slip behaviour as a result of 
frictional interactions with the plate across which 
they are pulled. The area is defined to be the 
number of blocks that participate in a slip event. 
The frequency-area distribution of smaller and 
medium slip events again satisfies Eq. (1), with 
/ 3=  1.0-1.5 (Carlson & Langer 1989; Huang 
et al. 1992; Carlson et al. 1994). This model is 
deterministic, whereas the sandpile and forest-fire 
models are stochastic. 

A number of authors have discussed each of these 
CA models in the context of specific natural 
hazards: the sandpile model with landslides (e.g. 
Guzzetti et al. 2002), the forest-fire model with 
wildfires (Malamud et al. 1998), and the slider- 
block model with earthquakes (Burridge & 
Knopoff 1967; Carlson & Langer 1989). In the 
next section, we will advance an 'explanation' for 
both the behaviour of the models and natural 
hazards in terms of the coalescence of growing 
metastable regions, by introducing the inverse- 
cascade model in the context of the forest-fire 
model. 

Metastable regions and the 
inverse-cascade model 

Before introducing the inverse-cascade model, we 
will discuss the role of metastable regions in CA 
models. A metastable region is the region over 
which an 'avalanche' spreads once the region is 
triggered. The role of metastable regions can be 
illustrated by the forest-fire model. In this model, 

Fig. 3. Two forest-fire model examples using a grid of 128 • 128 cells and a forest-fire run with sparking 
frequency 1/f = 2000. The black squares constitute the model forest fires. The light grey squares are unburned trees. 
The white regions are unoccupied grid points (i.e. no trees). The area of the model fire in (a) is AF = 204 trees and 
in (b) AF = 5237 trees; the latter is seen to span the entire grid. 
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a metastable region is a cluster of trees that will 
burn when any of the trees is ignited by a match. 
Thus at any one time, all clusters of trees on the 
grid are metastable in the sense that each one has 
the potential to be ignited. We will denote as AF 
the area of a cluster, NF the number of model fires 
at a given size A F that bum over time, and Ncluste r 

the number of clusters on the grid (at any one 
time) with area AF, each of which could potentially 
burn to give a fire of size AF.  Because the prob- 
ability that a match will strike a cluster is pro- 
portional to its a r e a  AF,  then the probability that 
a cluster of size AF will burn in a specified time 
interval, is proportional to the product of the 
cluster a r e a  A F  and the number of clusters gcluster, or 

NF ~AFNclus~r. (7) 

Because the frequency-area distribution satisfies 
Eq. (1), NF ~ AF -~, it follows from Eq. (7) that 

Ncluster ~ AF (fl+l). (8) 

A distribution of fire sizes over time is a power- 
law with exponent -/3. This implies a distribution 
of cluster sizes on the grid at one 'snapshot' in 
time, that is, a power-law with exponent - (/3 + 1). 

The inverse-cascade model is a relatively simple 
model that might provides a potential explanation 
for the power-law frequency-size distributions 
found in both the CA models and actual natural 
hazards. To better understand the inverse-cascade 
model, we continue our discussion in the context 
of the forest-fire model. 

It has been shown (Turcotte et al. 1999; Turcotte 
1999; Gabrielov et al. 1999) that tree clusters grow 
primarily by coalescence. There are three ways that 
clusters form on the grid: 

(1) A newly planted tree forms a 'single cluster'; 
in other words there are no adjacent cells con- 
taining trees and a cluster of 1 tree is formed. 

(2) A tree is planted immediately adjacent to an 
existing cluster with Ai trees; a new cluster 
of (A  i § 1) trees is formed. 

(3) A newly planted tree bridges the gap between 
two clusters with A i and Aj trees; a new cluster 
is formed with (A i §  § 1) trees. 

A detailed study of cluster growth in the forest-fire 
model by Yakovlev et al. (2005) has shown that 
the last method, cluster coalescence, dominates 
the cluster growth process. Trees cascade from 
smaller to larger clusters until they are lost in the 
fires that destroy the largest clusters, and the 
cascade is terminated. This is termed an 'inverse 
cascade', because the flow of trees is from smaller 
to larger clusters. Turcotte et al. (1999) quantified 
this inverse cascade by introducing a cluster 

coalescence rate cij, which is the rate at which Ni 
clusters of a r e a  A i coalesce with Nj clusters of 
area Aj. The rate of coalescence c 0 is proportional 
to the cluster numbers Ni and Nj and to the linear 
dimensions of the clusters ri and rj: 

c q ~ N i N j ~ .  (9) 

We further hypothesize a power-law (fractal) 
scaling between the linear dimension of a cluster 
and its area: 

ri ~ A~i, rj ~ A~. (lO) 

For Euclidian clusters, for example a 'circle' of 
occupied sites, then ~ = 1/2. There are two contri- 
butions to the fractal structure of clusters. The first 
is due to the density of trees in the cluster. If the 
density of trees is low, then the cluster will have a 
larger radius relative to the number of trees in the 
cluster. The second effect is the irregularity of the 
boundary of the cluster. If the cluster has thin 
arms (tentacles) that reach out, these will result in 
an increased rate of coalescence. 

The studies of Gabrielov et al. (1999) and 
Yakovlev et al. (2005) have shown that, at any 
given time, the number of clusters on the grid 
Ncluste r with area AF is given by 

Ncluster ~ AF (~+1"5). (11) 

Comparing Eqs. (8) and (11), we obtain 

= ~:+ 0.5. (12) 

The power-law exponent/3 of the scaling relation 
between the number of fires NF and AF is 
( ~ +  0.5). From Eqs. (1) and (12) we have 

NF ~ AF/3 

AF(~+~ 
(13) 

Up to this point we have been examining the scaling 
of the frequency-area distributions of model fires 
and clusters. We now examine the fractal nature 
of the two-dimensional clusters and fires them- 
selves in the forest-fire model, by associating the 
values of ~ just discussed with the fractal dimen- 
sion D of the tree clusters and the model fires. 

The statistical fractal structure of fires and clus- 
ters of area AF are identical. This association is 
illustrated by the fractal construction given in 
Figure 4. At first order i = 1 (Fig. 4a) we have a 
single tree with linear size r~ = 1 and a r e a  A1 = 1 
tree. At second order i = 2, we add four trees in 
the adjacent sites, as shown in Figure 4b. The 
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Fig. 4. Deterministic fractal construction illustrating the dependence of  the rate of  coalescence cij on areas A i and Aj. 
In (a) we consider a single 'tree' so that linear size rl = 1 and a r e a  A1 ---- 1 tree. In (b) we fill the four adjacent 
sites with trees so that the linear size is now r2 = 3 and area is A2 = 5 trees. In (c) we repeat this construction using the 
structure given in (b) so that linear size is now r3 = 9 and area A3 = 25 trees. The fractal dimension of this 
construction is D = In 5/In 3 = 1.46. 

linear size is now r2 = 3 and area A2 = 5 trees. 
At third order i = 3 we take four of the second- 
order structures from Figure 4b, in analogy with the 
transition from Figures 4a to b, with the result 
given in Figure 4c. The linear size is now r3 = 9 
with areaA3 = 25 trees. From Eq. (10) we have 

J - r  j" 
(14) 

If we take A i = A2  = 5, Aj  = Aa = 1, ri = r2 = 3, 
rj = rl = 1 for our fractal construction, we then have 

5 # = 3  (15) 

In 3 
- -  ~ 0.683. (16) 

~ =  ln5  

The fractal dimension D of  this construction can be 
defined as (Turcotte 1997) 

In (A j /A i )  In 5 
D -  - -  -- ~ 1.465. (17) 

In ( r j / r i )  In 3 

If  we compare Eq. (16) to Eq. (17), we have 

1 
= -- .  (18) 

D 

Although this result was derived for the particular 
fractal construction illustrated in Figure 4, it is a 

general result relating ri, the linear dimension of a 
fractal object, to its area Ai.  

Substitution of  Eq. (18) into Eq. (13) gives 

1 
/3 = 0.5 + - ~ .  (19) 

/_) 

Thus we have related the power-law exponent  /3 
of  the f requency-a rea  distribution of  model  fires 
to the fractal dimension D of  the tree clusters. The 
fractal structure in Figure 4 emphasizes the irregu- 
larity of  the boundary of  the cluster, which domi- 
nates over tree density in contributing to high 
rates of  coalescence. This irregularity is also illus- 
trated in the model  fires given in Figure 3. Low 
fractal dimensions (D small) lead to large collision 
rates and fewer large clusters and fires (i.e. small/3) 
in the model.  If  the clusters are Euclidian, for 
example,  circles of  filled sites, the cluster fractal 
d imension is D = 2. From Eq. (19) this would  
give / 3 =  1, that is, N ~ A - - 1 ,  a critical (i.e. 
power-law) dependence often associated with 
'self-organized criticality' (Turcotte 1999). 

A very comprehensive numerical  study of  the 
same two-dimensional  forest-fire model  that we 
have considered in this paper has been given by 
Grassberger (2002). He considered grid sizes up 

10 cells, and to Ng = 65,536 x 65,536 ~ 4.295 x 9 
firing frequencies as small as f =  1/256,000. 
Under  a wide range of  conditions, he found that 
the f requency-a rea  distribution of  model  fires was 
well approximated by Eq. (1), taking /3 = 1.19. 
From Eq. (19), this corresponds to a cluster fractal 
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dimension of D ---- 1.45. It is interesting to note that 
the fractal construction illustrated in Figure 4 has a 
fractal dimension D = 1.46. 

In Figure 2 we presented f requency-area  statis- 
tics for wildfires in two different ecoregions in the 
USA. Although both data sets showed excellent 
correlation with the power-law relationship 
(Eq. 1), the exponents were quite different. One 
potential explanation for these differences would 
be a variation in the fractal dimension (if one 
exists) of the combustible materials in the two 
regions. In the Mediterranean ecoregion division 
we have/3  = 1.30, and from Eq. (19) the required 
'cluster' fractal dimension is D ---- 1.25. In the Sub- 
tropical ecoregion division we have/3 = 1.81, and 
from Eq. (19) D ---- 0.76. Because this is less then 
D-----1.0, it does not define a cluster. A two- 
dimensional cluster requires that 1.0 < D < 2.0. 
From Eq. (19) we therefore require 1.0 < / 3  < 1.5. 
Because /3 = 1.81 for the subtropical ecoregion, 
the cascade model cannot explain the power-law 
scaling of fire occurrences. 

Discussion and conclusions 

In this paper we have considered the f requency-  
area statistics of three natural hazards: earthquakes, 
landslides, and wildfires. In each case, the data can 
be well characterized by robust power laws. We 
have also considered three cellular-automata 
models. In each case 'avalanches' occur and the 
f requency-area  distributions of the avalanches are 
well approximated by power laws. In order to 
advance a potential explanation for the robust 
power-law behaviour observed in both data and 
CA models, we consider an inverse-cascade 
model for metastable cluster coalescence. We find 
that this cascade model also gives robust power- 
law f requency-area  statistics with the power- 
law exponent controlled by the fractal dimension 
of the clusters. The cascade model requires that 
the power-law exponent fl be in the range 
1.0 < / 3  _< 1.5. Thus the inverse-cascade model 
provides a satisfactory basis for the behaviour of 
the forest-fire CA model. 

Many data sets for real wildfires of f requency-  
area distributions also fall into the required range 
1.0 < / 3  < 1.5 (e.g. the Mediterranean ecoregion, 
Fig. 2b); however, others clearly do not (e.g. the 
Subtropical ecoregion, Fig. 2a). Of the eighteen 
ecoregion divisions examined by Malamud et al. 
(2005), half of them have 1.3 < / 3  < 1.5 and the 
other half 1.5 < / 3  < 1.8. We conclude that the 
cascade model does not provide a full explanation 
for the power-law f requency-area  statistics of 
actual wildfires. This is not surprising, because the 
spread of actual wildfires is much more complex 

than the cellular-automata forest-fire model. Never- 
theless, the robust agreement of wildfire data with 
power-law scaling is striking. 

The contributions of author D.L.T. were partially sup- 
ported by NSF Grant No. ATM 0327558 and the contri- 
butions of author B.D.M. were partially supported by the 
European Commission's Project No. 12975 (NEST) 
'Extreme events: Causes and consequences (E2-C2)'. 

References 

AKI, K. 1981. A probabilistic synthesis of precursory 
phenomena. In: SIMPSON, D. W. & RtCHAROS, 
P. G. (eds) Earthquake Prediction. Maurice 
Ewing Series 4. American Geophysical Union, 
Washington, D.C., 566-574. 

BAK, P., TANG, C. 8z WIESENFELD, K. 1988. Self- 
organized criticality. Physical Review A, 38, 
364-374. 

BAK, P., CHEN, K. t~ TANG, C. 1990. A forest-fire 
model and some thoughts on turbulence. Physics 
Letters A, 147, 297-300. 

BURRIDGE, R. & KNOPOFF, L. 1967. Model and 
theoretical seismicity. Seismological Society of 
America Bulletin, 57, 341-371. 

CARLSON, J. M. tgc LANGER, J. S. 1989. Mechanical 
model of an earthquake fault. Physical Review A, 
40, 6470-6484. 

CARLSON, J. M., LANGER, J. S. t~z SHAW, B. E. 1994. 
Dynamics of earthquake faults. Reviews of 
Modern Physics, 66, 657-670. 

CHAPMAN, C. R. 2004. The hazard of near-Earth aster- 
oid impacts on earth. Earth and Planetary Sciences 
Letters, 222, 1-15. 

CHAPMAN, C. R. & MORR1SON, D. 1994. Impacts on 
the Earth by asteroids and comets: assessing the 
hazard. Nature, 367, 33-40. 

CUMM1NG, S. G. 2001. A parametric model of the fire 
size distribution. Canadian Journal of Forest 
Research, 31, 1297-1303. 

DROSSEL, B. 8z SCHWABL, F. 1992a. Self-organized 
criticality in a forest-fire model. Physica A, 191, 
47 -50. 

DROSSEL, B. t~; SCHWABL, F. 1992b. Self-organized 
critical forest-fire model. Physical Review Letters, 
69, 1629-1632. 

FROHLICH, C. & DAVIS, S. D. 1993. Teleseismic b 
values; or, much ado about 1.0. Journal of Geo- 
physical Research, 98(B 1), 631-644. 

GABRIELOV, A., NEWMAN, W. I. & TURCOTTE, D. L. 
1999. An exactly soluble hierarchical clustering 
model: inverse cascades, self-similarity, and 
scaling. Physical Review E, 60, 5293-5300. 

GRASSBERGER, P. 2002. Critical behavior of the 
Drossel-Schwabl forest fire model. New Journal 
of Physics, 4, 17.1-17.15. 

GUTENBERG, B. t~z RICHTER, C. F. 1954. Seismicity of 
the Earth and Associated Phenomena, 2nd edn. 
Princeton University Press, Princeton. 

GUZZETTI, F., MALAMUD, B. D., TURCOTTE, D. L. & 
REICHENBACH, P. 2002. Power-law correlations 

 at Nanyang Technological University on May 26, 2015http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


INVERSE CASCADE AND NATURAL HAZARDS 9 

of landslide areas in central Italy. Earth and 
Planetary Science Letters, 195, 169-183. 

HUANG, J., NARKOUNSKAIA, G. & TURCOTTE, D. L. 
1992. A cellular-antomata, slider-block model for 
earthquakes: 2. Demonstration of self-organized 
criticality for a 2-D system. Geophysical Journal 
International, 111, 259-269. 

KADANOFF, L. P., NAGEL, S. R., Wu, L. & ZHOU, 
S. M. 1989. Scaling and universality in avalanches. 
Physical Review, A39, 6524-6537. 

KOSSOBOKOV, V. G., KEILIS-BOROK, V. I., TURCOTTE, 
D. L. & MALAMUD, B. D. 2000. Implications of a 
statistical physics approach for earthquake hazard 
assessment and forecasting. Pure and Applied Geo- 
physics, 157, 2323-2349. 

MALAMUD, B. D. 2004. Tails of natural hazards. 
Physics World, 17, 31-35. 

MALAMUD, B. D. & TURCOTTE, D. L. 2000. Cellular- 
automata models applied to natural hazards. IEEE 
Computing in Science and Engineering, 2, 42-51. 

MALAMUD, B. D. & TURCOTTE, D. L. 2006. The 
applicability of power-law frequency statistics to 
floods. Journal of Hydrology, 322, 160-180. 

MALAMUD, B. D., TURCOTTE, D. L. & BARTON, C. C. 
1996. The 1993 Mississippi River flood: a 
one-hundred or a one-thousand year event? 
Environmental and Engineering Geology, 2, 
479 -486. 

MALAMUD, B. D., MOREIN, G. & TURCOTTE, D. L. 
1998. Forest fires: an example of self-organized 
critical behavior. Science, 281, 1840-1842. 

MALAMUD, B. D., TURCOTTE, D. L., GUZZETTI, F. & 
REICHENBACH, P. 2004. Landslide inventories 
and their statistical properties. Earth Surface Pro- 
cesses and Landforms, 29, doi 10.1002/esp.1064, 
687-711. 

MALAMUD, B. D., MILLINGTON, J. D. A. & PERRY, 
G. L. W. 2005. Characterizing wildfire regimes in 
the USA. Proceedings of the National Academy 
of Sciences, 102, 4694-4699. 

MILLINGTON, J. D. A., PERRY, G. L. W. & MALAMUD, 
B. D. 2006. Models, data and mechanisms: 
quantifying wildfire regimes. In: CELLO, G. & 
MALAMUD, B. D. (eds) Fractal Analysis for 
Natural Hazards. Geological Society, London, 
Special Publications, 261, 155-167. 

MINNICH, R. A. 2001. An integrated model of two 
fire regimes. Conservation Biology, 15, 1549-1553. 

NIKLASSON, M. & GRANSTROM, A. 2000. Numbers 
and sizes of fires: long-term spatially explicit fire 
history in a Swedish boreal landscape. Ecology, 
81, 1484-1499. 

PYLE, D. M. 2000. Sizes of volcanic eruptions. 
In: SIGURDSSON, H., HOUGHTON, B., RYMER, H., 
STrX, J. & MCNUTT, S. (eds) Encyclopedia 
of Volcanoes. Academic Press, San Diego, 
263 -269. 

REED, W. J. & MCKELVEY, K. S. 2002. Power 
law behaviour and parametric models for the 

size-distribution of forest fires. Ecological Model- 
ling, 150, 239-254. 

RICOTTA, C., AVENA, G. & MARCHETTI, M. 1999. The 
flaming sandpile: self-organized criticality and 
wildfires. Ecological Modelling, 119, 73-77. 

RICOTTA, C., ARIANOUTSOU, M. ET AL. 2001. 
Self-organized criticality of wildfires ecologi- 
cally revisited. Ecological Modelling, 141, 
307-311. 

RUNDLE, J. B., TURCOTTE, D. L., SHCHERBAKOV, R., 
KLEIN, W. & SAMMIS, C. 2003. Statistical 
physics approach to understanding the multiscale 
dynamics of earthquake fault systems. Reviews 
of Geophysics, 41, article number 1019, 
doi: 10.1029/2003RG000135, 5-1-5-30. 

SARKAR, P. 2000. A brief history of cellular automata. 
ACM Computing Surveys, 32, 80-107. 

SCHOLZ, C. H. 1997. Size distributions for large and 
small earthquakes. Seismological Society of 
America Bulletin, 87, 1074-1077. 

SOLE, R. V. & MANRUBIA, S. C. 1995a. Self-similarity 
in rain forests: Evidence for a critical state. 
Physical Review E, 51, 6250-6353. 

SOLE, R. V. & MANRUBIA, S. C. 1995b. Are rainforests 
self-organized in a critical state? Journal of 
Theoretical Biology, 173, 31-40. 

TURCOTTE, D. L. 1994. Fractal theory and the esti- 
mation of extreme floods. Journal of Research of 
the National Institute of Standards and Technol- 
ogy, 99, 377-389. 

TURCOTTE, D. L. 1997. Fractals and Chaos in 
Geology and Geophysics, 2rid edn. Cambridge 
University Press, Cambridge. 

TURCOTTE, D. L. 1999. Self-organized criticality. 
Reports on Progress in Physics, 62, 1377-1429. 

TURCOTTE, D. L. & GREENE, L. 1993. A scale- 
invariant approach to flood-frequency analysis. 
Stochastic Hydrology and Hydraulics, 7, 33-40. 

TURCOTTE, D. L. & MALAMUD, B. D. 2002. 
Earthquakes as a complex system. In: LEE, W. H. 
K., KANAMORI, H., JENNINGS, P. C. & KISSLINGER, 
C. (eds) International Handbook of Earthquake & 
Engineering Seismology. Academic Press, 
London, 209-227. 

TURCOTTE, D. L., MALAMUD, B. D., GUZZETTI, F. & 
REICHENBACH, P. 2006. A general landslide distri- 
bution applied to a small inventory in Todi, Italy. In: 
CELLO, G. & MALAMUD, B. D. (eds) FractalAnaly- 
sis for Natural Hazards. Geological Society, 
London, Special Publications, 261, 105-111. 

TURCOTTE, D. L., MALAMUD, B. D., MOREIN, G. & 
NEWMAN, W. I. 1999. An inverse-cascade model 
for self-organized critical behavior. Physica A, 
268, 629-643. 

YAKOVLEV, G., NEWMAN, W. I., TURCOTTE, D. L. & 
GABRmLOV, A. 2005. An inverse cascade model 
for self-organized complexity and natural 
hazards. Geophysical Journal International, 163, 
433 -442. 

 at Nanyang Technological University on May 26, 2015http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/

