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Quantitative Analysis of Porosity Heterogeneity:
Application of Geostatistics to Borehole Images1

Peter G. Tilke,2 David Allen,3 and Asbjorn Gyllensten4

High levels of heterogeneity in many carbonate reservoirs have raised concerns about the validity
and relevance of small-scale measurements from core plugs and high-resolution logs. While the
measurements themselves may be accurate, they may not be representative of the average formation
properties. A related question is one of reconciling the measurements made in small volume of
investigation data (e.g., core plugs), with the measurements from relatively large volume of investigation
data (e.g., wireline logs). This paper presents a technique to quantitatively describe the porosity
heterogeneity in a borehole at the scale of several tenths of an inch. The method involves treating
high-resolution borehole imagery as a 2D sample from a 3D data volume, and applying geostatistical
analysis to these data. We compute the experimental semi-variogram and upscale its range and sill to
larger (several inches) scales of measurement to predict the impact of heterogeneity on conventional
core plug and logging tool porosity measurements. The resulting dispersion variance between the
different measurement scales support the interpretation, application and comparison of these porosity
measurements. This technique was applied to an Early Cretaceous carbonate reservoir in Abu Dhabi.
We found that the scale of the heterogeneity is typically less than 1– 2in., so that while significant
heterogeneity is observed at the core plug and smaller scales of measurement, the larger-volume
logging tool measurements smooth out the heterogeneity and show considerably less variability. The
differences between porosity measured in core plugs can be completely accounted for by this upscaling
effect.

KEY WORDS: borehole; carbonate; electrical imagery; geostatistics; heterogeneity; image analysis;
porosity.

INTRODUCTION

A common challenge in petrophysics and geology is to determine the relevance
and reliability of measurements of rock properties such as porosity made at the
borehole scale with the same property at the reservoir scale. This challenge is
particularly apparent in heterogeneous carbonates.
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Published studies have emphasized the widespread impact of heterogeneity
on the rock properties of certain carbonate reservoirs. The results presented in this
paper are based on a well in an Aptian field in Abu Dhabi (Russell and others,
2002). In this field, numerous small-scale accurate measurements were made in
the laboratory on core plugs. However, because of heterogeneity it was unclear
how these measurements were related to the mean formation properties.

A related question is one of reconciling the variability seen in high-resolution
(small volume of investigation) measurements (e.g., core plug), with the variability
in relatively low-resolution (large volume of investigation) measurements (e.g.,
wireline log).

The effect of heterogeneity on core plug measurements is illustrated in
Figures 1 and 2. Figure 1 illustrates a hand sample from a homogeneous lime-
stone. Porosity measurements made at different locations in this sample would
yield very consistent results. Figure 2, in contrast, illustrates a hand sample from
a heterogeneous limestone. Porosity measurements from different parts of this
sample would show very high variance.

Figure 1 illustrates how a homogeneous formation will yield a narrow range
in measured porosity, while a relatively heterogeneous formation (Fig. 2) will
yield a wide range of measured porosity.

On the other hand, log measurements which average over a large volume,
yield relatively smooth measurements even over intervals in which the core in-
dicates significant heterogeneity (Fig. 3). If the measurement volume of these
different observations is correctly accounted for, then the analysis of dispersion
variance described in this paper will allow us to quantitatively reconcile these two
seemingly inconsistent observations.

QUANTITATIVE HETEROGENEITY ANALYSIS FROM IMAGE DATA

The primary objective of this study is to use high-resolution borehole imagery
(Ekstrom and others, 1986; Safinya and others, 1991) to quantitatively describe
the porosity heterogeneity in the borehole at the scale of the imaging measure-
ments. The observed heterogeneity is then upscaled to core plug and logging tool
measurement scales to reconcile differences observed by these different measure-
ments. Conventional logs are then generated of the predicted heterogeneity at these
larger scales of measurement.

The workflow to generate these heterogeneity logs involves the following
steps:

1. Start from a borehole image: a 2D array of measurements “on” the bore-
hole wall. Compute the 3D coordinates of each measurement from the
hole and tool geometry, and the tool orientation.
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Figure 1. Photograph of hand sample of homoge-
neous limestone.

2. For a given depth, identify all possible two-point pairs of measurements
and the chord lengths between them (lags).

3. Assign measurement pairs to bins representing similar lags.
4. Transform the measurement values to a relevant physical property as de-

sired. For instance, image resistivity (R) values may be transformed to
porosity (�) values. Other possibilities include segmenting the image us-
ing new or existing image analysis techniques (e.g., Ibanez and Schroeder,
2003).

5. At each depth in the well, compute the experimental semi-variogram by
computing the porosity variance as a function of lag.

6. Derive a model semi-variogram from the experimental semi-variogram
for each frame, thereby determining the modeled geostatistical parameters
and making them available for further processing or display.

7. From the geostatistical parameters which have been modeled at the
scale of the input image measurement, compute the same parameters
for measurements with larger volumes of investigation using upscaling
approaches.

8. The up-scaled geostatistical model parameters can then be used to gen-
erate dispersion variance logs for corresponding core and well log mea-
surements.
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Figure 2. Photograph of hand sample of heterogeneous limestone.
Some portions of the sample have very low porosity, while other por-
tions are composed of empty vugs.

These steps are described in greater detail in the following sections.

Compute Three-Dimensional Measurement Geometry

Borehole imaging tools produce images of the measured parameter (resis-
tivity, acoustic impedance, density, etc.) on the rock face. At a given depth, the
exact 3D coordinate of each image measurement is therefore a function of the hole
orientation and shape and the imaging tool configuration.

We use here data from an electrical resistivity imaging tool (Safinya and
others, 1991). The tool consists of four pairs of pads and flaps (Fig. 4). The four
arms of the tool expand in the borehole so that the pads and flaps press against the
rock face. Each pad and flap has 24 resistivity sensors arranged in two horizontal
rows of 12 sensors with a horizontal (azimuthal) sensor spacing of 0.2 in. The
two rows are placed on top of each other and are azimuthally shifted 0.1 in. with
respect to each other giving an effective horizontal spacing of 0.1 in.

As the tool is pulled up the borehole, a measurement is made every 0.1 in.
The resulting image consists of 192 (8 × 24) measurements around the borehole
circumference with a vertical sample spacing of 0.1 in. Because the arms press
against the borehole wall, the spacing between pads and flaps on different arms is
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Figure 3. Conceptual diagram illustrating the relative volumes of resistivity image mea-
surements, core plugs, and a density tool. A porosity measurement taken with the density
tool would read the average of numerous core plugs, and thereby have a smaller variance
than the core plugs, while an image measurement would reveal more variance than the core
plug measurements.

a function of the hole diameter. For example, in an 8 in. hole the effective image
coverage is about 80% of the circumference, while in an 8.5 in. hole it is about
72% (Fig. 5).

As part of acquiring the image measurements, the orientation of the borehole,
the azimuthal orientation of the tool, and the diameter of the hole are all recorded.
From this information, the three-dimensional position of every measurement can
be derived (Fig. 5). The examples in this document are taken from a vertical well
of constant diameter (8.5 in.), which simplifies the analysis slightly.

For a two-point geostatistical analysis, measurement pairs must be identified.
While geostatistical theory fully supports the three-dimensional vector analysis,
we restrict here our analysis to the measurements at a single depth, ignore the
azimuthal orientation of the vectors between the measurements, and only consider
their magnitude. The full three-dimensional analysis is a straightforward extension
of this reduced approach.

As noted above, there are 192 measurements per depth in the image tool. As
such, there are (192 × 191)/2 = 18, 336 possible measurement pairs. Once the
3D coordinate of each measurement is known, the horizontal distance between
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Figure 4. Resistivity image tool illustrating the four pairs of pads and flaps generating
192 measurements per depth.

each measurement pair (L) may be calculated (Fig. 5):

L = 2R sin(θ/2) (1)
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Figure 5. Borehole cross-section illustrating distribution of re-
sistivity image measurements at a given depth. The 192 mea-
surements are distributed across the four pads and four flaps (24
measurements on each). The distance between measurements S1

and S2 is given by L = 2R sin(θ/2), where θ and R are known
from the tool and hole geometry.

We assume here that the heterogeneity is at least locally isotropic in three di-
mensions, in particular, that there is no vertical variation in formation proper-
ties over scales less than several inches. This assumption fails in the presence
of bed boundaries. Fortunately, this is not a common occurrence in the studied
borehole.

Assign Image Measurement Pairs to Bins with Similar Lags

Geostatistical analysis of the image measurement pairs requires grouping the
pairs into bins with similar horizontal lags (L). Selection of the appropriate bin
size is an important step. We want the maximum number of bins possible in order
to achieve maximum resolution of the semi-variogram structure, but too small
a bin size will result in aliasing (e.g., Bloomfield, 2000). The correct minimum
bin size is also the effective resolution of the imaging tool (Safinya and others,
1991) dictated by the Nyquist Frequency which is twice the measurement spacing
(0.1 in.), i.e., 0.2 in. For our 8.5 in. diameter hole example, this results in 43 bins
of equal size (except the last which is 0.1 inches). Because of the measurement
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Figure 6. Histogram illustrating frequency of measurement pairs per 0.2 in. sampling bin for 8.5 in.
diameter hole. Bin 1 is 0.0–0.2 in., Bin 2 is 0.2–0.4 in., etc.

geometry illustrated in Figure 5, the number of measurements in each of the
43 bins is not uniform (Fig. 6).

As noted earlier, in an 8.5 in. borehole, the imaging tool achieves approxi-
mately 72% coverage of the hole circumference. As illustrated in Figure 6, this
high coverage results in good bin sampling for every lag distance from 0.1 to
8.5 in. An older generation imaging tool with larger sampling gaps between the
pads (e.g., Ekstrom and others, 1986), would yield gaps in the semi-variogram
which would reduce the quality of the interpretation.

Transform Resistivity Image to Porosity Image

Once the measurement pairs and bins have been identified, it is necessary to
map the resistivity image to a geological or petrophysical property, so that this
property can be analyzed in a geostatistical sense. It is possible to use any attribute
extracted from the resistivity image. We will transform here the resistivity image
to a porosity image.

The recognition that borehole images can be mapped to petrophysical prop-
erties is well understood (e.g., Delhomme and others, 1996; Newberry, Grace, and
Stief, 1996). Perhaps the best established transformation is that from resistivity
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to porosity space using the classic Archie saturation equation (e.g., Fanchi, 2002,
p. 61):

Sn
w = aRmf

�mR
(2)

where Sw is the saturation of the wetting phase, n is the saturation exponent,
a depends on the tortuosity, Rmf is the resistivity of the mud filtrate, � is the
porosity where the measurement is made, m is the cementation exponent, and
R is the resistivity of the flushed zone where the measurement is made. This
relationship can be rearranged in terms of

� =
(

aRmf

Sn
wR

) 1
m

(3)

Equation (3) may also be written as

� = λ R− 1
m (4)

where

λ =
(

aRmf

Sn
w

) 1
m

(5)

If we assume that λ is constant for a given depth, then we can use Eq. (4) to
express the mean porosity 〈�〉 for a given depth as

〈�〉 = λ
〈
R− 1

m

〉
(6)

where 〈 〉 denotes the expectation or mean of the enclosed. Thus, 〈R− 1
m 〉 represents

the mean value of R− 1
m at the given depth, and is obtained from the 192 resistivity

measurements.
Finally, 〈�〉 may be measured independently using a conventional porosity

logging tool (e.g., Ellis, 2003; Luthi, 2001). This allows us to combine Eqs.(4)
and (6) to eliminate λ yielding

� = 〈�〉 R− 1
m〈

R− 1
m

〉 (7)
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Note that we still need to supply the cementation exponent m, which can be
obtained from laboratory core measurements (e.g., Ragland, 2002 ). In this study,
m was 2.0 for the entire interval of investigation, within measurement uncertainty.

Compute Experimental Semi-Variogram

Now that we have the porosity image and bins defined, we can compute the
sample porosity (�) variance γ̄�(h) for each bin (having lag h) with the classic
experimental semi-variogram equation

γ̄�(h) =
∑n

i=1

(
�p(i)+h − �p(i)

)2

2 n
(8)

where �p(i)+h denotes the porosity at a point distance h from the ith point p(i),
and n is the total number of pairs of measurements separated by distance h. A
semi-variogram created by this technique is illustrated in Figure 7.

Model Semi-Variogram

For the purposes of this analysis, a simple exponential semi-variogram model
(e.g., Journel and Huijbregts, 1978, p. 163) has been defined to fit the experimental
data from Equation (8):

γ�(h) = C0 + C1

(
1 − e

− h
L1

)
(9)

where γ�(h) is the model variance at lag h, C0 is the nugget effect, C1 the sill, and
L1 the correlation length or range (Journel and Huijbregts, 1978 , p. 163).

To fit the model semi-variogram of Equation (9) to the experimental semi-
variogram of Equation (8), the method of Zhang, Van Eijkeren, and Heemink
(1995) produced satisfactory results. This technique involves minimizing the cost
criterion J (λ), given by

J (λ) =
k∑

i=1

Nhi

h2
i

[γ̄�(hi) − γ�(hi)]
2 (10)

where i is the bin index, hi is the lag of the ith bin, and Nhi
is the number of sample

pairs in the ith bin.
In Figure 7, the resulting model semi-variogram is plotted along with the

experimental semi-variogram. We can repeat this analysis for every depth with
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Figure 7. Horizontal semi-variogram for the heterogeneous interval displayed in the middle of interval
Figure 11. Superimposed on the experimental data obtained from the porosity image, are model
variograms for the resistivity image, core plug, high-resolution tool (Tool 1), and low-resolution tool
(Tool 2) (see Table 1). In the experimental data, note the sill with �2 = 0.022 (� = 14.8%) reached
at a practical range of approximately 1.2 in. Applying the dispersion analysis described in Equation
(19) to the core measurement relative to the larger Tool 2 volume yields D2 = 0.0044 (D = 6.7%).
Thus, core plug measurements of porosity would thus be expected to show a 1σ dispersion of ±6.7%
if sampled repeatedly at this depth.

imagery in the borehole. The resulting vectors of C0, C1, and L1 can then be plotted
as conventional logs. An example is illustrated in the bottom trace of Figure 8.

Upscaling

Now that we have a model for the experimental semi-variogram observed at
the small (resistivity image) scale, we are in a position to upscale the model to
samples with larger volumes of investigation (e.g., core plugs).

In addition to the image and core plug measurement volumes, we have also
considered in this analysis two logging tool measurement volumes corresponding
to a high resolution and low resolution porosity tool. The idealized dimensions of
these various measurement volumes are listed in Table 1.

If we consider two finite volumes of investigation v (the small image mea-
surement volume at which the experimental semi-variogram was derived) and V

(the relatively large core plug or logging tool volume), then we would like to derive
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Figure 8. Log of modeled practical range L as a function of depth in the borehole. This log spans
24 in. depth and is centered on the middle of the interval displayed in Figure 11 (top to the left). Note
the increase in range from resistivity image tool → core plug → high-resolution tool (Tool 1) → low-
resolution tool (Tool 2) as expected from Equation (12). Also note the jump in range at a depth of about
6 in. which is the contact between the homogeneous zone above and the heterogeneous zone below.

the geostatistical parameters for V (i.e., C0,V , C1,V , and L1,V ) from the modeled
geostatistical parameters for v (i.e., C0,v, C1,v, and L1,v).

To upscale the nugget effect C0,v in Equation (9) it can be shown (Journel
and Huijbregts, 1978, p. 156)

C0,V = C0,v
v

V
(11)

It can also be shown (Frykman and Deutsch, 1999) that the range L1 in
Equation (9) increases as a function of the increase in volume size, viz.

L1,V = L1,v + |V | − |v| (12)

Table 1. Dimensions of Idealized Measurement Values

Measurement Width (in.) Height (in.) Depth (in.) Volume (in.3) Volume (relative)

Image tool 0.2 0.2 0.2 0.008 1×
Core plug 1.0 1.0 1.0 1.0 125×
High-resolution tool 3.0 3.0 3.0 27.0 3,375×
Low-resolution tool 3.0 12.0 4.0 144.0 18,000×
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where |V | and |v| are the dimensions (lengths) of the volumes V and v in the
direction of L1. As we are not considering direction in this analysis, |V | and |v|
become 3

√
V and 3

√
v, respectively.

Finally, to upscale the modeled sill in Equation (9), we must introduce the
concept of the point scale sill Cp (Journel and Huijbregts, 1978, p. 77). Cp is
defined as the sill for an infinitesimally small volume of investigation. Then, for
the small finite volume v, we can define the decrease in sill as follows:

Cp − Cv = Cp�v (13)

where Cp�v is the point-scale sill within the volume v, and �v is the normalized
point-scale sill in v defined below in Equation (16).

Similarly, the decrease in sill for the large volume V can be expressed as

Cp − CV = Cp�V (14)

Equations (13) and (14) are then combined to eliminate the point scale sill
Cp yielding the following definition for CV :

CV = Cv
1 − �V

1 − �v
(15)

The normalized point-scale sill in v is obtained from the double volume integral:

�v = 1

v2

∫∫
�p(|a − b|) da db (16)

where |a − b| is the Euclidean distance between points a and b, and �p is the
normalized point-scale model semi-variogram expressed as

�p(|a − b|) = 1 − e
− |a−b|

L1,v−|v| (17)

where L1,v − |v| is the modeled point scale range from Equation (9).
Similarly, �V is expressed as

�V = 1

V 2

∫∫
�p(|a − b|) da db (18)

These upscaled geostatistical parameters (Eqs. (11), (12), (15) and (18)) for each
of the volumes in Table 1 are then computed for every depth in the borehole. Like
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Figure 9. Log of modeled sill C as a function of depth in the borehole. This log also spans 24 in. depth
and is centered on the middle of the interval displayed in Figure 11. Note the decrease in sill from
resistivity image tool → core plug → high-resolution tool (Tool 1) → low-resolution tool (Tool 2)
as expected from Equation (15). Note how this log illustrates the extreme difference in heterogeneity
as indicated by the change in magnitude of the sill at the 6 in. depth.

the parameters for the image scale (Eq. (9)), the upscaled parameters may also be
plotted as conventional well logs (Figs. 8 and 9).

Construct Dispersion Variance Logs for Porosity Measurements

Dispersion variance may be defined as the variance of an observation made
at a small volume v within a larger volume V (Journel and Huijbregts, 1978,
p. 61). The dispersion variance of � may then be expressed in terms of the mean
values of the variances (Journel and Huijbregts, 1978 , p. 67) as

D2
� (v|V ) = γ̄� (V, V ) − γ̄� (v, v) (19)

where γ̄�(v, v) is the mean variance of � over the volume v (Journel and Huijbregts,
1978, p. 54), and may be expressed in terms of the geostatistical parameters
for v:

γ̄� (v, v) = C0,v + C1,v �v (20)
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Figure 10. Log of modeled dispersion variance D2 as a function of depth in the borehole. Like Figures
8 and 9, this log corresponds to the depth range displayed in Figure 7. Here the dispersion variance
is computed from Equation (19) with the small volume (v) being the core plug volume (Table 1),
and the large volume (V) being either the Tool 1 or Tool 2 volumes (Table 1). Again, note the large
change in dispersion from the shallow homogeneous zone above 6 in., and the deeper heterogeneous
zone below 6 in. In the heterogeneous zone at a depth of 12 in. D2 = 0.0044 (D = 6.7%) for core vs.
Tool 2, while in the homogeneous zone at a depth of 3 in. D2 = 0.00001 (D = 0.25%). A hand
sample in the heterogeneous zone would resemble Figure 2, while the homogenous zone might
resemble Figure 1.

Similarly,

γ̄� (V, V ) = C0,V + C1,V �V (21)

Thus, Equations (19)–(21)allow us to compute the dispersion variance for all our
idealized volumes (Table 1) at every imaged depth in the well. This is illustrated by
the example dispersion variance log in Figure 10. Note that this interval straddles
a homogeneous interval above and a heterogeneous one below.

DISCUSSION

Figure 11 illustrates a section of the reservoir having moderate porosity
(22%). This 24 in. high interval is characterized by a homogeneous layer in the
top 6 in. in sharp contact with a heterogeneous layer below. This can be seen
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Figure 11. Porosity image of 24 in. high interval around the 26.7 in.
circumference (8.5 × π ) of the borehole. The horizontal grid lines have
a vertical spacing of 6 in. Note the relatively large gaps between the four
arms, and the relatively small gap between each pad-flap pair. The mean
porosity of the interval is 22%. Black is relatively high porosity, while
white indicates relatively low porosity. Note the very heterogeneous layer
in the middle of the image comprising numerous 1–2 in. diameter vugs.
Also note the abrupt contact above with a relatively homogeneous layer.

clearly in the image log but also in the dispersion variance log (Fig. 10). The semi-
variogram for the heterogeneous section (Fig. 7) illustrates a practical range of
1.2 in. corresponding visually to the mean size of the vugs in this interval (Fig. 11).
The image (Fig. 11) also suggests that the heterogeneity decreases gradually in the
bottom 18 in. of the interval as one goes deeper. This is supported by the gradual
decrease in dispersion variance over the interval 9–24 in. (Fig. 10). A semi-
variogram from the top of the homogeneous interval is presented in Figure 12.
The variogram indicates a somewhat longer practical range of 1.8 in., but the sill
is dramatically lower than in Figure 7 reflecting the homogeneity.

A comparison of the predicted heterogeneity at the core plug scale of mea-
surement with actual core plug porosity measurements is illustrated in Figure 13.
This figure illustrates a 70 ft depth interval where the shallower section (0–31 ft)
is heterogeneous, and the deeper section (31–70 ft) is homogeneous. There are
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Figure 12. Horizontal semi-variogram for the homogeneous interval displayed in the top of the
interval illustrated in Figure 11. Compare this variogram with the one for the heterogeneous interval
(Figure 7). In the experimental data, note the sill with �2 = 0.00004 (� = 0.6%) reached at a
practical range of approximately 1.8 in. Applying the dispersion analysis described in Equation (19)
to the core measurement relative to the larger Tool 2 volume yields D2 = 0.00001 (D = 0.2%). Thus,
core plug measurements of porosity would be expected to show virtually no dispersion if sampled
repeatedly at this depth.

three logs in this interval: the mean porosity as measured with the porosity tool,
and the ±2σ modeled dispersion logs around the mean porosity. Also illustrated
in this figure are core plug porosity measurements made in the laboratory. In the
heterogeneous section, the high degree of heterogeneity is illustrated by both the
±2σ dispersion logs and the dispersion (scatter) in the core plug measurements. In
the homogeneous section, the dispersion logs and the core plugs are consistent in
that they both illustrate significantly less dispersion. Note that in the homogeneous
interval there is an obvious shift to higher porosity of about 2–3% observed in the
core plug measurements. A likely source of this inconsistency is biased sampling
of the core plugs. In both the heterogeneous and homogenous intervals, the pre-
dicted and observed core plug dispersion is remarkably consistent. Therefore, if
one corrects for discrepancies introduced by biased sampling of the core plugs, the
apparent discrepancy in the relatively uniform porosity measured by the porosity
tool and the wide dispersion measured by the core plugs in the heterogeneous
intervals can be explained by heterogeneity.
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Figure 13. Composite porosity log displaying logging tool porosity (heavy curve) with core plug
porosity (circle points). Also displayed (light curves) is the ±2σ dispersion “envelope” around the
logging tool porosity. Two features are of note here: (1) As predicted by this technique, approximately
2 σ of the core plug measurements fall within the dispersion “envelope.”(2) The log straddles a
heterogeneous zone above (0–31 ft), and a homogeneous zone below (31–70 ft). The differences in
heterogeneity between the two zones are reflected in both the dispersion “log,” and the core plug
measurements.

CONCLUSIONS

Understanding heterogeneity is particularly important for understanding fluid
flow behavior in carbonates. The heterogeneity observed in carbonates at the
resolution of borehole imaging tools is typically related to the presence of macro
or vuggy porosity in a matrix characterized by interparticle porosity (Lucia, 1999,
p. 25). While the presence of vugs will increase the porosity of the rock, unless
these vugs are interconnected or “touching,” they will have no effect on the overall
permeability, and the resulting permeability will be driven by the interparticle
porosity of the matrix (Lucia, 1999, p. 30). Thus, when modeling the fluid flow
behavior at the reservoir scale, it is crucial to understand not only the magnitude
of the porosity, but also its nature and resulting heterogeneity as observed at the
borehole scale.

In this paper, we have demonstrated that geostatistical analysis can be ap-
plied to borehole image data in order to generate an improved understanding of
formation heterogeneity. Specifically, we have demonstrated how to
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1. generate an experimental semi-variogram from high resolution imagery
for every imaged depth;

2. extract model parameters from the experimental semi-variograms;
3. upscale the geostatistical model parameters to larger measurement vol-

umes.

We have also shown how the borehole resistivity images can be transformed
into porosity values. Further, because the geostatistical approach depends on local
porosity differences at a given depth (rather than absolute values), this petrophys-
ical transformation (resistivity to porosity) is very precise.

In our study of the carbonate reservoir from Abu Dhabi, we observed that
the scale of the imaged heterogeneity is typically less than 1–2 in. The result is
that in heterogeneous intervals, significant dispersion is observed in core plug
measurements which have a similar dimension. Wireline log measurements that
sample a much larger volume typically “average” out this variability. The differ-
ences between porosity measured in core plugs and that measured by wireline
logging tools can be completely accounted for by this upscaling effect.

The power of this technique has been recognized and is now being applied
to a variety of complex carbonate reservoirs in order to

1. characterize different intervals in terms of their heterogeneity, and
2. explain apparent differences between porosity measurements made with

core plugs and logs.
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