
Mathematical Geology, Vol. 38, No. 1, January 2006 (C© 2006)
DOI: 10.1007/s11004-005-9004-x

Filter-Based Classification of Training Image
Patterns for Spatial Simulation1

Tuanfeng Zhang,2 Paul Switzer,2 and Andre Journel2

Multiple-point simulation, as opposed to simulation one point at a time, operates at the pattern
level using a priori structural information. To reduce the dimensionality of the space of patterns
we propose a multi-point filtersim algorithm that classifies structural patterns using selected filter
statistics. The pattern filter statistics are specific linear combinations of pattern pixel values that
represent directional mean, gradient, and curvature properties. Simulation proceeds by sampling from
pattern classes selected by conditioning data.

KEY WORDS: multiple-point simulation, geostatistics, data conditioning, multiple grids.

INTRODUCTION

Multiple-point (mp) simulation aims at capturing local patterns of variability from
a training image and anchoring them to the image or numerical model being built.
A pattern is defined as a set of values spatially distributed over a given template
of spatial locations. The idea is to search within the training image for the pattern
most similar to any specific local conditioning data event existing in the numerical
model being built. That most similar pattern is then patched in all or part onto
the image being built, much alike one would build a puzzle by patching onto the
board, sequentially, puzzle pieces chosen to match the neighboring pieces already
present on the board.

The mp simulation algorithm here proposed builds and expands on the now
well-established snesim algorithm initiated by Guardiano and Srivastava (1993)
and developed by Strebelle (2000, 2002). The snesim (single normal equation
simulation) algorithm requires an exact match of the conditioning data event by
the training pattern; if no such map is found, the conditioning data event is reduced
by dropping the farthest away datum value resulting in a loss of conditioning

1Received 12 May 2004; accepted 18 April 2005; Published online: 28 April 2006.
2Department of Geological and Environmental Sciences, Stanford University, California 94305; e-mail:
tfzhang@pangea.stanford.edu.

63

0882-8121/06/0100-0063/1 C© 2006 International Association for Mathematical Geology

64 Zhang, Switzer, and Journel

information. Also the snesim algorithm proceeds by simulating one pixel at a
time, the central value of the conditioning data template. This extreme rigor in
reproduction of the data event does not allow for any filtering or averaging of
the training patterns, it calls for large and rich training images depicting most of
the conditioning data events that could be found in the course of the sequential
simulation process.

The filtersim (simulation using filter scores) algorithm here proposed trades
the exact data event reproduction for an approximate reproduction with the benefit
of not having to cut out any data in case of mismatch. During an initial processing
of the training image all training patterns are classified in a filter space of reduced
dimension, six in 2D, nine in 3D, even though the template size could contain
up to N = 1000 nodes in 3D. Each training pattern is approximated by six to
nine universal filter scores, the results of a corresponding number of weighted
linear averages applied to its N nodal values. These training patterns, or puzzle
pieces, are then grouped into a limited number of bins according to a similarity
measure. Simulation proceeds by selecting the bin that matches best (although
approximately) the conditioning data event, dig with replacement into that bin for
a training pattern which is then patched into the simulation grid. In this regard, the
proposed filtersim algorithm simulates patterns approximately conditioned to data
patterns, as opposed to the snesim algorithm which simulates single-point values
exactly conditioned to possibly reduced data patterns.

Both filtersim and snesim algorithms share the objective of building the image
or numerical model by conditioning to local data patterns (mp geostatistics) using
a prior structural model given under the form of a visually explicit training image.
This is as opposed to traditional 2-point simulation algorithms such as sgsim
(sequential Gaussian simulation) or sisim (sequential indicator simulation) which
condition to the data considered one at a time, using for prior structural model
a 2-point variogram or covariance model, see Deutsch and Journel (1998). If the
information brought by the conditioning data is one of patterns involving multiple
locations (�1) at a time, and if a training image displaying these local patterns is
available, then mp simulation algorithm would make a better use of the information
available.

ALGORITHM REVIEW

The proposed multiple-point (mp) simulation algorithm proceeds in two
steps. The first step consists of a classification of the patterns found in any
given training image; this step is performed only once (just like a traditional
variogram model is inferred only once). The second step is that of simulation
which builds each realization by piecing together training patterns chosen from
the previous classification so that they match the conditioning data. The stochas-
tic simulation algorithm can be seen as an image construction from a box of

Filter-Based Classification of Training Image Patterns for Spatial Simulation 65

jigsaw pieces, where each piece can be used repetitively and many different pieces
can match (approximately) the same set of local conditioning data. Instead of
attempting to reproduce a variogram model, this simulation will reproduce lo-
cal window mp statistics from the training image by borrowing entire training
patterns.

In the first step, the training image is scanned with a template (moving
window) of fixed size. Each template location yields a limited series of local
statistics resulting from specific linear filters applied to the template data values.
These filter values, or scores, describe local and directional mean levels, gradients,
and curvatures of the spatial pattern present in that template. Because the filters
are few (K = 6 in 2D, = 9 in 3D) they provide a low-dimensional representation
of the window mp statistics. Ignoring border effects, if the training image (TI) is
of dimension N and K filters are retained, that TI is represented by N points in a
K-dimensional space. Each of the K filters axes can be split into, say, five quintile
classes of equal frequency, allowing a summary of the possibly very large and
pattern-rich training image into a low-dimensional (5K) score space. The actual
RAM demand for that filter score space is even smaller in practice since many
of these classes can be empty. All N training patterns are classified in that filter
score space. This is done only once per training image and per template size and
geometry.

In the second step, each simulated realization is built sequentially along a
random path visiting all nodes of the simulation grid. At each such node,

• collect all conditioning data found in its template neighborhood; these con-
ditioning data include both original (hard) data and previously simulated
values. That data template is mostly void in the beginning of the simulation
and gets progressively filled as the sequential simulation progresses.

• using a predefined distance, determine the training class whose average
pattern (called a training prototype) is closest to the conditioning data
pattern; the distance allows comparing templates incompletely filled.

• draw from that class an individual training pattern and patch it onto the
simulation grid except at the hard data locations. The inner part of that pat-
tern is frozen and passed as data to the next sequence of simulation. The
outer part of that pattern is passed as soft data allowing definition of con-
ditioning data patterns and calculation of distances, but the corresponding
points will be visited along the random path, hence re-simulated.

The simulation sequence stops, and one realization has been generated, when
all nonhard data nodes have been visited. Another realization can be generated by
seeding a complete new random path. This workflow is explained in detail in the
following sections, see also the flowcharts of Figures 1 and 2.

66 Zhang, Switzer, and Journel

Figure 1. Flowchart for pattern classification in 2D.

PATTERN SCORES

Let X(i, j) denote the datum value (continuous or categorical) at location
(i, j) in a 2D training image. A score Sf (i, j) for the training pattern centered at
(i, j) is defined by a filter f (u, v) as follows:

Sf (i, j) =
n∑

v=−n

n∑

u=−n

f (u, v)X(i + u, j + v)

where the dimension of the local template is (2n + 1) × (2n + 1).

Filter-Based Classification of Training Image Patterns for Spatial Simulation 67

Figure 2. Flowchart for simulation.

In 2D, define six different filters f1, . . . , f6 as follows, see Figures 3(a)–(f):
(1) f1: N–S directional average

f1(u, v) = 1 − |v|
n

, v = −n, . . . , n

68 Zhang, Switzer, and Journel

Figure 3. Six 2D local filters: the weights are given in gray scale.

(2) f2: E–W average, obtained by rotating f1 by 90◦:

f2(u, v) = 1 − |u|
n

(3) f3: N–S directional gradient:

f3(u, v) = v/n

(4) f4: E–W gradient, obtained by rotating f3 by 90◦:

f4(u, v) = u/n

Filter-Based Classification of Training Image Patterns for Spatial Simulation 69

Figure 4. Pattern scores.

(5) f5: N–S directional curvature:

f5(u, v) = 2|v|
n

− 1

(6) f6: E–W curvature, obtained by rotating f5 by 90◦:

f6(u, v) = 2|u|
n

− 1

Each of these six filters is used to scan any 2D training image. At each pixel
location (i, j), the template of neighborhood data values is weighted by these
filters to produce a series of six scores, see Figure 4 for the first score. By
assigning these six scores to the pixel (i, j), we obtain six score maps. Fig-
ures 5–7 give the three sets of score maps corresponding to the three multi-
ple grids used to scan the training image of Figure 8. The number of nodes
for each of the three templates used is 15 × 15, while the training image is
250 × 250.

The first two score maps S1 and S2 are weighted moving averages of the
15 × 15 = 225 template values: they highlight the channel center locations. The
third S3 score provides N to S edge detection, hence that score highlights the chan-
nel boundaries. The S4 score gives E to W edge detection, reflecting any deviation
of the channel from the dominant EW channel direction. The last two scores, S5

and S6, point to zones of maximum directional curvatures; for this particular
application they could have been omitted since they provide little additional
information.

PATTERN CLASSIFICATION USING SCORES

Each of the six filter scores is discretized into five equal frequency bins
according to their respective quintile thresholds. This results in a partition of the
6-dimensional score space into a maximum of 56 = 15,625 bins. In practice, many
of these bins may be empty, for example, for categorical data on a fine grid it may

70 Zhang, Switzer, and Journel

Figure 5. Six score maps for the channel Ti on the coarsest grid.

happen that many training templates are filled with a single category; in which
case some of the quintile thresholds are the same, resulting in fewer effective bins
and lesser RAM demand.

Through their score transforms, similar training patterns are grouped into the
same bin in the score space. Figure 9 shows one such bin containing 56 channel
patterns scanned from Figure 8 at the coarsest grid. For each nonempty score bin, a
prototype is obtained by averaging all training patterns falling in it; that prototype
can be seen as an aggregate of similar patterns. The prototype corresponding to
the patterns in Figure 9 is shown at the bottom of that figure. Figure 10 shows
the 20 prototypes with most replicates, as defined from the coarsest grid template
applied to the channel training image of Figure 8.

Filter-Based Classification of Training Image Patterns for Spatial Simulation 71

Figure 6. Six score maps for the channel Ti on the second grid.

STOCHASTIC SIMULATIONS OF PATTERNS

Based on the previous classification of the training patterns, sequential sim-
ulation can now be applied to build the simulated images.

A sequential simulation approach is performed visiting each node of the cur-
rent grid along a random path different for each of the nested multiple grids used.
Simulation proceeds from the coarsest grid to the finest grid. Except for the coarsest
grid, all values simulated at previous grids are used only to calculate the distance
between the conditioning data event and the closest training prototype. The sim-
ulated values at the coarser grid are revisited and resimulated at the current grid.

At each node to be simulated, the conditioning data are searched within a
data template centered at that node. This data template has the same dimensions
as that used to scan the training image at the current grid level. If there are no

72 Zhang, Switzer, and Journel

Figure 7. Six score maps for the channel Ti on the finest grid.

conditioning data within the data template, choose the template prototype closest
to the target mean attribute value and pick at random a training pattern from
this prototype class. If there are conditioning data in the data template, calculate
the distance between this data event (DEV) and each training prototype (PROT)
template recorded at the current grid level. There are three types of conditioning
data: k = 1: hard original data; k = 2: previously simulated values at the current
grid level; k = 3: values coming from patterns patched during simulation at the
previous coarser grids.

The distance expression is written as

d(DEV, PROT) =
3∑

k=1

ω(k)

∑nk

ik=1 |x(k)(ik) − y(k)(ik)|
nk

Filter-Based Classification of Training Image Patterns for Spatial Simulation 73

Figure 8. Channel training image and three templates (15 × 15) used for
three nested multiple grids, from coars to fine.

where ik are the pixel locations of information of type k and ω(k) are weights for
the three previous data types with ω(1) ≥ ω(2) ≥ ω(3). The priority given to the
hard original data (k = 1) ensures selection of a training pattern matching best
these original data.

Once a prototype closest to the data template is identified, one training
pattern is drawn from that prototype class. The particular pattern drawn may be
determined from a distribution such that the simulated overall mean is gradually
forced to approach the target mean. Once a specific pattern is selected, it is patched
centered at the current simulation node. A specified inner part of that patch is frozen
not to be revisited at the current grid. A larger inner patch makes simulation faster,
but may cause discontinuities.

74 Zhang, Switzer, and Journel

Figure 9. Fifty-six patterns falling into the same bin in the filter score
space. Coarse grid 15 × 15 template.

The two flowcharts for pattern classification and simulation are displayed in
Figures 1 and 2.

ILLUSTRATIONS

Consider first the simulation of channel patterns from the binary (sand/shale)
training image of Figure 11(a) which is of dimension 250 × 250 with sand
proportion p = 0.28. For hard data conditioning, 50 values are sampled from
the lower left corner region of that training image, see Figure 11(b). A 15 × 15
data template is used to scan the entire training image over three nested grids from
coarsest to finest, see the top row of Figure 8.

Filter-Based Classification of Training Image Patterns for Spatial Simulation 75

Figure 10. Prototypes with most replicates at the coarset grid.

Figures 11(c)–(e) give the result of one single-conditional simulation pro-
gressing over the three nested multiple grids. Examples of the pattern classification
and prototypes at the coarsest grid were shown in Figures 9 and 10. For this case
example, we used a 15 × 15 template with a 11 × 11 inner patch. It can be seen
from Figure 11 that the channel structures are reasonably well reproduced from
coarse to fine grid. Unfreezing the data values simulated at coarser grids leads
to better shape reproduction because poorly matched patterns can be corrected
during simulation at the finer grids. To examine the impact of data conditioning,
we generated 30 conditional realizations and averaged them to produce an E-type
estimation of sand probability, see Figure 11(f). Since all conditional simulations
honor exactly the 50 hard data, there is a higher probability of simulating sand
when the simulation node is closer to a sand hard datum.

A continuous variable training image was downloaded from a texture synthe-
sis website (http://www.vision.ee.ethz.ch/∼rpaget/nonparaMRFfastContents Xu
Zhu Shum Guo.htm) and displayed in Figure 12(a): it is a mosaic cross section
of packed stones, with visible gray scale textures and sharp boundaries. Fig-
ures 12(b)–(g) display the six score maps at the finest grid. We used a template
of size 21 × 21 pixels to classify the training patterns over three nested grids. The
same nonconditional simulated realization at the three different grids is shown in

76 Zhang, Switzer, and Journel

Figure 11. (a) Channel training image; (b) hard data locations; (c)–(e) Conditional simulation
progressing over the three nested grids; (f) E-type average of 30 conditional realizations.

Figures 13(b)–(d). A 21 × 21 template with an inner patch of 15 × 15 was used.
Figure 14 shows three additional nonconditional realizations on the finest grid.

DISCUSSION AND FURTHER DEVELOPMENTS

The pattern classification algorithm, described above, appeared to work well
for our illustrative examples, in the sense that the resulting simulations appear

Filter-Based Classification of Training Image Patterns for Spatial Simulation 77

Figure 12. Stone training image and six score maps at the finest grid.

to reproduce important features of the training images. The illustrations that we
used were all of limited size and were all two dimensional. In 3D and for more
complex training images, we will likely need classification procedures that are
more refined than the simple cross-classification induced by partitioning each of
the filter scores separately, as done above.

The case of a large number (>2) of nonordered categories still needs in-
vestigation, for it is not equivalent to the continuous variable case. Indeed, if
category 2 is not necessarily nested in category 1 and does not include category

78 Zhang, Switzer, and Journel

Figure 13. (a) Stone training image; (b)–(d) The same non-conditional realization seen from
coarsest to finest grid.

3, the corresponding three category indicators cannot be considered as class indi-
cators of a continuous variable. The weighted distance proposed in the section on
“Stochastic Simulation of Patterns” may still be appropriate if adapted to count the
number of pixel mismatches within the template. However, linear filters applied
to categorical indicators have little significance, therefore other pattern summaries
should be considered.

The various implementation parameters (number of nested grids, template
size, distance weights) need a careful sensitivity analysis as was done for the
snesim algorithm by Liu (2003).

At this point, the filtersim algorithm only exists as test code (in Matlab)
and is being optimized in C++ language. Consequently no fair CPU comparison
with other mp simulation algorithms is yet possible. We expect that it will be

Filter-Based Classification of Training Image Patterns for Spatial Simulation 79

Figure 14. (a) Stone training image; (b)–(d) Three final nonconditional simulations at the
finest grid.

comparable to snesim in terms of CPU but requiring much less RAM thanks to
the dimension reduction brought by the classification in the filter score space.

One major difference with the snesim approach (Strebelle 2000, 2002) is that
any conditioning data template no matter how sparsely or densely defined could
be considered without having to drop any single datum value; this is, of course,
obtained at the cost of approximating that complete conditioning data event by a
class of training patterns. The tradeoff is approximation of the data event versus
its reduction in size.

In practice, only a fraction of the large number of potential classes in the quin-
tile cross-classification are actually populated by patterns occuring in the training
image. In 3D with nine filters the potential number of classes would grow to 59 or
nearly 2 million classes, with only a small fraction actually populated. Therefore,
simple quintile cross-classification will need to be replaced by a more intelligent
classification procedure. We are now exploring other methods for pattern classi-
fication in the filter score space that will not be sensitive to the number of filters
used, will not generate spurious classes, and will seek to optimize within-class ho-
mogeneity. For example, tree-structured classification algorithms that work with
sequential binary divisions could be considered (Hastie, Tibshirani, and Friedman,
2001).

80 Zhang, Switzer, and Journel

CONCLUSIONS

In this paper, we apply a set of filters to scan the training images. The local
training patterns and textures are then classified by the set of filter scores. This
leads to a significant dimension reduction of the training patterns and consequent
RAM demand. This prior classification allows a storage of the training patterns
to be used for simulation. The simulation proceeds by sequentially visiting each
simulation grid node and identifying the training pattern class closest to the local
data conditioning that simulation node. We sample a specific pattern from the
identified pattern class, and patch it centered at the simulation node. Freezing
the inner part of the patched pattern not only makes the simulation faster but
also ensures better pattern reproduction. Multigrid simulation is implemented,
allowing for pattern reproduction at different scales. Examples show that the
approach proposed works well for ordered categorical variable and continuous
variable training images. As it stands now, the code has been developed only for
2D applications. Graduating into real 3D applications would call for innovative
ways to perform classification of complex 3D training patterns.

REFERENCES

Deutsch, C. V., and Journel, A. G., 1998, GSLIB: Geostatistical software library and user’s guide, 2nd
ed.: Oxford University Press, New York, 368 p.

Guardiano, F., and Srivastava, R. M., 1993, Multivariate geostatistics: Beyond bivariate moments:
in Soares, A., ed., Geostatistics-Troia, v. 1: Kluwer Academic, Dordrecht, The Netherlands,
p. 133–144.

Hastie, T., Tibshirani, R., and Friedman J., 2001, The elements of statistical learning, data mining,
inference, and prediction: Springer, New York, p. 266–272.

Liu, Y., 2003, Downscaling seismic data into a geological sound numerical model: Unpublished
doctoral dissertation, Stanford University, 193 p.

Strebelle, S., 2000, Sequential simulation drawing structures from training images: Unpublished doc-
toral dissertation, Stanford University, 187 p.

Strebelle, S., 2002, Conditional simulation of complex geological structures using multiple-point
statistics: Math. Geol., v. 34, no. 1, p. 1–21.

