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[1] Fracture intersections play a basic role in contaminant transport through fracture
networks because they allow different fluids to mix and disperse along the flow paths. We
use experimental and numerical methods to understand and improve predictions of these
phenomena. Laboratory experiments of mixing between two miscible fluids were
performed within an artificial, rough-walled fracture intersection made of textured glass.
We also develop a numerical model of mixing based on local application of streamline
routing within the irregular aperture distribution of the intersection. This model shows
good agreement with the laboratory experiments, both in the amount of average mixing
and in the spatial distribution of dye streamlines. The numerical model is used to
generalize our results based on aperture statistics, and shows that mixing is significantly
affected by how well apertures correlate across the intersection, especially as fractures
are closed. We conclude that flow channelization through rough-walled intersecting
fractures significantly enhances physical mixing compared to intersecting parallel plates.
Relative to transport through parallel plate aperture networks, surface roughness may
reduce solute dilution and increase solute dispersion.
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Res., 111, B12206, doi:10.1029/2005JB004087.

1. Introduction

[2] Surface and subsurface rocks are pervasively frac-
tured, providing discrete paths for groundwater flow. Frac-
ture networks often have a great deal of heterogeneity in
fracture lengths, orientations and apertures, making it diffi-
cult to accurately predict flow and especially solute transport
[Berkowitz and Scher, 1998]. Better predictions of the
breakthrough times, spatial distributions and concentrations
of solutes in fracture networks based on limited data con-
tinue to be critical for effective contaminant remediation.
[3] A universal feature of flow through rough-walled

fractures is fluid channeling, in which interconnected path-
ways of larger apertures transport a significant fraction of
the total flow. Channeling in single fractures has been
observed experimentally [e.g., Pyrak-Nolte et al., 1987;
Brown et al., 1998] and in field studies [e.g., Bourke
1987] and is characterized by a wide distribution of flow
velocities spread among the different channels [Brown et
al., 1998]. Channeling causes increasing deviation from
parallel-plate behavior as the fracture walls are closed
[e.g., Brown, 1987; Brown et al., 1998; Thompson and
Brown, 1991; Nicholl and Detwiler, 2001].
[4] Channeling of fluid flow naturally leads to spatial

heterogeneity in fluid compositions. As two different fluids
meet and mix at fracture intersections, there is potential for
chemical interaction and enhanced fluid-rock interaction.
Depending on the fluid compositions, mixing can induce

either dissolution of the fracture wall rock or precipitation
of minerals in the fractures. Such behavior can have
marked implications for understanding and exploitation of
geothermal systems, understanding the formation of ore
deposits including the statistics of the spatial distribution of
ores, in situ leaching for solution mining, and prediction of
behavior of groundwater interaction with heat-producing
waste canisters.
[5] Despite the knowledge that fracture surface roughness

imparts channeling in individual fractures, parallel-plate
apertures have been assumed for most research on solute
mixing within individual fracture intersections [e.g., Hull
and Koslow, 1986; Robinson and Gale, 1990; Berkowitz et
al., 1994; Li, 1995; Stockman et al., 1997; Park and Lee,
1999; Li, 2002]. These studies provide two useful end-
member cases to consider: streamline routing and complete
mixing [Hull and Koslow, 1986]. Streamline routing occurs
when two fluids meet in the intersection and based on their
relative flow rates are partitioned into the outlet legs along
established streamlines in the flow, with most flow routed
into the adjacent rather than opposite fracture (Figure 1). In
this model, the separate fluids do not mix across streamlines
(i.e., molecular diffusion is negligible compared to fluid
advection). For streamline routing in parallel-plate intersec-
tions, the outlet concentrations depend only on the ratio of
inlet to outlet flow rates for adjacent legs of the intersection.
In two dimensions, one outlet will always contain pure inlet
solution and the other will contain either a pure fluid or an
inhomogeneous mixture of the two fluids (Figure 1).
[6] In contrast, complete mixing occurs when the two

fluids enter an intersection and are completely mixed so that
the fluids exiting through each outlet fracture of the inter-
section are homogeneous and identical in composition. If
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flow through the fractures is slow enough, molecular
diffusion in the intersection will homogenize the inlet fluids
[e.g., Berkowitz et al., 1994; Li, 1995; Stockman et al.,
1997]. Park and Lee [1999] derived analytical solutions to
intersection mixing that include both advection and diffu-
sion. Complete mixing maximizes solute dilution and dis-
persion, while streamline routing represents minimum
dilution and mixing through parallel plate intersections.
[7] Numerical and experimental studies of contaminant

dispersion through large fracture networks have also gen-
erally assumed parallel-plate apertures and two-dimensional
flow [e.g., Robinson and Gale, 1990; Berkowitz and Scher,
1998; Park et al., 2001]. In a network of multiple intersect-
ing parallel-plate fractures, Hull et al. [1987] found exper-
imentally that streamline routing rules alone could not fit
the solute dispersion they observed. When the models were
modified to allow diffusion along the fractures and stream-
line routing in the intersections the fit to experimental data
improved. Similarly, Bruderer and Bernabe [2001] modeled
flow and solute dispersion through a two-dimensional
network of square capillary tubes, each with its own
hydraulic transmissivity. Both diffusion and advection were
included for solute transport through individual capillaries,
but diffusion was ignored in intersections. Streamline rout-
ing (i.e., advection alone) was applied at the intersections to
calculate solute redistribution along flow paths.
[8] Park et al. [2001] conducted simulations of flow and

solute transport through a two-dimensional (2-D) parallel
plate network with variable aperture distributions. The
analytical mixing rules of Park and Lee [1999] were used
to account for both advective and diffusive processes. They
found that the wide distribution of high and low intersection
flow rates meant that many intersections were either at
complete mixing (diffusion � advection) or streamline
routing (advection� diffusion) conditions. They concluded
that streamline routing was a more accurate end-member
model than complete mixing, and suggested that streamline
routing alone may provide a good approximation to solute
dispersion in many cases. In a subsequent study, Park et al.
[2003] included the complicating factor of three dimension-
ality in realizations of parallel plate fracture networks, and

found that flow in and around intersecting fractures oblique
to the dominant pressure gradients led to flow circulation
patterns that could significantly retard the transport time of
low-concentration solute tails.
[9] Looking at individual intersecting fractures,

Kosakowski and Berkowitz [1999] acknowledged that or-
thogonal parallel plates are a poor representation of natural
fracture intersections and simulated inertial flow effects
through more realistic intersection geometries, although still
only in two dimensions and assuming parallel-plate aper-
tures away from the intersection. More recently, surface
roughness has been explicitly considered for mixing within
intersections. Stockman et al. [2001] and Mourzenko et al.
[2002] numerically simulated surface roughness effects on
mixing through both variable aperture and parallel-plate
intersecting fractures. Flow regimes where both advection
and diffusion processes are important were considered. In
those simulations, mixing increased in rough-walled frac-
tures compared to parallel-plate apertures, even when
molecular diffusion was negligible. Similarly, we [Johnson
and Brown, 2001] directly visualized flow and mixing in
transparent epoxy replicas of natural rock fracture intersec-
tions under flow conditions with negligible diffusion. We
observed significant increases in average mixing through the
rough-walled fractures over parallel plate streamline routing
predictions. We suggested that the deviations from parallel-
plate mixing were primarily caused by flow channelization,
which results in a wide distribution of flow rates entering and
exiting the intersection. However, in these natural samples
the rock fracture intersection geometries were too compli-
cated to measure accurately in three dimensions, making it
difficult to further evaluate mixing hypotheses.
[10] Here we expand on the previous work by conducting

further laboratory experiments in a less complicated syn-
thetic sample. We present a simple numerical model that
accurately reproduces the new experimental results. We
describe how a new artificial fracture intersection was
constructed using textured glass sheets as a fracture ana-
logue with variable apertures. Following Johnson and
Brown [2001], we conduct laboratory experiments on the
mixing of two miscible fluids within the analogue fracture

Figure 1. Two-dimensional parallel-plate fracture intersection mixing models. (a) Schematic of
continuous flow showing streamline routing with Q4 > Q2. Leg 4 shows ‘‘forced mixing’’ with
inhomogeneous outlet fluid. C is fluid concentration, and Q is flow rate. (b) Discontinuous intersection
flow with streamline routing.
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intersection and also accurately measured fracture apertures.
Next, we use the Reynolds equation to numerically simulate
laminar flow through the experimentally measured aperture
fields. We predict solute mixing in the intersection by
locally applying the parallel plate streamline routing model
at each grid point along the intersection. The close corre-
spondence in solute transport observed between the labora-
tory experiments and numerical simulations supports the
interpretation that streamline routing applies locally at the
intersection, and that patterns of flow channelization set by
rough fracture apertures may dominate intersection mixing.
[11] The paper is organized as follows. First, we present

relevant background information on streamline routing and
mixing. Next, we describe the experimental design and
fracture apertures measurements and introduce the Reynolds
equation model (REM) which is used to simulate intersec-
tion mixing. We then compare measurements of experimen-
tal mixing to the numerical model simulations, and
conclude that the model sufficiently captures the observed
mixing behavior. We use the validated numerical model to
generalize intersection mixing as a function of aperture
statistics. We use a fractal model of fracture apertures
[Brown, 1995] to systematically vary surface separation,
aperture correlation across intersections, surface roughness
and aperture anisotropy.

2. Background

[12] We limit our consideration to single phase flow
through two fractures intersecting at right angles. Two of
the four fracture legs are inlets, and two are outlets. Two
geometries of intersection flow are considered, referred to
by convention as ‘‘continuous’’ and ‘‘discontinuous’’ [Hull
and Koslow, 1986; Berkowitz et al., 1994]. Continuous flow
through an intersection occurs when both inlet legs are
adjacent to one another (Figure 1a). This case is presumed
to be most common in nature. Discontinuous flow occurs
when fluid comes in through opposite and parallel legs of
one fracture, and exits through the other two parallel legs
(Figure 1b).
[13] Mixing of two fluids in an intersection is described

by considering the geometry of flow. Here we assume two
orthogonal intersecting parallel-plate fractures, effectively
in two dimensions. This end-member case is denoted as
parallel-plate streamline routing. For continuous flow under
these conditions, mixing depends only on the volume flow
rates into and out of the intersection and on the inlet
concentrations [Hull and Koslow, 1986]: If Q1 < Q4, then

C4 ¼ C1

Q1

Q4

� �
þ C3 1� Q1

Q4

� �
;

C2 ¼ C3:

and if Q1 � Q4; then

C4 ¼ C1;

C2 ¼ C3

Q3

Q2

� �
þ C1 1� Q3

Q2

� �
: ð1Þ

Here C is concentration, Q is volume flow rate, and
subscripts reference the individual fracture legs meeting at

the intersection shown in Figure 1a. Robinson and Gale
[1990] suggest the term ‘‘forced mixing’’ to describe the
case where one outlet leg has inhomogeneous fluid from
both inlets, as always occurs for parallel plate streamline
routing.
[14] Discontinuous flow occurs when fluid comes in

through opposite (parallel) legs of one fracture, and exits
through the other two parallel legs (Figure 1b). For discon-
tinuous flow, streamline routing predicts that both outlet
fluids will have the same average concentration [Hull and
Koslow, 1986]:

C1 ¼ C2 ¼
C3Q3 þ C4Q4

Q3 þ Q4

: ð2Þ

[15] In contrast, complete mixing occurs when both outlet
fluids are a homogeneous mixture of the two inlet fluids. A
mechanism for complete mixing is molecular diffusion,
which will tend to homogenize the fluid concentrations at
very low flow rates [Li, 1995]. The Peclet number is used to
quantify the relative importance of advective to diffusive
processes. It is defined as the dimensionless ratio Pe = ur/Dm,
where Dm is the solute diffusion coefficient, u is the average
fluid velocity, and r is a characteristic length scale, in this
case of the pore or fracture geometry [Berkowitz et al.,
1994]. By convention from previous orthogonal parallel-
plate studies, r is defined as half of the diagonal length across
the intersection [e.g., Berkowitz et al., 1994; Stockman et al.,
1997; Park and Lee, 1999]:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ w2

2

� �q
=2; ð3Þ

where w1 and w2 are mean apertures (widths) for each
fracture.
[16] For a parallel-plate intersection, at high Peclet numb-

ers streamline routing is the appropriate model, while at low
Peclet numbers diffusion dominates and complete mixing
applies. At intermediate Peclet numbers, both advection and
diffusion are important and the degree of mixing lies
somewhere in between the two end-members [Berkowitz
et al., 1994; Li, 1995; Stockman et al., 1997; Park and Lee,
1999; Mourzenko et al., 2002]. For parallel-plate intersec-
tions, both streamline routing and complete mixing end-
member cases have been observed experimentally and
predicted numerically [Berkowitz et al., 1994; Li, 1995;
Stockman et al., 1997; Park and Lee, 1999]. Stockman et al.
[2001] used 3-D lattice Boltzmann numerical methods to
study flow and mixing through various fracture intersection
representations, highlighting the dependence of mixing on
Peclet number. Stockman et al. [2001] and Johnson and
Brown [2001] also showed that when rough-walled aper-
tures lead to flow channelization, advection of fluid as well
as molecular diffusion can significantly increase average
mixing.
[17] For solute transport through a parallel plate network,

streamline routing always directs the maximum possible
amount of flow out an adjacent outlet fracture and the
minimum out an opposite fracture [Park et al., 2001],
giving the least dispersion possible. Essentially we define
mixing as deviations from the parallel plate streamline
routing model. In this paper, an increase in mixing means

B12206 JOHNSON ET AL.: MIXING IN FRACTURE INTERSECTIONS

3 of 16

B12206



that an increased amount of inlet fluid exits through the
opposite outlet relative to the adjacent outlet and a decrease
in mixing means that more fluid exits through the adjacent
outlet. We note that this definition says nothing about the
homogenization of solute concentrations within the outlet
fluid; it is based on the average concentration of solute in
the outlet fractures, rather than on the distribution of solute
concentrations.

3. Experimental Design

[18] Using pieces of textured and flat glass we con-
structed a synthetic ‘‘fracture’’ intersection for laboratory
study (Figure 2a). Textured glass has been used previously
as a rough-walled fracture analog, since apertures and flow
can be directly measured with digital imaging techniques
[Nicholl et al., 1999; Detwiler et al., 1999]. Our specimen
consisted of four fracture legs, each approximately 6 cm
square, meeting at right angles. Flow manifolds on each
fracture leg distributed fluid along the edge of each aperture.
Apertures for opposite (parallel) legs did not consistently
correlate across the orthogonal fracture, because the four
textured glass pieces were cut from different places on the
glass sheet.
[19] The experimental setup for measuring the aperture

fields, the solute concentrations, and fluid flow rates was the
same as that of Johnson and Brown [2001]. The intersection
of the experimental sample was oriented vertically; the
mean flow direction through the four sample legs was
horizontal (Figure 2b). Two sample legs acted as flow
inlets, one for weak dye solution (Rhodamine dye, 1 g/L)
and one for distilled water. We used a gravity-fed system
with constant head reservoirs of our own design to attain
steady flow conditions to the inlet fractures. Flow rates were

controlled by adjusting needle valves on each inlet and
outlet. We monitored the flow rate of each inlet and outlet
with custom flowmeters which consisted of differential
pressure transducers used to measure the pressure drop
through a length of narrow rigid plastic tubing. The flow-
meters were calibrated by measuring flow rates with a
stopwatch and scale. Average outlet fluid solute concen-
trations were determined by measuring the outlet fluid
electrical conductivity, because the dye conveniently acted
as an electrolyte. Conductivities were measured after the
fluid exited the outlet flow manifolds and concentrations
were sufficiently homogenized. Flow rates and conductiv-
ities were continuously monitored with a data logger and
computer. All flow and transport measurements were col-
lected at steady state conditions.
[20] Image analysis gave quantitative measurements of

both the aperture distribution and dye concentrations with-
in the sample [Detwiler et al., 1999]. Two CCD cameras
(256 gray levels, 640 � 480 pixels) provided digital images
of flow in the fracture during the experiment. The dye was
red (Rhodamine wt) and the light source (electrolumines-
cent sheet) was dominantly green, which enhanced the
contrast of the dye to pure water. Infrared-reducing camera
filters were used to minimize infrared light entering the
cameras. We generally followed procedures presented by
Detwiler et al. [1999] for using images to make quantitative
measurements of apertures and dye concentrations.
[21] The Lambert-Beer law relates monochromatic dye

absorbency to the concentration and aperture at each point
in an image:

A ¼ mCd ¼ ln
IH2O

Idye
: ð4Þ

Figure 2. Fracture intersection flow cell. (a) Closeup diagram of the sample intersection as viewed from
above, showing how the textured and flat glass sheets were aligned and glued together. (b) Schematic of
experimental setup, showing sample inlets and outlets configured for a continuous flow experiment.
Sample is viewed obliquely from above. Needle valves used to control flow rates are not pictured. The
inlet gravity feed containers were configured to maintain a constant head, giving steady flow rates.
Digital cameras provide aperture and dye concentration data at the outlets during the experiments.
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Here A is absorbency, IH2
O and Idye are the measured pixel

intensity (gray level) of the apertures filled with pure water
or dye solution, m is the extinction coefficient of the dye,
C is dye concentration, and d is aperture. The dye
extinction coefficient was measured in a wedge-shaped
glass sample with a known linear variation in aperture.
The aperture field was then determined by filling the
fracture with multiple known dye concentrations, allowing
us to correct for nonlinear dye absorbency due to
polychromatic light. The measurements at multiple dye
concentrations constrains the following empirical curve for
the absorbency A:

A ¼ aC
b þ C

; ð5Þ

with a and b as fitting parameters. Because the importance
of the polychromatic component of absorbency decreases
as concentration C decreases, the ratio a/b gives a
‘‘linear’’ absorbency as C goes to zero. Finally, aperture
d is calculated at each pixel location using

md ¼ a
b
: ð6Þ

[22] After aperture d and the calibration factors a and b
are known at each pixel location, the same procedure can be
reversed in subsequent experiments to measure unknown
dye concentrations at each pixel [Detwiler et al., 1999].
[23] Apertures were measured right up to the intersection

for each of the four textured glass pieces before assembling
the sample. The measurements completely defined the
aperture distribution in space because one surface was flat

[Nicholl et al., 1999]. Figure 3 shows an aperture field
measured for one of the four legs. Once the sample was
assembled, direct view of the intersection was obscured by
the orthogonally attached piece of glass, so outlet images of
dye concentration from the flow experiments stop several
millimeters before the intersection.
[24] Figure 4a shows a histogram of the aperture field in

Figure 3. Even though we used a different kind of textured
glass which resulted in considerably larger apertures, the
shape of the histogram is very similar to the smooth-rough
glass fracture described by Nicholl et al. [1999]. Addition-
ally, the glass we used had a modest anisotropy in the
roughness. Ridges oriented parallel to the flow direction
tended to be more widely spaced than ridges perpendicular
to flow. This anisotropy shows up in the semivariogram plot
(Figure 4b), where variance measured perpendicular to flow
becomes uncorrelated at shorter separations than variance
measured parallel to flow. The semivariogram shows that
roughness is not significantly correlated at longer wave-
lengths. Thus, at the sample scale the aperture can be treated
as a homogeneous random field. Stockman et al. [2001]
used subsets of these experimentally measured textured
glass aperture fields to conduct lattice Boltzmann simula-
tions of flow and intersection mixing. Because of compu-
tational limitations their simulations were performed over
areas of 	3.8 � 2.6 cm, rather than over the whole aperture
field (	12 � 6 cm). However, Figure 4b shows that this
subset of area is large enough to be statistically stationary,
and their average mixing results match ours as will be
shown below.
[25] On the basis of the typical experimental flow rate of

2 mL/min and the experimentally derived average aperture
for the glass sample of d = 0.53 mm, we estimate the

Figure 3. Aperture field for leg 4 of the textured glass measured by dye absorbency as described in the
text. The glass we used had anisotropic roughness. Ridges oriented parallel to the flow direction
(horizontal in the figure) tended to be more widely spaced than ridges perpendicular to flow (vertical in
the figure).
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average Reynolds number to be Re = 0.53. The Reynolds
number, defined here as Re = ud/v with average fluid
velocity u, aperture d, and kinematic fluid viscosity v, is
the dimensionless ratio of inertial forces to viscous forces.
At higher Re, inertia in flow through both individual
fractures and fracture intersections can lead to head loss
and changes in flow distributions [e.g., Kosakowski and
Berkowitz, 1999; Nicholl and Detwiler, 2001; Hu et al.,
2005]. However, numerical simulations of Kosakowski
and Berkowitz [1999] and Nicholl et al. [1999] found that
for Re < 1 inertial effects are negligible, and are quite small
for Re < 10. Stockman et al. [2001] found similar ranges of
insensitivity to Re, and interestingly found that increasing
Re decreased mixing ratios in parallel plate fractures, but
increased mixing in rough-walled fractures. Even in higher
flow rate channels where Re was larger than the mean value,
we expect that flow was laminar and inertial effects were
likely to be negligible.
[26] The dye solutions were dilute in water and the

difference in fluid densities was negligible, so we can
express flow rates equivalently by volume/time (appropriate
for describing pure water) or mass/time (appropriate for
describing the portion of fluid in a mixture originating from
the ‘‘pure’’ dye inlet). The density contrast was small enough
between the dye solution and pure water that we never
observed any flow or overturning associated with density
contrasts. Consideration of the Peclet number suggests that
mixing from molecular diffusion was also negligible. Esti-
mating a solute diffusion coefficient of Dm = 7� 10�6 cm2/s
(determined by an empirical method for organic molecules
that takes into account molecular weight and chemistry
[Lyman et al., 1990], a method with a maximum error of

10%) and using the average experimental flow rate of
2 mL/min, we estimate the Peclet number to be Pe = 610.
Various metrics on when the Peclet number indicates
significant diffusion have been established in the literature.

Li [1995], Stockman et al. [1997], and Park and Lee [1999]
found that diffusional mixing is small (
3%) at Peclet
numbers >200. Stockman et al. [2001] note that for
rough-walled intersections the dependence of mixing on
Peclet number becomes very small for Pe � 50. Further-
more, Berkowitz et al. [1994] found that streamline routing
models provide a good description of mass transfer pro-
cesses for Pe > 1. For our experiments, the mean Peclet
number of 610 is high enough to ignore molecular diffusion
as a significant mixing mechanism, and our visual observa-
tions on the purity of streamlines support this interpretation.
Areas of the fractures with flow much slower than the mean
velocity (and hence lower Peclet numbers) could have
minor diffusional mixing, but stagnating fluid pockets also
transport little fluid through the sample. As will be shown,
advection clearly dominates dye transport and mixing
through our sample.

4. Reynolds Equation Model (REM)

[27] Knowing the detailed aperture field of each exper-
imental fracture leg allows us to simulate fluid flow and
mixing through the intersection and to directly compare
the numerical and experimental results. To do this, we
simultaneously solve the Reynolds equation for flow
through both fractures and couple the solutions to account
for fluid exchange from one fracture to another through the
intersection.
[28] The Reynolds equation describes two-dimensional

flow between rough surfaces with smoothly varying aper-
ture. The Reynolds equation assumes that the ‘‘cubic law’’,
in which local hydraulic conductivity is proportional to the
cube of local aperture, holds locally in the variable-aperture
fracture. Considerable deviations can occur between the
actual flow field and that predicted by the Reynolds
equation when roughness is high relative to the average

Figure 4. Statistics of the leg 4 aperture shown in Figure 3. The other three glass aperture legs had
essentially identical statistics. (a) Aperture histogram indicating a mean aperture of 0.53 mm and standard
deviation of 0.18 mm. (b) Semivariograms of the aperture, measured both parallel (dash-dotted line) and
perpendicular (solid line) to flow. The roughness anisotropy in the glass shows up in the semivariogram,
where apertures measured perpendicular to flow become uncorrelated at a shorter distance (2 mm) than
apertures measured parallel to flow (7 mm).
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aperture [Brown et al., 1995; Oron and Berkowitz, 1998;
Nicholl et al., 1999; Detwiler et al., 2000; Nicholl and
Detwiler, 2001]. Despite this fact, the Reynolds equation
has been widely used to model flow in rough-walled
fractures [Brown, 1987; Thompson and Brown, 1991;
Nicholl et al., 1999; Detwiler et al., 2000].
[29] To model flow in intersecting fractures, we solved

the Reynolds equation simultaneously in two separate
aperture fields. We solved a finite difference form of the
equation by using the iterative method of successive over-
relaxation [Thompson and Brown, 1991]. The aperture
fields were assumed to intersect along a single column of
pixels at the center of each fracture. Flow source and sink
terms were used at each grid point along this column to
simulate an intersection. The fluid pressure at each inter-
section grid point was forced to be equal in both fractures in
during iterative solution of the governing equations, causing
flow to be conserved around and through the intersection.
Similarly, apertures along the intersecting grid points were
set to be equal in both fractures; we chose to set the aperture
of each leg equal to the local maximum value of the two
initially intersecting apertures. Using the diagonal length
across the intersection would only result in most cases in
slight and at most a modest factor of

ffiffiffi
2

p
increase in local

intersection aperture. For these simulations in which the
average flow direction is perpendicular to the intersection,
our results depend on the patterns of flow channelization.
This flow channelization depends more on the aperture
fields both upstream and downstream (high-aperture inter-
connectivity allows high-flow channels) and less on aper-
tures right at the intersection. The REM simulations are too
simple to include variables such as the average angle
between the intersecting fractures, or any kind of explicit
flow patterns in the intersection such as described by
Kosakowski and Berkowitz [1999].
[30] Once the flow field was determined by solving the

Reynolds equation, each intersection pixel had two flow
rate vectors entering and two exiting (one for each inlet and
outlet leg). The discrete nature of the finite difference
simulations resulted in small (<2%) mass balance differ-
ences at the intersection pixel scale. To compensate, inter-
section inlet and outlet flow rates were normalized so that
flow was exactly conserved at each intersection grid point.
To model steady state solute transport and mixing, we
assume that parallel-plate streamline routing holds locally
at the intersection. Streamline routing (equation (1) or (2))
was applied at each intersection pixel using local flow rates
to determine solute concentrations flowing into each outlet
leg. Diffusion was not included, so simulations correspond
to the high Peclet number limit of streamline routing
behavior.
[31] Numerical simulations were designed to match the

experimental conditions of the laboratory measurements.
Simulations were run using the full aperture fields deter-
mined by image analysis for the laboratory sample. Each of
the two intersecting fractures modeled by the REM consist
of two of the four textured glass apertures and are approx-
imately 420 grid points (pixels) high by 850 long. In the
simulations, the average flow rate in each fracture leg was
controlled by iteratively adjusting the applied boundary
pressure gradient across each fracture so that the mean

experimental and numerical flow rates match through each
aperture.

5. Results

[32] We present results from laboratory mixing experi-
ments using both the continuous and discontinuous inter-
section flow conditions and then compare these data to
REM predictions. We find a good match between experi-
ments and simulations, thus validating the REM assump-
tions. A primary result of this study is that rough-walled
fractures have more mixing than flow through parallel
plates, when diffusion is negligible. Not surprisingly, mix-
ing typically falls between the streamline routing and
complete mixing models.

5.1. Continuous Flow Tests

[33] For continuous flow test 1, the inlet flow rates for
both dye and water remained constant at 2 g/min each for
the entire experiment. The inlet and outlet leg numbers
correspond to Figure 1a. The outlet flow rate was varied
incrementally in 11 steps, from all flow (4 g/min) coming
out leg 1 (leg 4 flow fraction =0), to all flow coming out
leg 4 (leg 4 flow fraction =1). Figure 5 shows the mixing
results for this test. The same data are plotted in two ways:
as dye fraction (Figure 5a), and as dye flux (Figure 5b). Dye
fraction gives the average concentration of fluid in each
outlet. Dye flux gives the mass flow rate (g/min) of dye
solution through the sample. As an example, when the flow
fraction in leg 4 is 0.5 (x axis, Figure 5a), outlet fluid
adjacent to the pure water inlet (leg 2) contains 
25% dye,
while the outlet adjacent to the dye inlet (leg 4) contains

75% dye. At this flow fraction (reading from Figure 5b),
since the dye inlet flow rate is 2 g/min the corresponding
dye fluxes through the two outlets are 
0.5 g/min and

1.5 g/min. The experimental results fall between the
parallel plate streamline routing and complete mixing mod-
els. In contrast, the REM simulations provide a reasonable
match to the homogenized dye concentrations exiting the
outlet legs.
[34] Figure 6 shows images of dye concentration in each

outlet leg as derived from image analysis for the case of
equal inlet and outlet flow rates (flow fraction 0.5). Using
the glass specimen aperture fields and the experimental flow
parameters, the Reynolds equation model (REM) was used
to simulate the dye distribution for this experiment
(Figure 6). The concentrations and locations of streamlines
in the simulations approximately match those on the exper-
imental images. Simulations also match the experimental
flow tortuosity by visual comparison of the irregularity of
the dye ribbons.
[35] A similar flow experiment (continuous test 2) was

performed with somewhat different flow steps, in which
inlet and outlet flows were both varied incrementally from
all flow going straight through one fracture to all flow
coming through the other fracture (i.e., Q1 = Q2 and Q3 =
Q4, but Q1/Q4 is varied). As the experiment progressed, the
inlet flow rate for dye (leg 1) was varied from 4 g/min to
zero (flow fraction =0 on legs 3 and 4). At the same time the
inlet flow rate for pure water (leg 3) increased from zero to
4 g/min (flow fraction =1 on legs 3 and 4). As before, the
numerical simulations match both the average dye fraction
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and average dye flux (Figure 7) and also match the spatial
distribution of dye concentration (Figure 8). Figure 7c
shows good agreement among the REM, experiment and
lattice Boltzmann (LB) model described by Stockman et al.
[2001]. The LB simulations are more rigorous character-
izations of flow and solute transport through the intersecting
fractures than the REM model. They include mixing
through molecular diffusion as well as inertial flow effects
(although as argued above, the magnitudes of these are
small). The REM simulations have much simpler and less
realistic models for both flow (local parallel plate flow) and
solute transport (local streamline routing), and yet the
correspondence between experiments and models demon-
strates that they capture the essential physics of intersection
mixing at our experimental conditions.

5.2. Discontinuous Flow Tests

[36] Discontinuous flow experiments and simulations
were performed using the flow configuration of Figure 1b
(see Figure 9). Flow proportioning was similar to continu-
ous test 2, but instead of having equal flow rates in opposite
inlet-outlet pairs, flow rates were the same in adjacent inlet-
outlet pairs. As the experiment progressed the fraction of
dye was varied from 100% to zero. Figure 9 compares
mixing from experiments, REM simulations, and the paral-
lel plate mixing models.
[37] For discontinuous flow, both streamline routing and

complete mixing models collapse to the same line. Both
end-member mixing models predict that the two outlet
fluids will have the same average concentration. Complete
mixing would have homogeneous outlet fluid, while stream-
line routing has separate ‘‘forced’’ mixtures of the inlet

fluids. Figure 9 shows that the outlet fluids remain close to
one another in dye concentration. When flow dominates on
one fracture, our experimental deviation from end-member
models is consistent with the discontinuous intersection
flow patterns calculated by Philip [1988] for Laplace and
Stokes flow which include changes in flow due to recircu-
lation zones. Our REM simulations predict a small deviation
from the end-member models opposite to that observed in
our experiments. Since our simulations are too simple to
explicitly model flow patterns within the intersection, we do
not expect the REM results to match Philip’s [1988] results
exactly. For this discontinuous case, experimental and
numerical images of dye concentration in the outlet legs
look similar, although dye streamline concentrations tend to
be lower in the simulations.
[38] We summarize our results to this point. First, advec-

tion of fluid through rough-walled synthetic fractures con-
siderably enhances mixing compared to parallel-plate
streamline routing predictions, even in the absence of
molecular diffusion. Outlet concentrations are not uniformly
mixed within rough-walled outlet fractures, but consist of
ribbons or streamlines of solute. Streamline routing accu-
rately describes mixing in 2-D and between parallel plates,
but underestimates mixing when applied to an entire 3-D
fracture intersection.
[39] Second, the REM model captures the mixing

dynamics observed in the experiments. In these simulations,
the fracture intersection was assumed to behave like a large
number of stacked individual parallel-plate intersections.
This mechanism is sufficient to predict both average mixing
and the spatial distribution of solute streamlines. The good
match between experiments and simulations further dem-

Figure 5. Average mixing through fracture intersection, continuous test 1. Figure 1a shows the
configuration of inlet and outlet legs. Inlet flow rates (legs 1 and 3) remained constant and equal during
the experiment, while outlet flow rates were varied systematically from all flow exiting through leg 2 to
all flow exiting leg 4. The experimental results, the Reynolds equation simulations of flow through the
experimentally measured apertures, and the predictions of the 2-D streamline routing mixing model are
plotted. (a) Dye fraction (normalized dye concentration) plotted against leg 4 flow fraction (the ratio of
flow exiting through outlet leg 4 to the total flow through the sample). The complete mixing model is
indicated by the solid blue line. (b) The same data as in Figure 5a, plotted as dye flux through each outlet
leg versus flow fraction. Complete mixing model is indicated by the solid blue lines.
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onstrates that patterns of flow channelization in the inter-
secting fractures dominantly control advection of fluid
through the intersection, and hence mixing.

5.3. Parameters Affecting Mixing

[40] Having validated the REM model, we next use it to
explore the importance of additional aperture parameters on
mixing. Stockman et al. [2001] simulated lattice Boltzmann
flow through idealized fluted channels and showed that
mixing can change dramatically as a function of how well
apertures correlate across and around an intersection.
Motivated by this finding, we calculate mixing as a function
of fracture opening and closing and aperture correlation
across the intersection, and also explore surface roughness
effects and anisotropy. We conducted simulations in both
the textured glass plate aperture fields and in numerical

apertures generated with a fractal model for rough-walled
fractures [Brown, 1995].
[41] Apertures for the REM flow simulations are made by

placing two surfaces together at a prescribed normalized
surface separation S defined as [Thompson and Brown,
1991]

S ¼ dm=s; ð7Þ

where dm is the mean aperture and s is the standard
deviation of the aperture field. Surface separation is changed
by adding or subtracting a uniform value from all apertures.
The surface separation calculated for the experimental glass
apertures when the surfaces are touching is S 	 2.9. Thus, at
S > 2.9 the surfaces do not touch; at S < 2.9 the surfaces
touch and material at some locations overlaps at the

Figure 6. Experimental and simulated outlet concentrations, continuous test 1. Average flow rates are
equal for both outlet legs (flow fraction 0.5). The quantitative image analysis methods used to measure
experimental dye concentrations are described in the text. Flow is from left to right in each image. The
experimental concentration images cover a slightly smaller subset of area than that shown for simulations.
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contacts. In the simulations, the aperture at overlapping
contacts was set to zero and the overlapping material was
ignored [Thompson and Brown, 1991; Oron and Berkowitz,
1998].
[42] Because the four textured glass pieces were cut from

separate locations, the experimental sample had uncorrelated
intersection apertures. To speed the simulations, 300 �
300 pixel subsets were chosen from both of the original
textured glass apertures. Simulations were also performed
with correlated intersection apertures, constructed by taking

two different original glass aperture fields (e.g., Figure 3)
and inserting a numerical intersection down the center.
5.3.1. Surface Separation, Uncorrelated Intersection
Apertures
[43] Simulations were done for surface separations from

10 to 0.5, using the same flow conditions as continuous test
2 (Figures 7 and 8). Figure 10 shows outlet dye concen-
trations and dye flux through the sample. The maximum
deviation from streamline routing occurs when all inlet and
outlet flow rates are equal (flow fraction 0.5), as was

Figure 7. Average mixing through fracture intersection, continuous test 2. Figure 1a shows the
configuration of inlet and outlet legs. During this experiment, the total flow rate through the sample
remained constant, but inlet and outlet flow rates were varied systematically from all flow through legs 1
and 2 to all flow through legs 3 and 4. (a) Dye fraction versus flow fraction through outlet leg 4 (as well
as inlet leg 3). (b) The same data as in Figure 7a, plotted as dye flux through each outlet leg versus flow
fraction. (c) Comparison of numerical methods. The same results as Figures 7a and 7b are shown
compared to lattice Boltzmann (LB) calculations. The LB code is cast in dimensionless ratios, so for this
plot we use the apparent mixing ratio parameter Mr as the basis of comparison.
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generally observed in the previous cases (Figures 5 and 7).
Average mixing increases as the fractures are closed.
However, at the smallest two surface separations of S = 1
and S = 0.5 there is little change in mixing with increased
closure. Once the fractures closed down beyond a certain
point, the few remaining flow channels did not change much
in relation to one another and therefore the distribution and
concentration of outlet streamlines remained essentially
constant.
[44] Parallel-plate streamline routing actually appears to

be a good average mixing approximation for much of this
experiment: when 30% or less total flow goes through one
fracture (flow fraction �0.3 or �0.7), dye fluxes are close to
streamline routing predictions (Figure 10b). Park et al.
[2001] describe the case where flow on one fracture
dominates total intersection flow as either ‘‘apparent stream-

line routing’’ or ‘‘apparent complete mixing’’, because
simple mass balance means that the models will tend to
agree. Near the endpoints, the complete mixing model also
comes close to matching the dye fluxes.
5.3.2. Surface Separation, Correlated Intersection
Apertures
[45] Simulations were done to study the properties of

intersecting fractures with apertures that correlate across
the intersection, at surface separations of 6, 3, and 1
(Figure 11). These correlated fractures give higher average
mixing than fractures with uncorrelated apertures. For
correlated apertures at S = 3 the mixing value was 0.32
(Figure 11) compared to 0.22 for uncorrelated apertures
(Figure 10). Channels of higher flow correlate across the
orthogonal fracture and so more fluid goes straight through
the intersection instead of turning to the adjacent outlet. The

Figure 8. Experimental and simulated outlet concentrations, continuous test 2. Thirty percent of the
flow exits leg 2, and 70% exits leg 4 (leg 4 flow fraction 0.7). Flow is from left to right in each image.
The experimental concentration images cover a slightly smaller subset of area than that shown for
simulations.
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Figure 9. Average experimental and simulated outlet concentrations for the discontinuous test.
Figure 1b shows inlet and outlet flow configuration. Complete mixing and streamline routing
end-member predictions are identical for discontinuous mixing (dot-dashed line a). Experimental mixing
(large symbols) diverges from parallel-plate predictions in the opposite direction to that of the REM
simulations (small symbols), yet both do follow the parallel-plate models rather closely. Large diamonds
(line b) are experimental dye fractions for outlet leg 2. Large circles (line d) are experimental dye
fractions for outlet leg 1. The dot-dashed line a represents both streamline routing and complete mixing
parallel plate end-member models. Small diamonds (line c) and small circles (line e) connected by lines
are REM simulations for outlet legs 2 and 1, respectively.

Figure 10. REM flow simulations for mixing through textured glass apertures as the fracture aperture is
opened and closed. The fracture apertures do not correlate across the intersection. There are two sets of
solid curves representing the surface separations of 10, 6, 4, 3, 2, 1 and 0.5 going from the outside
‘‘streamline routing end-member’’ (dot-dashed line) to the inside ‘‘complete mixing end-member’’
(dashed line). A surface separation of 3 is very close to the experimental surface separation of 2.9. Note
that the mixing changes very little for surface separations of 1 and 0.5. (a) Average dye concentration
versus outlet flow fraction. (b) Average dye flux versus outlet flow fraction.
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effect of correlated apertures significantly increases as the
fracture is closed. With S = 1, solute transport through the
correlated apertures is reasonably close to complete mixing.
5.3.3. Fractal Surface Roughness and Anisotropy
[46] We explored the additional parameters of surface

roughness and anisotropy on mixing, using the fractal
fracture model of Brown [1995]. Numerically generated
fracture surfaces allow aperture parameters to be varied
independently in ways difficult or impossible to perform
experimentally [Brown, 1995, 1987, 1989; Brown et al.,
1998; Thompson and Brown, 1991]. The mathematical
model for simulating fractures allows variations in the
fractal dimension, the standard deviation of asperity heights
and the mismatch of the two contacting surfaces as deter-
mined by a mismatch length scale above which individual
fracture surfaces are correlated [Brown, 1995]. The fractal
dimension describes the scaling of surface roughness.
Studies of natural fracture profiles show that the typical
range of fractal dimensions is 2 to 2.5, with 2 appearing to
the eye as smoother and 2.5 rougher. In addition, the model
allows for roughness anisotropy. All of the model variables
can be independently varied while keeping the same long-
wavelength matching of individual fracture surfaces, giving
similar aperture channels for flow. REM mixing simulations
were performed in a fractal aperture field with uncorrelated
apertures as a function of flow fraction and surface separa-
tion. All simulations used equal inlet and outlet flow rates
(flow fraction =0.5).
[47] We now briefly summarize the results for fractal

surfaces. We found that for smooth isotropic fractal aper-
tures, except for the closest surface separation of S = 1,
mixing agreed quite well with simulations on the textured
glass apertures for both the uncorrelated and correlated
cases. We found that varying the fractal dimension (which
controls the fine-scale surface roughness) had little effect on

average mixing values. Increased fine-scale surface rough-
ness tended to slightly decrease average mixing, meaning
that somewhat more fluid flowed around the corner to the
adjacent outlet. The effect of this fine-scale roughness
increased as the fractures closed, but never changed average
mixing by more than approximately 5%. The first-order
mixing behavior was still controlled by flow channeling
through interconnected larger-aperture areas (long wave-
length features), which did not change significantly in these
simulations as the fractal dimension was varied.
[48] Anisotropy parallel or perpendicular to the flow had

a larger effect on mixing. Longitudinal anisotropy (making
the surface roughness look elongated parallel to mean flow)
changed mixing very little from the isotropic case, over the
range of surface separations studied. However, transverse
anisotropy (roughness elongation perpendicular to mean
flow) showed interesting behavior. When the fractures were
open (higher surface separations), transverse anisotropy
retarded mixing, because the anisotropy tended to retard
the amplitude of flow channelization. However, at low
surface separations as the fractures contacted and closed,
transverse anisotropy increased channelization and caused
mixing to increase. Long surface contacts perpendicular to
the mean pressure gradient forced flow paths to become
very tortuous. The few narrow flow channels that remained
open transported nearly all of the fluid straight through the
intersection, tending to increase mixing.

6. Discussion

[49] This paper explores the advective component of
solute transport through intersecting rough-walled fractures.
Fundamentally, flow channelization causes the mixing
trends and deviations from parallel plate models that we
observe. A distribution of flow rates come into and out of

Figure 11. REM flow simulations for mixing through textured glass apertures as the fracture aperture is
opened and closed. The fracture apertures are correlated across the intersection. There are two sets of
solid curves representing the surface separations of 6, 3, and 1 going from the outside ‘‘streamline routing
end-member’’ (dot-dashed line) to the inside ‘‘complete mixing end-member’’ (dashed line). (a) Average
dye concentration versus outlet flow fraction. (b) Average dye flux versus outlet flow fraction.
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the intersection. As equation (1) predicts when applied
locally at the intersection, the distribution of flow rates
leads to a distribution of outlet concentrations. Channels
distribute fluid from each inlet fracture to both outlet
fractures, thus increasing mixing compared to parallel-plate
streamline routing predictions. Outlet concentrations are not
uniformly mixed within rough-walled intersection outlet
legs, but consist of ribbons or streamlines of solute.
[50] The accuracy of the Reynolds equation for modeling

2-D flow has been explored and questioned [e.g., Brown et
al., 1995; Nicholl et al., 1999; Nicholl and Detwiler, 2001;
Mourzenko et al., 2002]. However, the good match between
our experiments and REM simulations demonstrates that,
for our purposes, the Reynolds equation captures the
essential flow channelization that is the first-order control
on mixing. This is fortunate since the Reynolds equation is
numerically more efficient to solve and easier to implement
than more complicated equations such as the full 3-D Stokes
equation. Fracture network models could perhaps be devel-
oped that directly incorporate fracture surface roughness
and flow channelization and therefore could explicitly
capture the mixing phenomena we observe.
[51] In simulations of flow through three-dimensional

parallel plate fracture networks with complex geometries,
Park et al. [2003] found that fractures with little net flow

will act as local flow paths for intersecting fractures, and
that this phenomenon can significantly increase the resi-
dence time of solute in the fracture network. Similarly, in
the epoxy replicas studied previously we observed that flow
from one inlet sometimes locally blocked flow from the
other inlet [Johnson and Brown, 2001]. We also observed
this behavior in the experiments on the glass sample and in
the corresponding REM simulations. It is common for local
pressure gradients near the intersection to drive flow
opposite to the imposed sample-scale pressure gradient
(Figure 12). This typically occurs when one outlet leg has
relatively little exiting flow; near the intersection it acts as a
conduit for flow on the orthogonal leg. The amount of flow
blocking in these simulations tends to be small compared to
the experiments by Johnson and Brown [2001], because of
the more idealized geometry of the textured glass apertures.
Nonetheless, this ‘‘intersection blocking’’ phenomenon can
lead to some streamlines maintaining pure dye concentra-
tions in both the opposite and adjacent outlet legs.
[52] Compared to parallel plate apertures, our results

suggest that surface roughness may both increase solute
dispersion and decrease solute dilution. Both phenomena
are particularly significant for contaminant transport. Gen-
erally speaking, dispersion refers to the transverse spreading
of solute [e.g., Detwiler et al., 2000; Park et al., 2001],

Figure 12. Flow vectors for a subset of an REM flow simulation straddling an intersection. For clarity,
only 1/4 of the calculated vectors are shown. The applied pressure gradient drives the average flow from
left to right. However, locally at the intersection where flow enters and exits on the other fracture, flow
occurs opposite that of the average pressure gradient.
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while dilution represents diminished concentrations of sol-
ute in a homogeneous mixture [Kitanidis, 1994].
[53] Figures 6, 8, and 10 show that dye concentrations

follow flow streamlines and remain unchanged in our
experiments as flow goes across the outlet legs. The
geometry of flow channels may retard diffusional homog-
enization in both individual fracture legs and intersections
by tending to isolate significant volumes of flowing fluid.
For slow flow within a parallel plate fracture (depending on
the Peclet number), fluid can become homogenized by
diffusion before reaching the next intersection [Hull et al.,
1987; Robinson and Gale, 1990; Park and Lee, 1999; Park
et al., 2001; Bruderer and Bernabe, 2001]. Other processes
such as Taylor dispersion or macrodispersion will also tend
to homogenize the fluids [Detwiler et al., 2000]. Flow
channelization and intersection blocking can locally main-
tain solute concentrations higher than predicted by parallel
plate models. Therefore the advective mixing processes
observed here may increase spatial solute dispersion but
reduce solute dilution.
[54] Numerical simulations show that mixing approaches

parallel-plate streamline routing predictions as fracture aper-
tures are opened because flow channelization decreases. As
apertures decrease, flow at the intersection becomes increas-
ingly concentrated within the remaining interconnected
open aperture channels. The range of mixing ratios that
are expected for natural fracture closure would be between
approximately 20% and 40%. Mixing tends to increase with
closure, but whether a particular flow channel correlates
across (opposite outlet) or around (adjacent outlet) will
cause significant variations in mixing from intersection to
intersection, even if the fracture aperture statistics are the
same. For some samples a limit may be reached beyond
which flow channel partitioning around and through the
intersection does not significantly change, and increased
closure may not affect mixing ratios. Anisotropic roughness
modestly affects flow channeling in interesting ways. Lon-
gitudinal roughness tends to enhance channeling, slightly
increasing mixing. Transverse roughness decreases chan-
neling in open fractures, but tends to increase channeling
and mixing in tight fractures.
[55] The differences in mixing observed between these

results and those of Johnson and Brown [2001] point out
that significant differences exist between our idealized glass
apertures and real rock fracture intersections. Comparable
experiments using epoxy replicas of two natural fracture
intersections [Johnson and Brown, 2001] gave much higher
average mixing values and more variability in mixing than
the idealized synthetic glass sample or REM simulations.
Collectively, the dependence of mixing on the details of
flow channel geometry suggests that significant variability
may be inherent in mixing ratios at natural fracture
intersections.

7. Conclusions

[56] Solute mixing is significantly enhanced in intersect-
ing rough-walled fractures compared to intersecting parallel
plates. Flow through variable aperture fractures leads to
flow channelization, and when these fractures intersect the
distribution of flow rates means that some flow from each

fracture will exit through each outlet fracture, increasing
fluid mixing over parallel plate streamline routing.
[57] Because flow channelization is the first-order control

on mixing in our rough-walled experimental fracture inter-
sections, a numerical model that uses the Reynolds equation
to simulate flow through variable apertures is sufficiently
accurate to predict both spatial distributions of dye concen-
trations within the fractures, and average mixing ratios. The
correspondence between experiments and the numerical
model demonstrates that advection-dominated streamline
routing holds locally at the intersection, but that streamline
routing significantly underestimates mixing when fractures
are assumed to be parallel plates.
[58] As fractures are opened, flow and solute transport

approach parallel plate approximations. As fractures are
closed, flow channelization becomes increasingly important
and mixing ratios increase. However, once flow paths other
than the largest aperture channels are shut down, the pattern
of flow around and through the intersection becomes fixed
and increasing fracture closure may not increase mixing
ratios.
[59] How apertures correlate across intersections has a

large influence on mixing ratios, because the local distribu-
tion of flow around and through fracture intersections is set
by high flow rate channels, which are in turn controlled by
the apertures in the vicinity of the intersection. However,
mixing is also significantly controlled by fracture apertures
away from the intersection, since it is the interconnectivity
of larger apertures that sets the flow channel locations and
fluid fluxes.
[60] As with all flow and transport problems, the specific

regimes of physical behavior observed here depend on the
fluid flow rates, diffusion timescales, and the physical pore
dimensions. Therefore to upscale or extrapolate these results
outside of the laboratory, we would need to consider the
relevant dimensionless parameters such as the Reynolds
number and the Peclet number.
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