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Analytical Solutions for Pore-Fluid Flow Focusing
Within Inclined Elliptic Inclusions in

Pore-Fluid-Saturated Porous Rocks: Solutions
Derived in an Elliptical Coordinate System1

Chongbin Zhao,2,3 B. E. Hobbs,3 A. Ord,3 Shenglin Peng,2

Liangming Liu,2 and H. B. Mühlhaus3

Exact analytical solutions have been derived rigorously for the pore-fluid velocity, pore-fluid-flow
focusing factor, stream function and excess pore-fluid pressure around and within a buried inclined
elliptic inclusion in pore-fluid-saturated porous rocks. The geometric characteristics of the buried
inclined elliptic inclusion are represented by the aspect ratio and dip angle of the inclusion, while
the hydrodynamic characteristic is represented by the permeability ratio of the elliptic inclusion
to its surrounding rock. Since an elliptic inclusion of any aspect ratio can be used to approxi-
mately represent geological faults and cracks, the present analytical solutions can be used to in-
vestigate the pore-fluid-flow patterns around buried faults and cracks within the crust of the Earth.
Therefore, the present analytical solution not only provides a better understanding of the physics
behind the pore-fluid-flow focusing problem around and within buried faults and cracks, but also
provides a valuable benchmark solution for validating any numerical method in dealing with this
kind of pore-fluid-flow focusing problem. The pore-fluid-flow focusing factor of a buried elliptic in-
clusion is demonstrated to be dependent on the aspect ratio, the permeability ratio and the dip
angle.

KEY WORDS: theoretical analysis, analytical solution, pore-fluid flow, buried inclined elliptic
inclusion.

INTRODUCTION

Analytical solutions for pore-fluid flow around and within a buried inclined el-
liptic inclusion in pore-fluid-saturated porous rocks are useful at least for the
following two purposes. (1) They can be used to gain some basic understand-
ing of the physics behind the pore-fluid flow pattern around buried faults and
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cracks, especially when they are of elliptic geometries. (2) They can be used
to validate, directly or indirectly, any numerical method for solving this kind
of problem. Although the analytical solutions are available for pore-fluid flow
around an elliptic inclusion in a full plane for two extreme situations where an
elliptic inclusion is either perfectly permeable or perfectly impermeable (Lamb,
1975; Phillips, 1991), they are not available in other common situations where
an elliptic inclusion is neither perfectly permeable nor perfectly impermeable.
Note that in the case of a perfectly-permeable elliptic inclusion, the perme-
ability ratio of the elliptic inclusion to its surrounding rock is infinite, while
in the case of a perfectly-impermeable elliptic inclusion, the permeability ratio
of the elliptic inclusion to its surrounding rock is zero. The permeability ratio
of a buried fault or crack to its surrounding rock is usually of a finite value,
thus, the major contribution of this paper is to derive exact analytical solutions,
which have been hitherto unavailable, for pore-fluid flow around and within an
inclined elliptic inclusion of any finite permeability in pore-fluid-saturated porous
rocks.

Buried faults and cracks may play an important role in fluid flow in the
Earth’s upper crust (Zhao and Valliappan, 1994a, 1994b; Jamtveit and Yardley,
1997; Connolly, 1997; Zhao and others, 1999, 2001, 2002). For example, in the
field of groundwater engineering, buried faults and cracks can function as pore-
fluid flow channels and play a significant role in controlling groundwater flow and
contaminant transport so that they can influence both water supply and water qual-
ity in a groundwater system. In the field of ore body formation and mineralization,
buried faults and cracks can provide favorable flow-focusing environments for the
formation and localization of some economic ore deposits within the crust of the
Earth. In the field of seismology, buried faults and large cracks can change the site
seismic activity through the focused-flow induced rupture and failure processes
that are caused by the interaction between material deformation and pore-fluid
flow around buried faults and large cracks. Therefore, a better understanding of
the pore-fluid flow pattern around buried faults and large cracks within the Earth’s
crust has become an important research topic in several disciplines of geosciences
for many years.

Based on the above considerations, analytical solutions have been derived
rigorously for the pore-fluid velocity, pore-fluid-flow focusing factor, stream
function and excess pore-fluid pressure around and within an inclined ellip-
tic inclusion, which is a typical representation of a buried fault or crack of
elliptic shape in pore-fluid-saturated porous rocks. The derived analytical so-
lutions are fundamentally useful for a better understanding of pore-fluid flow
around a buried fault and crack within the crust of the Earth. Some interest-
ing conclusions in relation to the effects of inclined faults and cracks on the
pore-fluid-flow focusing phenomenon have been made through this theoretical
investigation.
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DERIVATION OF ANALYTICAL SOLUTIONS FOR AN
INCLINED ELLIPTIC INCLUSION IN PORE-FLUID

SATURATED POROUS ROCKS

Due to mathematical complexities in describing the problem of pore-fluid
flow around an inclined elliptic inclusion of any inclined angle, three different
coordinate systems are used to mathematically derive the analytical solution for
the problem. As shown in Figure 1, these three different coordinate systems
are a global Cartesian (XY) coordinate system, a local Cartesian (xy) coordina-
tion system and a local elliptical ξη coordinate system respectively. Both the
pore-fluid flow in the unperturbed far field and the dip angle of an inclined el-
liptic inclusion are described in the global XY coordinate system. The perturbed
pore-fluid flow around the inclined elliptic inclusion is described in the local xy
and ξη coordinate systems. As can be demonstrated later, the use of a local ξη

coordinate system enables boundary conditions between the inclined elliptic in-
clusion and its surrounding rock to be easily described. If the pore-fluid flow in
the unperturbed far field is horizontal, its corresponding components in the local
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Figure 1. Description of an inclined elliptic inclusion in three coordinate
systems.
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xy coordinate system can be expressed as follows.

Ux = UX cos θ, Uy = −UX sin θ (1)

where Ux and Uy are the pore-fluid velocity components of the far field in the x
and y directions of the local xy coordinate system; UX is the horizontal pore-fluid
velocity component of the far field in the X direction of the global XY coordinate
system; θ is the dip angle of the inclined elliptic inclusion relative to the global
coordinate system.

Similarly, if the pore-fluid flow in the unperturbed far field is vertical, its
corresponding components in the local xy coordinate system can be expressed as
follows.

Ux = UY sin θ, Uy = UY cos θ (2)

where Ux and Uy are the pore-fluid velocity components of the far field in the x
and y directions of the local xy coordinate system; UY is the vertical pore-fluid
velocity component of the far field in the Y direction of the global XY coordinate
system; θ is the dip angle of the inclined elliptic inclusion.

If the pore-fluid is incompressible, the governing equation of pore-fluid pres-
sure in a pore-fluid-saturated porous medium can be described as a Laplace equa-
tion so that the superposition principle is valid in deriving analytical solutions for
pore-fluid flow around an inclined elliptic inclusion. This indicates that if ana-
lytical solutions for pore-fluid flow around an inclined elliptic inclusion can be
derived in the cases of the inflow pore-fluid velocity being parallel to the long
and short axes of the inclined elliptic inclusion respectively, then analytical so-
lutions for pore-fluid flow around an inclined elliptic inclusion can be obtained
for any inflow pore-fluid velocity in the unperturbed far field by superposition.
For this reason, an isolated elliptic inclusion (shown in Fig. 2) in the local xy
and ξη coordinate systems is considered in the derivation of the analytical so-
lution for the pore-fluid flow around the elliptic inclusion. We assume that the
system is comprised of pore-fluid saturated, isotropic porous rocks, although the
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Figure 2. Description of an elliptic inclusion in two local coordinate systems.
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permeability of the elliptic inclusion is different from that of the surrounding rocks.
In the first case, we also assume that pore-fluid flow in the unperturbed far field
away from the elliptic inclusion is uniform and in the y direction only (Ux = 0)
such that the short axis of the elliptic inclusion is parallel to the inflow direction in
the undisturbed far field. The steady-state governing equations for such a problem
can be expressed in the xy coordinate system as

∂ux

∂x
+ ∂uy

∂y
= 0 (3)

ux = −K

µ

∂p

∂x

uy = −K

µ

∂p

∂y
(4)

where ux and uy are the velocity components in the x and y direction; p is the
excess pore-fluid pressure (i.e. the total pore-fluid pressure minus the hydrostatic
pore-fluid pressure); µ is the dynamic viscosity of pore-fluid; K is the intrinsic
permeability of the isotropic porous rocks. It needs to be pointed out that K = Kin

for the elliptic inclusion and K = Kout for the surrounding rock of the elliptic
inclusion, where Kin and Kout are the intrinsic permeability of the elliptic inclusion
and its surrounding rock, respectively.

Substituting Eq. (4) into Eq. (3) yields the following equation:

∂2p

∂x2
+ ∂2p

∂y2
= 0 (5)

Note that in order to facilitate the derivation of analytical solutions for the problem
considered, Eq. (5) is rewritten in the ξη coordinate system using the following
coordinate mapping.

x = cosh ξ cos η, y = sinh ξ sin η (0 ≤ ξ < ∞, 0 ≤ η ≤ 2π ), (6)

Using the coordinate mapping relationship expressed in Eq. (6), the following
matrix equation can be obtained.

⎧
⎪⎪⎨

⎪⎪⎩

∂p

∂x

∂p

∂y

⎫
⎪⎪⎬

⎪⎪⎭

=

[
sinh ξ cos η − cosh ξ sin η

cosh ξ sin η sinh ξ cos η

]

(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

⎧
⎪⎪⎨

⎪⎪⎩

∂p

∂ξ

∂p

∂η

⎫
⎪⎪⎬

⎪⎪⎭

(7)
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Similarly, the following equation holds true for the stream function around
the elliptic inclusion.

⎧
⎪⎪⎨

⎪⎪⎩

∂ψ

∂x

∂ψ

∂y

⎫
⎪⎪⎬

⎪⎪⎭

=

[
sinh ξ cos η − cosh ξ sin η

cosh ξ sin η sinh ξ cos η

]

(sinh2 ξ cos2 η + cosh2 ξ sin2 η)

⎧
⎪⎪⎨

⎪⎪⎩

∂ψ

∂ξ

∂ψ

∂η

⎫
⎪⎪⎬

⎪⎪⎭

(8)

Where ψ is the stream function of the pore-fluid flow system.
Mathematically, we can prove that Eq. (6) is a conformal mapping so that

Eq. (5) can be expressed as follows.

(
∂2p

∂ξ 2
+ ∂2p

∂η2

)

= 0 (9)

Equation (9) is the governing equation of the excess pore-fluid pressure in
the local ξη coordinate system.

Inflow of the Far Field being Parallel to the y Direction
of the Local xy Coordinate System

In this case, the boundary condition of the pore-fluid flow problem can be
mathematically expressed in the following form.

pin = pout (at ξ = ξ0) (10)

Kin
∂pin

∂ξ
= Kout

∂pout

∂ξ
(at ξ = ξ0) (11)

lim
ξ→∞

pout = −ωy sinh ξ sin η (12)

where pin and pout are the excess pore-fluid pressure inside and outside the elliptic
inclusion respectively; ξ0 is the boundary of the elliptic inclusion; Kin and Kout

are the intrinsic permeability of the porous medium inside and outside the elliptic
inclusion; ωy = | ∂p

∂y
| is the amplitude of the excess pore-fluid pressure gradient in

the y direction of the far field.
Equation (10) expresses the excess pore-fluid pressure continuity at the

boundary between the elliptic inclusion and the surrounding rock, while Eq. (11)
expresses the pore-fluid flux continuity in the normal direction of this boundary.
Equation (12) is used to express the distribution of the excess pore-fluid pressure
in the far field, namely the boundary condition of the excess pore-fluid pressure at
infinity.
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The general solution to the excess pore-fluid pressure inside and outside the
elliptic inclusion due to an inflow in the y direction of the far field can be expressed
as

pin = −ωyC1 sinh ξ sin η (13)

pout = −ωy sinh ξ sin η + ωyC2 e−(ξ−ξ0) sin η (14)

where C1 and C2 are two constants to be determined by the boundary conditions
of the problem.

Substituting Eqs. (13) and (14) into Eqs. (10) and (11) yields the following
equations.

(1 − C1) sinh ξ0 − C2 = 0 (15)
(

Kin

Kout
C1 − 1

)

cosh ξ0 − C2 = 0 (16)

Solving Eqs. (15) and (16) simultaneously yields the following expressions
for C1 and C2.

C1 = 1 + β

1 + αβ
, C2 = (α − 1)a

1 + αβ
(17)

where

β = cosh ξ0

sinh ξ0
= a

b
, α = Kin

Kout
(18)

where α is the permeability ratio of the elliptic inclusion to its surrounding rock;
β is the aspect ratio of the elliptic inclusion; a = cosh ξ0 and b = sinh ξ0 are half
the length of the long and short axes of the elliptic inclusion.

Note that the following mathematical equalities exist for the elliptic inclusion.

eξ0 = cosh ξ0 + sinh ξ0 = a + b, eξ0 = 1

e−ξ0
= 1

cosh ξ0 − sinh ξ0
= 1

a − b

(18a)

Using these two equalities can yield the following equations.

a2 − b2 = 1, a = β
√

β2 − 1
, b = 1

√
β2 − 1

(18b)
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Considering Eqs. (4), (7), (13), (14), (17) and (18) yields the corresponding
analytical solution to the pore-fluid velocity as follows.

uin
x = 0 (ξ ≤ ξ0) (19)

uin
y = ωyKin

µ

(
1 + β

1 + αβ

)

(ξ ≤ ξ0) (20)

uout
x = ωyKout

µ

[(
(α − 1)a

1 + αβ

)
(sinh ξ + cosh ξ ) sin η cos ηe−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]

(ξ ≥ ξ0)

(21)

uout
y = ωyKout

µ

[

1 +
(

(α − 1)a

1 + αβ

)
(cosh ξ sin2 η − sinh ξ cos2 η)e−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]

(ξ ≥ ξ0)

(22)

where the superscripts, in and out, represent the inside and outside domains of the
elliptic inclusion respectively.

Equation (20) indicates that as the inclusion becomes perfectly impermeable,
the intrinsic permeability of the inclusion goes to zero so that the pore-fluid velocity
within the elliptic inclusion approaches zero. Since the intrinsic permeability must
have a value between zero (in the case of perfectly impermeable) and one (in the
case of perfectly permeable), α → 0 as Kin → 0. This implies that if α → ∞, then
the surrounding rock must be perfectly impermeable so that Kout → 0. In this case,
Eq. (20) can be rewritten as uin

y = ωyαKout

µ
( 1+β

1+αβ
), which tends to a value of ωyKout

µβ

as α → ∞. Clearly, uin
y → 0 as Kout → 0. This indicates that if the surrounding

rock is perfectly impermeable, the pore-fluid velocity within the elliptic inclusion
expressed by Eq. (20) approaches the far field velocity, which has a limiting value
of zero. If the surrounding rock is not perfectly impermeable (i.e. the inclusion
is not perfectly permeable), the pore-fluid velocity within the elliptic inclusion
is, strictly speaking, not equal to the far field velocity unless the aspect ratio of
the elliptic inclusion approaches infinite (i.e. β → ∞). This is consistent with the
previous solutions for perfectly permeable and very thin but very long inclusions
(Phillips, 1991).

In order to quantitatively describe the flow-focusing effect, a flow-focusing
factor due to this elliptic inclusion is defined as

λy = uin
y

lim
ξ→∞

uout
y

= α(1 + β)

1 + αβ
(23)

where λy is the pore-fluid-flow focusing factor of the elliptic inclusion in the case of
the inflow being in the y direction in the far field of the local xy coordinate system.
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The pore-fluid-flow focusing factor of an elliptic inclusion is dependent on
the aspect ratio representing the specific geometry of the elliptic inclusion and the
permeability ratio representing the hydrodynamic property of the elliptic inclusion.
If the aspect ratio of an elliptic inclusion is equal to unity, then the elliptic inclusion
becomes a circular one so that the pore-fluid-flow focusing factor of the elliptic
inclusion degenerates into that of a circular inclusion, as obtained in a previous
study (Zhao and others, 1999).

From potential flow theory (Gerhart, Gross, and Hochstein, 1993), the fol-
lowing relationship between the stream function ψ and the pore-fluid velocity
exists:

∂ψ

∂y
= ux

∂ψ

∂x
= −uy (24)

Considering Eqs. (4), (7), (8) and (24) yields the analytical solution for the
stream function due to the elliptic inclusion as follows:

ψin = −ωyKin

µ

(
1 + β

1 + αβ

)

cosh ξ cos η + C (ξ ≤ ξ0)

ψout = −ωyKout

µ

[

cosh ξ cos η +
(

(α − 1)a

1 + αβ

)

e−(ξ−ξ0) cos η

]

+ C (ξ ≥ ξ0)

(25)

where ψin and ψout are the stream functions inside and outside the elliptic inclusion
respectively; C is an arbitrary constant.

For a perfectly permeable inclusion relative to the surrounding rock, the per-
meability ratio of the inclusion approaches infinite (i.e. α → ∞). If this perfectly
permeable inclusion is very thin but very long, then the aspect ratio of the inclusion
approaches infinite (i.e. β → ∞). In this particular case, Eq. (25) can be rewritten
as follows.

lim
α→∞, β→∞

ψout = −ωyKout

µ
lim

α→∞, β→∞

[

cosh ξ cos η +
(

(α − 1)a

1 + αβ

)

e−(ξ−ξ0) cos η

]

= −ωyKout

µ
cos η lim

β→∞

[

cosh ξ +
(

1

β + 1

)

e−ξ

]

= −ωyKout

µ
cosh ξ cos η = Uyx (25a)
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Note that Eq. (25a) is exactly the same as the previous solution derived for
the limiting case of a perfectly permeable and very thin but very long inclusion
(Phillips, 1991).

Inflow of the Far Field being Parallel to the x Direction
of the Local xy Coordinate System

In this case, the boundary condition of the pore-fluid flow problem can be
mathematically expressed in the following form.

pin = pout (at ξ = ξ0) (26)

Kin
∂pin

∂ξ
= Kout

∂pout

∂ξ
(at ξ = ξ0) (27)

lim
ξ→∞

pout = −ωx cosh ξ cos η (28)

where pin and pout are the excess pore-fluid pressure inside and outside the elliptic
inclusion respectively; ξ0 is the boundary of the elliptic inclusion; Kin and Kout

are the intrinsic permeability of the porous medium inside and outside the elliptic
inclusion; ωx = | ∂p

∂x
| is the amplitude of the excess pore-fluid pressure gradient in

the x direction of the far field.
Following the same procedures as used above, the analytical solutions for the

stream function, excess pore-fluid pressure and velocity around the buried elliptic
inclusion can be expressed as follows.

ψin = ωxKin

µ

(
β + 1

β + α

)

sinh ξ sin η + C (ξ ≤ ξ0) (29)

ψout = ωxKout

µ

[

sinh ξ + (α − 1)a

β + α
e−(ξ−ξ0)

]

sin η + C (ξ ≥ ξ0) (30)

pin = −ωx

(
β + 1

β + α

)

cosh ξ cos η (ξ ≤ ξ0) (31)

pout = −ωx cosh ξ cos η + ωx

(α − 1)a

β + α
e−(ξ−ξ0) cos η (ξ ≥ ξ0) (32)

uin
x = ωxKin

µ

(
β + 1

β + α

)

(ξ ≤ ξ0) (33)

uin
y = 0 (ξ ≤ ξ0) (34)
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uout
x = ωxKout

µ

[

1 +
(

(α − 1)a

β + α

)
(sinh ξ cos2 η − cosh ξ sin2 η)e−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]

(ξ ≥ ξ0)

(35)

uout
y = ωxKout

µ

[(
(α − 1)a

β + α

)
(cosh ξ sin η cos η + sinh ξ sin η cos η)e−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]

(ξ ≥ ξ0)

(36)

where β is the aspect ratio of the elliptic inclusion; α is the permeability ratio of
the elliptic inclusion to its surrounding rock.

Note that Since the intrinsic permeability must have a value between zero (in
the case of perfectly impermeable) and one (in the case of perfectly permeable),
α → 0 results in Kin → 0. In such a case, Eq. (33) indicates that as the inclu-
sion becomes perfectly impermeable, the pore-fluid velocity within the elliptic
inclusion approaches zero.

In order to compare the present analytical solution with the previous one
(Phillips, 1991), it is necessary to examine the behaviour of Eq. (30) in the limiting
case. If an elliptic inclusion is perfectly permeable relative to the surrounding rock,
the permeability ratio of the inclusion approaches infinite (i.e. α → ∞). If this
perfectly permeable inclusion is also very thin but very long, then the aspect ratio
of the inclusion approaches infinite (i.e. β → ∞). In this particular case, Eq. (30)
can be rewritten as follows.

lim
α→∞, β→∞

ψout = ωxKout

µ
lim

α→∞, β→∞

[

sinh ξ +
(

(α − 1)a

α + β

)

e−(ξ−ξ0)

]

sin η

= ωxKout

µ
sin η lim

β→∞

[

sinh ξ +
(

β

β + 1

)

e−ξ

]

= ωxKout

µ
cosh ξ sin η = Ux cosh ξ sin η (36a)

Since Phillips (1991) used the conformal mapping of the form of x =
d cosh ξ cos η and y = d sinh ξ sin η (note that d, instead of a, is used here to
avoid unnecessary confusion) in deriving the previous solutions, the value of d
needs to be set to one so that the present solution can be compared with the pre-
vious solution (Phillips, 1991) in the limiting case. Clearly, Eq. (36a) is identical
to the previous solution derived for the limiting case of a perfectly permeable and
very thin but very long inclusion (Phillips, 1991).

In this case, the analytical solution to the pore-fluid-flow focusing factor of
the elliptic inclusion can be expressed as

λx = uin
x

lim
ξ→∞

uout
x

= α(β + 1)

β + α
(37)
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where λx is the pore-fluid-flow focusing factor of the elliptic inclusion in the
case of the inflow being parallel to the x direction in the far field of the local xy
coordinate system.

Inflow of the Far Field being Parallel to the X Direction
of the Global XY Coordinate System

Since the governing equation of excess pore-fluid pressure in a pore-fluid-
saturated porous medium is described using Eq. (9), which is a linear second-
order partial differential equation, the superposition principle is valid in deriving
analytical solutions for pore-fluid flow around an inclined elliptic inclusion when
the inflow of the far field is parallel to the X direction of the global XY coordinate
system.

Substituting the Darcy’s law into Eq. (1) yields the following equations.

−Kout

µ
ωx = −Kout

µ
ωX cos θ, −Kout

µ
ωy = Kout

µ
ωX sin θ (38)

where ωx and ωy are the amplitudes of the excess pore-fluid pressure gradient
in the x and y directions of the local xy coordinate system in the far field; ωX is
the amplitude of the excess pore-fluid pressure gradient in the X direction of the
global XY coordinate system in the far field.

Equation (38) can be straightforwardly written as follows.

ωx = ωX cos θ, ωy = −ωX sin θ (39)

Superposing the analytical solutions derived in the previous two sub-sections
yields the analytical solutions for pore-fluid flow around an inclined elliptic inclu-
sion when the inflow of the far field is parallel to the X direction of the global XY
coordinate system.

ψin = ωXKin

µ

[(
β + 1

β + α

)

sinh ξ sin η cos θ +
(

1 + β

1 + αβ

)

cosh ξ cos η sin θ

]

+ C

(ξ ≤ ξ0) (40)

ψout = ωXKout

µ

{[

sinh ξ + (α − 1)a

β + α
e−(ξ−ξ0)

]

sin η cos θ

+
[

cosh ξ +
(

(α − 1)a

1 + αβ

)

e−(ξ−ξ0)

]

cos η sin θ

}

+ C (ξ ≥ ξ0) (41)
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pin = −ωX

(
β + 1

β + α

)

cosh ξ cos η cos θ + ωX

(
1 + β

1 + αβ

)

sinh ξ sin η sin θ (ξ ≤ ξ0)

(42)

pout = −ωX

[

cosh ξ − (α − 1)a

β + α
e−(ξ−ξ0)

]

cos η cos θ

+ωX

[

sinh ξ − ωX

(
(α − 1)a

1 + αβ

)

e−(ξ−ξ0)

]

sin η sin θ (ξ ≥ ξ0) (43)

uin
x = ωXKin

µ

(
β + 1

β + α

)

cos θ (ξ ≤ ξ0) (44)

uin
y = −ωXKin

µ

(
1 + β

1 + αβ

)

sin θ (ξ ≤ ξ0) (45)

uout
x = ωXKout

µ

[

1 +
(

(α − 1)a

β + α

)
(sinh ξ cos2 η − cosh ξ sin2 η)e−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]

cos θ

− ωXKout

µ

[(
(α − 1)a

1 + αβ

)
(sinh ξ + cosh ξ ) sin η cos ηe−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]

sin θ (ξ ≥ ξ0)

(46)

uout
y = ωXKout

µ

[(
(α − 1)a

β + α

)
(cosh ξ sin η cos η + sinh ξ sin η cos η)e−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]

cos θ

− ωXKout

µ

[

1 +
(

(α − 1)a

1 + αβ

)
(cosh ξ sin2 η − sinh ξ cos2 η)e−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]

sin θ

(ξ ≥ ξ0) (47)

In order to derive the pore-fluid-flow focusing factor of the inclined elliptic
inclusion in the case of the inflow being parallel to the X direction in the far
field of the global XY coordinate system, the following equality needs to be
considered.

λX = uin
x cos θ − uin

y sin θ

UX

= uin
x cos2 θ

UX cos θ
− uin

y sin2 θ

UX sin θ
= uin

x cos2 θ

lim
ξ→∞

uout
x

+ uin
y sin2 θ

lim
ξ→∞

uout
y

(48)

Inserting Eqs. (23) and (37) into Eq. (48) yields the following equation.

λX = λx cos2 θ + λy sin2 θ (49)
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where λx and λy are the pore-fluid-flow focusing factors of the inclined elliptic
inclusion in the case of the inflow being parallel to the x and y directions in the far
field of the local xy coordinate system; λX is the pore-fluid-flow focusing factor
of the inclined elliptic inclusion in the case of the inflow being parallel to the X
direction in the far field of the global XY coordinate system.

Clearly, Eq. (49) indicates that if the inflow of the far field is not parallel to
either the long axis or the short axis of an inclined elliptic inclusion, the pore-
fluid-flow focusing factor is also dependent on the dip angle of the inclined elliptic
inclusion.

Inflow of the Far Field being Parallel to the Y Direction
of the Global XY Coordinate System

Similarly, the superposition principle is valid in deriving analytical solutions
for pore-fluid flow around an inclined elliptic inclusion when the inflow of the far
field is parallel to the Y direction of the global XY coordinate system.

Substituting the Darcy’s law into Eq. (2) yields the following equations.

−Kout

µ
ωx = −Kout

µ
ωY sin θ, −Kout

µ
ωy = −Kout

µ
ωY cos θ (50)

where ωx and ωy are the amplitudes of the excess pore-fluid pressure gradient
in the x and y directions of the local xy coordinate system in the far field; ωY is
the amplitude of the excess pore-fluid pressure gradient in the Y direction of the
global XY coordinate system in the far field.

Equation (50) can be straightforwardly written as follows.

ωx = ωY sin θ, ωy = ωY cos θ (51)

Superposing the analytical solutions derived in the previous two sub-sections
yields the analytical solutions for pore-fluid flow around an inclined elliptic inclu-
sion when the inflow of the far field is parallel to the Y direction of the global XY
coordinate system.

ψin = ωY Kin

µ

[(
β + 1

β + α

)

sinh ξ sin η sin θ −
(

1 + β

1 + αβ

)

cosh ξ cos η cos θ

]

+ C

(ξ ≤ ξ0) (52)

ψout = ωY Kout

µ

{[

sinh ξ + (α − 1)a

β + α
e−(ξ−ξ0)

]

sin η sin θ

−
[

cosh ξ +
(

(α − 1)a

1 + αβ

)

e−(ξ−ξ0)

]

cos η cos θ

}

+ C (ξ ≥ ξ0) (53)
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pin = −ωY

(
β + 1

β + α

)

cosh ξ cos η sin θ − ωY

(
1 + β

1 + αβ

)

sinh ξ sin η cos θ

(ξ ≤ ξ0) (54)

pout = −ωY

[

cosh ξ − (α − 1)a

β + α
e−(ξ−ξ0)

]

cos η sin θ − ωY

×
[

sinh ξ − ωX

(
(α − 1)a

1 + αβ

)

e−(ξ−ξ0)

]

sin η cos θ (ξ ≥ ξ0) (55)

uin
x = ωY Kin

µ

(
β + 1

β + α

)

sin θ (ξ ≤ ξ0) (56)

uin
y = ωY Kin

µ

(
1 + β

1 + αβ

)

cos θ (ξ ≤ ξ0) (57)

uout
x = ωY Kout

µ

[

1 +
(

(α − 1)a

β + α

)
(sinh ξ cos2 η − cosh ξ sin2 η)e−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]

sin θ

+ ωY Kout

µ

[(
(α − 1)a

1 + αβ

)
(sinh ξ + cosh ξ ) sin η cos ηe−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]

cos θ

(ξ ≥ ξ0) (58)

uout
y = ωY Kout

µ

[(
(α − 1)a

β + α

)
(cosh ξ sin η cos η + sinh ξ sin η cos η)e−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]

sin θ

+ ωY Kout

µ

[

1 +
(

(α − 1)a

1 + αβ

)
(cosh ξ sin2 η − sinh ξ cos2 η)e−(ξ−ξ0)

sinh2 ξ cos2 η + cosh2 ξ sin2 η

]

cos θ

(ξ ≥ ξ0) (59)

In order to derive the pore-fluid-flow focusing factor of the inclined elliptic
inclusion in the case of the inflow being parallel to the Y direction in the far field
of the global XY coordinate system, the following equality needs to be considered.

λY = uin
x sin θ + uin

y cos θ

UY

= uin
x sin2 θ

UY sin θ
+ uin

y cos2 θ

UY cos θ
= uin

x sin2 θ

lim
ξ→∞

uout
x

+ uin
y cos2 θ

lim
ξ→∞

uout
y

(60)

Inserting Eqs. (23) and (37) into Eq. (60) yields the following equation.

λY = λx sin2 θ + λy cos2 θ (61)
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where λx and λy are the pore-fluid-flow focusing factors of the inclined elliptic
inclusion in the case of the inflow being parallel to the x and y directions in the far
field of the local xy coordinate system; λY is the pore-fluid-flow focusing factor
of the inclined elliptic inclusion in the case of the inflow being parallel to the Y
direction in the far field of the global XY coordinate system.

APPLICATION EXAMPLES OF THE PRESENT
ANALYTICAL SOLUTIONS

The present analytical solutions provide a useful tool for fundamentally
understanding the general behaviour of pore-fluid flow around a buried inclined
fault or crack within the crust of the Earth. For instance, the simple and elegant
analytical solution for the flow focusing factor within a buried inclined fault can
be used to understand how the pore-fluid flow is focused into the buried inclined
fault with any dip angles. Since the pore-fluid-flow focusing factor is dependent
on the angle between the long axis of the inclusion and the inflow direction in
the unperturbed far field, we can consider all possible flow focusing situations
by setting the inflow parallel to the X direction in the far field of the global XY
coordinate system and varying the dip angle of the inclusion.

In the case of the dip angle being zero, Figure 3 shows the variation of analyt-
ical flow focusing factors with the aspect ratio of the inclusion for several different
permeability ratios (i.e. PR in this figure) of the inclusion to its surrounding rock,
while Figure 4 shows the variation of analytical flow focusing factors with the
permeability ratio of the inclusion to its surrounding rock for several different
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Figure 3. Variation of flow focusing factor with aspect ratio due to
different permeability ratios (Inflow parallel to the long axis of the
inclusion).
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Figure 4. Variation of flow focusing factor with permeability ratio due to different aspect
ratios (Inflow parallel to the long axis of the inclusion).

aspect ratios (i.e. AR in this figure). It is obvious that for a given aspect ratio of the
inclusion in the case of the dip angle being zero, the flow focusing factor increases
with an increase in the permeability ratio of the inclusion to its surrounding rock
until it reaches the corresponding limiting value. Similarly, for a given permeabil-
ity ratio of the fault to its surrounding rock, the flow focusing factor increases with
an increase in the aspect ratio of the inclusion until it reaches its corresponding
limiting value. At this point, it is interesting to compare the present results with
the previous ones in the limiting case (Phillips, 1991). For a perfectly permeable
inclusion, the previous result indicated that the flow focusing factor (λ) is equal to
the aspect ratio (β), namely λ = β. In the case of the aspect ratio (AR) being 10,
100, 1000 and 10000, the asymptotes of the corresponding logarithmic values of
the flow focusing factor are 1, 2, 3 and 4 respectively. Since the present results of
the flow focusing factor approaches the previous ones, it has been demonstrated
that when the inflow is parallel to the long axis of the inclusion, the present results
are consistent with the previous ones for perfectly permeable inclusions.

Figure 5 shows the streamline patterns around and within an elliptic inclusion
of the aspect ratio being 5 due to three different permeabilities. In this figure, the dot
points are used to show the outline of the elliptic inclusion. It can be observed that
if the inclusion is permeable (i.e. α = 10), the pore-fluid flow is highly focused
into the inclusion, while if the inclusion is perfectly impermeable (α = 0), the
pore-fluid flow does not enter the inclusion. If the permeability of the inclusion is
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Figure 5. Streamline patterns around and within an elliptic inclu-
sion due to different permeability ratios (Inflow parallel to the long
axis of the inclusion).

the same as that of the surrounding rock (α = 1), the inclusion does not disturb the
flow field. This indicates that the present solution agrees well with the previous
ones for the streamline pattern around an elliptic inclusion (Phillips, 1991).

If the dip angle of the inclusion is 90◦, the horizontal inflow in the unper-
turbed far field is parallel to the short axis of the inclusion. Figure 6 shows the
variation of analytical flow focusing factors with the aspect ratio of the inclusion
for several different permeability ratios (i.e. PR in this figure) of the inclusion to its
surrounding rock, while Figure 7 shows the variation of analytical flow focusing
factors with the permeability ratio of the inclusion to its surrounding rock for
several different aspect ratios (i.e. AR in this figure) of the inclusion. Since the
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Figure 6. Variation of flow focusing factor with aspect ratio due to different
permeability ratios (Inflow parallel to the short axis of the inclusion).

logarithm of the flow focusing factor is shown in the direction of the vertical axis
(in Figs. 6 and 7), a logarithmic value of zero is in correspondence with the flow
focusing factor of one. It is obvious that for a given permeability ratio, the pore-
fluid-flow focusing factor approaches unity with the increase of the aspect ratio
of the inclusion. The reason for this phenomenon is due to the fact that when the
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Figure 7. Variation of flow focusing factor with permeability ratio due to
different aspect ratios (Inflow parallel to the short axis of the inclusion).
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Figure 8. Variation of flow focusing factor with aspect ratio due to different permeability
ratios (Inflow parallel to the X axis, θ = 30◦).

aspect ratio of an elliptic inclusion is infinite or very large, the inclusion behaves
as an interface between surrounding rocks, so that the pore-fluid-flow focusing
factor must be unity, as required by the pore-fluid mass conservation in the pore-
fluid flow direction. For a given aspect ratio of the inclusion, the pore-fluid-flow
focusing factor can also approach a limit value. Although this limit value may
vary with different aspect ratios of the inclusion, it goes to unity as the aspect
ratio approaches infinite. Thus, for a perfectly permeable and very thin but very
long inclusion, the flow focusing factor is approaching one, implying that when
the inflow is parallel to the short axis of the inclusion, the perfectly permeable
inclusion does not perturb the flow field. This conclusion is consistent with that
obtained from the previous study in the limiting case (Phillips, 1991). Comparing
the analytical results in Figures 3 and 4 with those in Figures 6 and 7, clearly, the
pore-fluid-flow focusing factors in the case of the inflow parallel to the short axis
of the inclusion are much smaller than those in the case of the inflow parallel to the
long axis of the inclusion. This indicates that the relative direction of the inflow
in the far field to the long axis of an elliptic inclusion has a significant influence
on the pore-fluid flow focusing factor of the inclusion.

In order to further examine the effect of the relative direction of the inflow
in the far field to the long axis of an elliptic inclusion on the pore-fluid-flow
focusing factor, three different intermediate dip angles, namely 30◦, 45◦ and 60◦,
are considered to produce the related analytical solutions. Figures 8, 10 and 12
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Figure 9. Variation of flow focusing factor with permeability ratio due to different aspect
ratios (Inflow parallel to the X axis, θ = 30◦).
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Figure 10. Variation of flow focusing factor with aspect ratio due to different
permeability ratios (Inflow parallel to the X axis, θ = 45◦).
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Figure 11. Variation of flow focusing factor with permeability ratio due to different
aspect ratios (Inflow parallel to the X axis, θ = 45◦).
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Figure 12. Variation of flow focusing factor with aspect ratio due to different
permeability ratios (Inflow parallel to the X axis, θ = 60◦).
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Figure 13. Variation of flow focusing factor with permeability ratio due to different
aspect ratios (Inflow parallel to the X axis, θ = 60◦).

show the variation of analytical flow focusing factors with the aspect ratio of the
inclusion for several different permeability ratios (i.e. PR in these figures) due to
the three different dip angles. Figures 9, 11 and 13 show the variation of analytical
flow focusing factors with the permeability ratio of the inclusion to its surrounding
rock for several different aspect ratios (i.e. AR in these figures) due to the three
different dip angles. Clearly, the maximum value of the pore-fluid-flow focusing
factor decreases with the increase of the dip angle of the inclusion. With the
permeability ratio being 10000 taken as an example, the maximum logarithm value
of the pore-fluid-flow focusing factor can reach 2.969 in the case of θ = 30◦, while
it decreases to 1.979 and 0.99 in the case of θ = 45◦ and θ = 60◦ respectively. The
previous findings, such as the variation trend of pore-fluid-flow focusing factors
with either different permeability ratios or different aspect ratios of the inclusion,
can be also observed from the analytical solutions shown in Figures 8–13.

CONCLUSIONS

Exact analytical solutions have been derived rigorously for the pore-fluid
velocity, the pore-fluid flow focusing factor, the stream function and the excess
pore-fluid pressure around and within a buried inclined elliptic inclusion with any
dip angles. The present analytical solutions provide a useful tool for fundamentally
understanding the general behaviour of pore-fluid flow around and within buried
faults and large cracks.
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The present analytical solution for the pore-fluid-flow focusing factor within
a buried inclined inclusion has been used to demonstrate how pore-fluid flow is
focused into the buried inclined inclusion. It has been found that the pore-fluid-
flow focusing factor of a buried elliptic inclusion is dependent on the aspect ratio,
the permeability ratio and the dip angle of the inclusion. Therefore, it can be
directly used to investigate the pore-fluid-flow focusing phenomenon within the
buried faults and large cracks within the crust of the Earth.
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