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Simultaneous Integration of Pressure, Water Cut,
1 and 4-D Seismic Data In Geostatistical

Reservoir Modeling1
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A geostatistically-based inverse technique, the sequential-self calibration (SSC) method, is used to up-
date reservoir models so that they match observed pressure, water cut and time-lapse water saturation
derived from 4-D seismic. Within the SSC, a steady-state genetic algorithm (GA) is applied to search
the optimal master point locations, as well as the associated optimal permeability perturbations at the
master locations. GA provides significant flexibility for SSC to parameterize master point locations, as
well as to integrate different types of dynamic data because it does not require sensitivity coefficients.
We show that the coupled SSC/GA method is very robust. Integrating dynamic data can significantly
improve the characterization of reservoir heterogeneity with reduced uncertainty. Particularly, it can
efficiently identify important large-scale spatial variation patterns (e.g., well connectivity, near well
averages, high flow channels and low flow barriers) embedded in the reservoir heterogeneity. Using
dynamic data, however, could be difficult to reproduce the permeability values on the cell-by-cell basis
for the entire model. This reveals the important evidence that dynamic data carry information about
large-scale spatial variation features, while they may be not sufficient to resolve the individual local
values for the entire model. Through multiple realization analysis, the large-scale spatial features
carried by the dynamic data can be extracted and represented by the ensemble mean model. Further-
more, the region informed by the dynamic data can be identified as the area with significant reduced
variances in the ensemble variance model. Within this region, the cell-by-cell correlation between the
true and updated permeability values can be significantly improved by integrating the dynamic data.

KEY WORDS: history match; sequential-self calibration; genetic algorithm; production data inte-
gration; information of production data.

INTRODUCTION

Dynamic data are the time dependent measurements of flow responses that are
related to the reservoir properties through the flow equations, such as pressure,
flow rate, fractional flow rate, saturation or 4-D seismic data. Various kind of dy-
namic data are usually available for most reservoirs under production. Integration
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of dynamic data in reservoir model requires that the solutions of flow equations
based on the reservoir model are in reasonable agreement with actual measure-
ment of those data. Traditionally, this integration is done through a history match
procedure. In current industry practice, history matching is commonly performed
manually on a reservoir model via repeated flow simulations and local or regional
multipliers to reservoir properties are frequently used. By adjusting regions and
the associated multipliers, a history match could be achieved using either trial-
and-error or other more advanced methods (e.g. Milliken and Emanuel, 1998).
These techniques usually create artificial boundaries (discontinuities) inside the
reservoir, and potentially destroy the correlation relationship and other geological
features built into the initial geostatistical reservoir model. Thus, the prediction
power of such history matched models may be limited.

A more sophisticated approach is to integrate the dynamic data during the
reservoir modeling stage, i.e., dynamic data are directly used when constructing
geostatistical reservoir model via geostatistically-based inversion techniques. In-
tegration of dynamic data in geostatistical reservoir model is an important and yet
outstanding challenge during the reservoir modeling. A great deal of effort has
been devoted to develop new techniques for such purpose (e.g., Caers and others,
2002; Hu, 2000; Landa, 2001; Landa and Horne, 1997; Oliver, He, and Reynolds,
1996; Reynolds, He, and Oliver, 1999; Wen, Deutsch, and Cullick, 1998a,b; Wen,
Yu, and Lee, 2004). These techniques provide methods of preconstraining geo-
statistical reservoir model before they go to the traditional manual history match
phase. This minimizes the most time consuming and costly part of a history match
process. A review of these inverse techniques can be founded in Yeh (1986) and
Wen, Deutsch, and Cullick (1997). Most geostatistically-based inversion meth-
ods attempt to match production data by modifying the initial model in such
a way that it preserves the underlying geostatistical features built into the initial
model, such as histogram, variogram, and other soft constraints (e.g., Landa, 2001;
Vasco, Yoon, and Datta-Gupta, 1998; Wang and Kovscek, 2000; Wen, Deutsch,
and Cullick, 1998a,b). Others directly incorporate an optimization process within
the geostatistical framework to generate reservoir models that match dynamic
data (e.g., Hu, 2000; Caers and others, 2002). Typically, an inverse technique is
needed for such integration, in which flow equations must be solved many times
within a nonlinear optimization procedure (Sun, 1994; Tarantola, 1987). Both fi-
nite difference and streamline flow modeling can be used for the dynamic data
integration. Streamline-based inverse techniques have shown great potential due
to the straightforward delineation of flow regions of each well pair and the fast
calculation of sensitivity coefficients (e.g. Agarwal and Blunt, 2003; Caers and
others, 2002; Cheng and others, 2004; Milliken and Emanuel, 1998; Vasco, Yoon,
and Datta-Gupta, 1998; Wen, Deutsch, and Cullick, 1998b, 2003).

The Sequential Self-Calibration (SSC) method is very efficient and robust for
integrating dynamic data in geostatistical reservoir models (Gomez-Hernandez,
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Sahuquillo, and Capilla, 1997; Capilla, Gomez-Hernandez, and Sahuquillo, 1997;
Wen, 1996; Wen, Deutsch, and Cullick, 1998a,b). The SSC uses an optimization
process to modify/update the original reservoir model to match dynamic data
preserving geostatistical features in the original model. The efficiency of the
SSC method comes from the master point concept and global updating. The
master points are employed to reduce the number of parameters. Perturbations
at the master points are then propagated into entire model to achieve the global
updating. Current implementation of the SSC method can use either a gradient-
based optimization or genetic algorithm (GA) to compute optimal perturbation
values at the master point locations (Wen, Yu, and Lee, 2004).

Gradient-based optimization requires the calculation of sensitivity coeffi-
cients that measure the changes of reservoir flow responses with respect to the
change of reservoir properties. In practice, the sensitivity calculations comprise
the most central processing unit (CPU) time in the inversion. A great deal of
effort has been dedicated to speed up this calculation, particularly via streamline
simulation (e.g., Vasco, Yoon, and Datta-Gupta, 1998; Wen, Deutsch, and Cullick,
1998a,b, 2003). A number of new approaches have also been presented along this
line, including the generalized travel time method (Wu and Datta-Gupta, 2002;
Cheng and others, 2004). However, the sensitivities are usually not accurately
computed which causes difficulty in optimization. Also, gradient-based optimiza-
tions are often trapped by local minimums for highly nonlinear problems. On the
other hand, GA does not need sensitivities, and it attempts to search for global
minimum. It is thus easier to implement for different type of parameters, as well as
for complex reservoir models. The major drawback of GA is that it requires more
flow simulation runs to evaluate the model fitness than gradient-based methods.
Nevertheless, GA brings significant flexibility for SSC. Under the SSC framework,
both master point locations and values of reservoir properties at the master points
can be considered as variables in GA.

Previously, SSC has been applied to integrate production dynamic data in-
cluding pressure, water cut, and water saturation data (Wen, Deutsch, and Cullick,
2002; Wen, Yu, and Lee, 2004). 4-D seismic (time-lapse 3-D seismic) has shown
to be able to predict fluid saturation changes in the reservoir by recording the
acoustic responses at different times due to the change of fluid impedance (Wang
and Nur, 1988). Typically, the difference between the two 3-D seismic data sets
recorded at different times is an indicator of the areas in the reservoir where
the distribution of fluids has changed. Due to the close relationship between the
4-D seismic and reservoir dynamic data, we can also consider 4-D seismic as
part of dynamic production data (Huang, Meister, and Workman, 1997; Kretz, Le
Ravalec-Dupin, and Roggero, 2004).

In this study, we use GA as an optimization method in the SSC to find the
optimal master point locations and the associated optimal changes of reservoir
permeability at the master point locations. We also include the saturation changes
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interpreted from time lapse seismic, together with pressure and water cut at wells as
our dynamic data. This represents a very comprehensive integration of all available
dynamic data. Using the coupled SSC/GA, multiple realizations of reservoir model
could be updated, all of which match the dynamic data. This allows for assessing
the uncertainty reduction of reservoir characterization due to the integration of
dynamic data. By analyzing the multiple updated realizations, we can further
reveal the spatial variation features that are common to all realizations, and can be
considered as the essential information carried by the given dynamic data.

This paper is organized as follows. We first briefly review the framework of
the coupled SSC/GA method. We then present the results with a synthetic reservoir
model using the coupled SSC/GA inversion. The results are further analyzed and
discussed in more details before drawing conclusions.

THE COUPLED SSC/GA METHOD

Using geostatistical methods, we can construct multiple realizations of reser-
voir model that are conditioned to all available static data. Our goal is to modify
these models (referred as initial models) so that the flow solutions computed from
the modified models (referred as updated models) match the observed dynamic
data. In addition, we wish that the updated models preserved the geostatistical
features (e.g., histogram, variogram, as well as other soft constraints) in the ini-
tial models. In this study, we only update permeability model to minimize the
following objective function:

O =
nwp∑

wp=1

Wp
[
p̂(wp) − p(wp)

]2 +
nwf∑

wf=1

ntf∑

tf=1

Wf[f̂ (wf, tf ) − f (wf, tf)]
2

+
ns∑

i=1

Ws [δŝ(i) − δs(i)]2 (1)

where p̂(wp) and p(wp) are the observed and simulated pressure at well wp.
f̂ (wf, tf) and f (wf, tf ) are the observed and simulated water cuts at well wf at time
tf . δŝ(i) and δs(i) are the observed and simulated water saturation changes at cell i
interpreted from time lapse seismic data. Wp, Wf , and Ws are the weights assigned
to pressure, water cut, and water saturation changes. nwp and nwf are the number
of wells that have pressure and water cut data. ntf is the number of time steps for
water cut data. And ns is the number of cells with water saturation data available.

The sequential-self calibration (SSC) method allows for fast updating of ini-
tial reservoir models to match dynamic flow data (Gomez-Hernandez, Sahuquillo,
and Capilla, 1997; Capilla, Gomez-Hernandez, and Sahuquillo, 1997). The unique
features of the SSC algorithm include (1) the concept of master point that reduces
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the parameter space to be estimated in optimization, (2) the propagation proce-
dure through kriging that accounts for spatial correlation of perturbations. Orig-
inally, SSC uses a gradient-based optimization method and iteratively modifies
the initial reservoir models to match the dynamic data. It requires the iteration
to self-correct the linear assumption used during the optimization, as well as the
inaccurate sensitivity coefficients. Typically, less than 20 iterations are required
in a 2-D setting. Previous SSC results revealed that the final updated models
are usually smoother than the initial models due to the successive addition of
smooth kriged perturbation fields at each iteration (Wen, Deutsch, and Cullick,
2002).

Recently, a steady-state genetic algorithm (DeJong, 1975) has been incorpo-
rated into the SSC as an alternative optimization method to find the optimal master
locations and the associated optimal changes at those locations (Wen, Yu, and Lee,
2004). Using GA, only one global updating is needed and the smoothing effect
by adding a smooth perturbation field is also reduced to the minimum. Within
the steady-state GA, the selection method is the traditional roulette wheel (fitness
proportionate) selection. In this method, the probability of an individual to be
chosen equals to the fitness of the individual divided by the sum of the finesses
of all individuals in the population. The fitness is evaluated through the objective
function (Eq. (1)) computed from the flow simulation results. Two genetic oper-
ators are used to generate offspring: uniform crossover and Gaussian mutation.
Uniform crossover picks gene values from two parents randomly to compose the
offspring. Gaussian mutation changes a gene value to a new value based on a
Gaussian distribution around the original value.

The main steps of the coupled SSC/GA can be summarized as follows (Wen,
Yu, and Lee, 2004):

1. Construct initial realizations: Multiple equal-probable initial property re-
alizations are created by conventional geostatistical methods using specific
histogram and variogram consistent with the data. If static (hard and soft)
data are available, they should be honored with conditional simulation.
Each realization is processed one at a time with the following steps.

2. Solve the flow equations for the current model using specific boundary
and well conditions to obtain simulation responses.

3. Compute the objective function that measures the mismatch between the
observed dynamic data and the flow solutions. If the objective function
is smaller than a preselected tolerance, this realization is considered to
honor the dynamic data and we move to the next realization. Otherwise,
proceed to the following steps.

4. Choose the number of master points and solve an optimization problem
via GA to find the optimal master point locations and the associated
perturbations of reservoir property at these locations.
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5. Propagate the perturbations at master locations through the entire field
by kriging the computed perturbations at master points. The model is
then globally updated by adding the smooth kriged perturbation field to
the initial model. Note that this propagation process is embedded in the
internal GA process, rather than performed at the end of GA.

Application of the SSC method requires a variogram model that defines the way
of spreading of perturbations from the master points to the entire model. The
resulting multiple equal-probable realizations provide assessment of uncertainty
of reservoir model and then can be translated into uncertainty of flow predictions
for reservoir management. It is noted that only one global updating is added to the
initial model at the end of the above process where GA is used to search for such
updating via iteration.

In GA, we first select a fixed number of master points and generate an initial
population of initial master point locations and the associated permeability values
at these locations. The number of master points depends on the correlation length
of the model. We employ 1–3 master points per correlation length in each direction.
The master point locations are selected with the stratified random method (i.e.,
random within a regular coarse grid that covers the entire model). Other methods
of selecting master point locations (e.g., fix location and purely random methods)
may be used as well. In previous studies, the stratified random method has yielded
the best results due to its flexibility and overall field coverage (Wen, Yu, and Lee,
2004).

The log-permeability values at the master points are initially generated from
a Gaussian function with the mean and variance consistent with the model and
with the constraints of the minimum and maximum values. Note that if the ln(k)
model is not Gaussian, we can use a different distribution function. Also if we
know the conditional pdf of each location from soft static data, we can use such
pdf to generate initial ln(k) values. This provides significant flexibility to honor
different kind of constraints for the geostatistical model.

Based on the generated ln(k) values at master point locations, as well as those
at the initial model, we can compute the perturbations at the master point locations
by subtracting the values at the initial model from the generated values. We then
interpolate the perturbation values at non-master point locations using kriging. An
updated model is computed by adding the interpolated perturbation field to the
initial model. The fitness of each model is evaluated by its objective function after
flow is solved for the model.

With Nm master points, the GA genome is an array of Nm integer for master
point locations and Nm real numbers for their associated ln(k). The steady-state
GA is then used to search for the new master point locations and the associated
permeability values until the mismatch between the flow simulation results and
observed historical production data is minimized. We retain the best individual
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(the optimal master point locations and the associated ln(k) values) at the end of
the GA. The GA has 60% overlapping, i.e., at each generation, the better half of the
population remains while the worse half is replaced by newly created offspring.
New offspring always make into population, regardless of whether or not their
fitness are better than the worse half of the original population.

AN EXAMPLE

In this section, we demonstrate the applications of the coupled SSC/GA
method for constructing reservoir permeability models from pressure, water cut
and time lapse water saturation data using a synthetic data set. In the example, we
assume porosity is known and constant as φ = 0.2.

Reference Field and Dynamic Data

Figure 1(A) shows a 2-D geostatistical reference field (50 × 50 grid with
cell size 80 feet × 80 feet). The model is generated using the Sequential Gaussian
Simulation method (Deutsch and Journel, 1998). The ln(k) has Gaussian histogram
with mean and variance of 6.0 and 3.0, respectively. The unit of permeability (k)
is milli Darcy (1 Darcy = 9.8697 × 10−13 m2). The variogram is spherical with
range of 800 feet and 160 feet in the direction of 45◦ and 135◦, respectively. We
assume a water injection well (I) at the center of the model with four production
wells (P1 to P4) at the four corners. The injection rate at the injection well
(I) is 1600 STB/day and the production rate for the four production wells is
400 STB/day/well. The thickness of the reservoir is constant of 100 feet. All four
boundaries have no-flow boundary conditions. The initial pressure is constant
at 3000 psi (1 psi = 6894.757 Pa) for the entire field. The main features of

Figure 1. (a) The reference ln(k) field. (b) Water cuts from the four production wells.
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this field are: (1) a high permeability zone and a low permeability zone in the
middle of the field, (2) high interconnectivity between well I and well P3, (3)
low interconnectivity between well I and wells P2 and P4. This reference field
is considered as the true model, and our goal is to reconstruct reservoir models,
based on some dynamic data and geostatistics, that are as close to this true field
as possible.

The reservoir is initially saturated with oil. Mobility ratio of oil and water is
10 and standard quadratic relative permeability curves are used with zero residual
saturation for oil and water. Compressibility and capillary pressure are ignored.
Water injection and production are solved using a streamline simulator for 2000
days. Pressure field is updated every 400 days to account for the change of mobility
during the streamline simulation. We assume the observed dynamic data are: (1)
bottom hole pressure (BHP) of each well at the end of the simulation, (2) water cut
history of each production well, and (3) time lapse water saturation distribution
at 400 and 800 days. The “observed” BHP for I and P1–P4 are given in Table 1,
the water cuts of four production wells are shown in Figure 1(B). Note that the
fast water breakthrough at well P3 and late breakthrough at wells P2 and P4.
Water saturation distributions at 400 and 800 days are given in Figures 2(A, B).
The difference of water saturation between the two times is given in Figure 2(C).
Considering the fact that 4-D seismic data usually can not provide very accurate
water saturation data, we use the binary value as our time-lapse water saturation
data. If the saturation different between the two times is greater than 0.1 at a
given cell, this cell is marked as a cell with saturation change. Otherwise, no
change of saturation is observed. Figure 2(D) shows the binary map with black
being the cells that experience saturation changes and white with no saturation
changes. This binary map is considered as the 4-D seismic data used in the
objective function calculation as the observed saturation changes. This is similar
to Kretz, Le Ravalec-Dupin, and Roggero (2004) who used gas-flow indicator to
represent the presence/absence of gas interpreted from 4-D seismic. Note that the
methodology presented in this paper can also use the actual values of saturation
change, as well as the associated uncertainty (accuracy) in the saturation data as
4-D seismic data as well. The use of binary map represents a very uncertain 4-D
seismic data.

Table 1. Comparison of BHPs from the Two Initial and
Updated Models with the Reference Field

Well name I P1 P2 P3 P4

Reference 3043 2985 2468 3022 2917
Initial, #1 3135 2489 2920 2995 2974
Updated, #1 3108 2991 2551 3008 2919
Initial, #2 3037 3007 3022 2925 2872
Updated, #2 3050 2949 2500 3032 2929
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Figure 2. Water saturation distribution from the reference field: (a) water
saturation at 400 days; (b) water saturation at 800 days; (c) changes of water
saturation from 400 to 800 days; (d) binary map of saturation changes (black:
with saturation change; white: no saturation change).

It should also be noted that a more sophistical way of integrating 4-D seismic
data may be through the direct matching of forward modeled seismic responses
(e.g., amplitude) with 4-D seismic data. This, however, involves the complicated
forward seismic-wave-propagation modeling that requires information about den-
sities and compressional velocities for reservoir fluids and rocks, as well as reser-
voir porosity, pressure and fluid saturations. In this paper, we have simplified
the 4-D seismic data by representing them as binary time-lapse water saturation
changes. It could be reasonably expected, under the conditions considered in this
paper, that 4-D seismic responses might be matched as long as the spatial varia-
tions of reservoir properties (e.g., permeability), as well as reservoir pressure and
water saturation are matched. Another important issue on the 4-D seismic data is
the scale difference between the seismic data and model cell size. Usually, 4-D
seismic data inform about a scale larger than the scale of geostatistical (or flow
simulation) model, particularly for vertical scale. Such difference can be taken into
account using the coupled SSC/GA, we have, however, ignored such difference in
this study.
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Update Models with SSC/GA

We now present results of two individual realizations using the coupled
SSC/GA method. We first generate multiple initial realizations using the same
histogram and variogram as the reference field. Neither well data nor other soft
data are used while generating the initial models. It should be noted, however, that
some hard (e.g., core data) or soft (e.g., seismic data) data are usually available
in most practices. All relevant data should be used while constructing the initial
models and these constraints can be preserved using the SSC. We do not account
for these data due to the concern of scale issue in practical situations (i.e., the
available data are usually at scales different from the cell size used in simulation).

We use 25 master points and they are selected stratified randomly within
each of the 5 × 5 coarse grid blocks (each coarse block consists of 10 × 10 fine
cells). The population size used in GA is 50 with 50 generations evolved. The
crossover rate is 90%, mutation rate is 1% and replacement rate is 60%. The
weights used in the objective function (Eq. (1)) are Wp = 20, Wf = 2 and Ws = 1.
These weights are chosen so that the different components in the objective function
have similar magnitude. With each initial model as a starting model, GA searches
for the optimal locations of 25 master points and the associated optimal changes
of permeability values at those locations. The optimal changes at master points
are then propagated to the entire model using kriging to create a smooth global
perturbation field. This perturbation field is added to the initial model resulting in
the updated model that matches the dynamic data. The best individual at the last
generation is chosen as the final updated model. Note that all 50 models (i.e. the
whole population) at the last generation could be considered as updated models
since they are all very close in terms of matching the dynamic data. We choose the
best individual for each initial model to better represent the uncertainty space in
the initial and updated models. Figure 3 shows two initial permeability fields (top
row) and the resulting perturbation fields (middle row) together with the master
point locations (plus) obtained by the SSC/GA. The final updated models are
shown at the bottom row of Figure 3. The BHPs at wells computed from the initial
and updated models are given in Table 1. The matches of water cut and water
saturation changes for the initial and updated models are given in Figures 4 and 5.

Compared to the reference field (Fig. 1(A)), it is clear that the spatial variation
patterns in the two initial models are quite different from the reference model
(Fig. 3, top row). In initial model 1, although wells I and P2 are not directly
connected by high permeability, they are indirectly connected by the two high
permeability stripes adjacent to them. Also, the wells I and P3 are not well
connected enough. For the initial model 2, both the high connectivity between
wells I and P3, and the low connectivity between wells I and P2 are not represented.
After inversion, the updated models display spatial variation features very similar
to the reference model (Fig. 3, bottom row). Particularly, in both models, in order
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Figure 3. Two initial realizations of ln(k) model (top), the computed perturba-
tion fields and master point locations (middle), and the resulting updated models
(bottom). Left is for model 1 and right for model 2.

to match the production data, permeabilities in the region between wells I and
P3 are increased, while in the region between wells I and P2, permeabilities are
reduced (see Fig. 3).

Flow responses from the initial models are significantly deviated from the
“observed” data (see Table 1 and Figs. 4 and 5). Well pressure is mainly affected
by the permeabilities around the given well. We can see that BHP at well P1 is
significantly smaller than the observed one in the initial model 1 due to the smaller
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Figure 4. Scatter plots of water cuts from the two initial and updated models with respect to the
observed data (i.e., results from the reference field): (a) initial models; (b) updated models. Filled
circle for P1, open circles for P2, filled squares for P3, and open squares for P4.

Figure 5. Water saturation changes from the two initial (top row) and updated (bottom
row) models.
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permeabilities around this well for this model (see Table 1 and Fig. 3). Pressures
at well P2 are dramatically overestimated in the both initial models due to higher
permeabilities around the well than in the reference field. The BHPs from the
updated models are close to the observed data.

Water cuts at a given producer are primarily determined by the spatial con-
nectivity between the injector and the producer. In both of the initial models, too
higher water cuts are observed for well P2 (open circles in Fig. 4(A)) compared
to the true model which is caused by the high spatial connectivity between wells
I and P2 in the initial models. In comparisons, because of the lack of strong high
permeability connection between the wells I and P3, water cuts at well P3 (filled
squares in Fig. 4(A)) are underestimated in the two initial models. After inversion,
all water cut data are closely matched as shown in Figure 4(B).

Saturation distribution data reveal more detailed spatial variation features for
the entire reservoir model. They are the combined effects of the complex spatial
features, well patterns and boundary conditions. From Figure 5, we can see that
the spatial features for the changes of water saturation in the initial models (top
row) are very different from the reference field shown in Figure 2. After updating
(Fig. 5, bottom row), they display spatial features much closer to the reference
field.

Uncertainty Analysis

From above results, it is demonstrated that the SSC/GA is able to update
reservoir models to match the “observed” dynamic data. One of the advantages of
using SSC is that we can update multiple equally-likely initial realizations to match
the same dynamic data to assess uncertainty reduction in the reservoir character-
ization due to the integration of dynamic data. This is similar to the randomized
maximum likelihood method as presented by Liu, Betancourt, and Oliver (2001).
Using multiple realization analysis, we can also extract some essential common
spatial features among all updated models. These common spatial features could
be considered as the real reservoir information carried by the matched dynamic
data.

We update 100 initial models using SSC/GA and present the ensemble results
of the all updated realizations by the ensemble mean and variance in Figure 6. The
ensemble mean field (i.e. the E-type estimation) represents the common features
displayed in the multiple realizations with the variance field indicating the asso-
ciated variation (uncertainty) among these realizations. Note that the ensemble
mean and variance fields for the 100 initial models should be close to constants of
6.0 and 3.0 since no conditioning data are used when generating the initial model.
From Figure 6, we can see that, by incorporating dynamic data, the large-scale
variation patterns in the reference model is very well captured with reduced un-
certainty. More specifically, the mean field closely reproduces (a) the permeability
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Figure 6. Ensemble results of ln(k) from 100 updated models: (a) mean field; (b) variance field.

values around the wells, (b) the high permeability connection between wells I and
P3, and between wells I and P1, as well as (c) the low permeability connection
between wells I and P2. The uncertainties in these areas are small indicating that
these important features are present in realizations with high probability.

Figure 7. Histograms of ln(k) values at locations A and B from the 100 initial and updated rea-
lizations. The bullets are the true values from the reference field.
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Figure 8. Match of BHPs at five wells: (a) initial models; (b) updated models.

More specifically, Figure 7 shows the histograms of ln(k) values at two se-
lected locations (A and B in Fig. 6(A)) from the 100 initial and updated realizations.
For the initial realizations, ln(k) mean value at location A is too low compared to
the true value, while it is too high at location B. The variations/uncertainties at
both locations are large (i.e., large variances). After updated by SSC/GA, the un-
certainties (variance) are significantly reduced with the means of both histograms
being very close to the true values.

The above results demonstrate that dynamic production data carry impor-
tant information on the spatial variations of reservoir properties in the geological
model. Integration of such dynamic data can significantly improve the characteri-
zation of reservoir model and reduce the model uncertainty.

The matches of pressure, water cut and saturation from the 100 initial and
updated models are presented in Figures 8–10. The BHPs at the five wells vary
drastically within the 100 initial models. After inversion, the computed BHPs are
very close to the data (see Fig. 8). Water cut curves from the initial models are
neither accurate (significantly deviate from the reference field) nor precise (with
large uncertainty/spreading, see Fig. 9(A)). Particularly, water breakthroughs at
well P2 are too fast for almost all models, while most of them are too slow for
wells P1 and P3. After inversion, the water cuts are very closely reproduced in all
updated models (see Fig. 9(B)).

Figure 10 shows the ensemble (mean and variance) of water saturation
changes computed from the 100 initial and updated models. As expected, the mean
saturation change from the initial models does not display any specific patterns,
except 45◦ elongation consistent with the permeability variogram anisotropy with
large uncertainty (Fig. 10, top row). The ensemble saturation changes from the
updated models display spatial patterns very similar to the result of the reference
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Figure 10. Ensemble results (left: mean and right: variance) of water saturation changes
from 100 initial (top) and updated (bottom) models.

field with significantly reduced variance /uncertainty (see Fig. 2 and bottom row
of Fig. 10).

The histograms of different components in objective function from the 100
initial and updated models are given in Figure 11. The values of objective func-
tion from the initial models display significantly larger variation with much larger
means compared to those from the updated models. Note that the objective func-
tions for saturation changes are reduced by about half. It clearly indicates the
difficulty of matching data on the cell by cell basis.

DISCUSSION

Based on visual inspections of Figures 1 and 3, it is clear that the spatial
variation patterns in the updated models are very close to the reference field while
the initial models display significantly different patterns. To further analyze the
results, we plot the cell to cell scatter plots of the two initial and updated models
with respect to the reference field as shown in Figure 12. From this figure, we note
that there is almost no correlation between the initial and reference models (left
column of Fig. 12), which is as expected since they are realizations independent
of the reference field. The correlation between the updated and reference models
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Figure 11. Histograms of different components in the objective function computed
from the initial (gray) and updated (black) models.

is somewhat improved, but surprisingly still very weak for both models even
although the spatial patterns displayed in the updated models are quite close to
the reference model. This reveals very important evidence that the information
on reservoir heterogeneity carried by dynamic data is in terms of spatial variation
patterns rather than individual point values. For example, the water cut data mainly
reflect the degree of spatial connectivity between the injector and producer, while
well pressure is primarily affected by the averaged permeability values around
the well regions. Saturation changes are determined by more complex spatial
features in the reservoir model that interact with flow at different times. The
spatial patterns reflected by the dynamic data, although visually recognizable, are
usually on scales larger than cell size and may be very complex and difficult to
quantify using simple and single point statistics. Pattern recognition techniques or
multiple point statistics may be useful to compare these spatial variation patterns.

To further prove this observation, we present the scatter plots of permeability
values at master point locations from the 100 initial and updated models with
respect to the values at the same locations from the reference field (see Fig. 13).
Again, as expected, no correlation is observed for the initial model. Correla-
tion for the updated model, although improved, is also weak indicating the poor
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Figure 12. Cell by cell scatter plots of the two initial and updated models with
respect to the reference model: left for initial; right for updated; top for model 1;
and bottom for model 2.

reproduction of the true permeability values on the cell-by-cell basis for the entire
model.

Based on above analysis, it is evident that dynamic data reflect the large-scale
complex spatial variation features (patterns) embedded in the reservoir model,
rather than the individual local cell values. By integrating such dynamic data, we
can efficiently identify and reproduce these large-scale spatial features, whereas,
it is very difficult (if not impossible) to resolve the individual local cell values.
This provides an explanation on why, during the history match process, it is not
very critical to match the local details as long as the large-scale features are
in place. These large-scale features are the essential spatial variation patterns
carried by the dynamic data, which can be extracted from multiple realizations
and represented in terms of the ensemble mean field (see Fig. 6(A)). This ensemble
mean field represents the common features among different realizations that are
critical for matching the dynamic data. Note that the complex large-scale features
are displayed in this figure.
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Figure 13. Scatter plots of the ln(k) values at master point locations from the
100 initial and updated models with respect to the reference model: (a) initial;
(b) updated.

Figure 14 shows the scatter plots of ensemble mean models of initial and
updated realizations with respect to the reference model. For the initial model, the
ensemble mean model has no feature with almost constant value of 6, while the
updated mean model displays significantly larger variations than the initial model
that are much more correlated to the reference model.

Finally, it is reasonable to believe that dynamic data can only reveal spatial
heterogeneity information for the areas within which the permeability distribution
can significantly influence the dynamic data. We refer this area to be the region
informed by the dynamic data, which can be identified from the ensemble variance
model (Fig. 6(B)). The weak point-to-point correlation between the updated model
and the reference model observed above may also be due to the high uncertainty

Figure 14. Scatter plots of the ln(k) values for the mean initial and updated models
with respect to the reference model: (a) initial; (b) updated.
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in the updated model at some regions that do not have significant impact on
the dynamic data. To further illustrate the value of integrating dynamic data, we
identify the region informed by the dynamic data to be the subregion where the
ensemble variance is reduced to less than half of the initial value (i.e., <1.5 for
our example, see Fig. 15(F)). This subregion is consistent with the interwell areas
with two major spatial features that are revealed by the mean model (i.e., the
high and low permeability zones, see also Figs., 1(A) and 6(A)). We then plot the
scatter plots of permeability values within this region from the same two initial
and updated models as in Figure 12 with respect to the values at the same locations
from the reference field (see Fig. 15(A)–(D)). The scatter plot of updated ensemble
mean values within the same region with respect to the reference model is given
in Figure 15(E). Compared to Figures 12 and 14 where all cells are plotted and the
improvement of correlation for the updated models are not significant, we now see
the drastic improvement of correlation for the updated models (Figs. 15(B), (D),
(E)) over the initial models (Fig. 15(A), (C)). From this analysis, we demonstrate
that dynamic data could not only reveal important spatial features, but also better
reproduce the local permeability distribution within the area informed by the
dynamic data.

CONCLUSIONS

We use the coupled SSC/GA to update multiple realizations of geostatistical
reservoir model that simultaneously match pressure, water cut, and saturation
changes interpreted from 4-D seismic data. Through a synthetic example, it is
shown that the coupled SSC/GA is very flexible and robust to integrate different
types of dynamic data. Results from this paper show that, by integrating dynamic
data, reservoir heterogeneity can be better characterized resulting in models that
are significantly closer to the real model in terms of the spatial variation patterns
with much less uncertainty.

We also show that dynamic data are mainly controlled/influenced by some
large-scale spatial features within the influence region. These features may be
different for different types of dynamic data. In other words, the resolution of
dynamic data is primarily limited to large-scale features. It is not sufficient to
resolve individual local cell values from the entire model using dynamic data. To
match the particular dynamic data, it is not necessary to use the actual values at
particular cells as long as the spatial features essentially controlling the dynamic
data are captured (e.g., well connectivity, averaged values around wells, flow
channels, or flow barriers). Thus, individual cell values may still subject to large
uncertainty even though a large number of dynamic data are used, particularly
in the areas not influenced by the dynamic data. Through multiple realization
analysis, we can effectively identify the complex large-scale features/patterns that
impact the dynamic data by extracting the common features among all realizations
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Figure 15. Scatter plots of ln(k) values within the area informed by the dynamic data for the
initial, updated and mean models with respect to the reference model: (a) initial model 1; (b)
updated model 1; (c) initial model 2; (d) updated model 2: (e) updated mean model; (f) region
informed by the dynamic data with ensemble variance less than 1.5 (in black).
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(i.e., by computing the mean, or E-type, model). On the other hand, by analyzing
the ensemble variance model, we can identify the area informed by the production
data. We show that within the area informed by the dynamic data, significant
improvement could be achieved to reproduce the local permeability values. Thus,
the traditional way of evaluating the quality of inversion parameter models based
on cell-to-cell value comparison should apply only to the values within the area
informed by the dynamic data.

On the other hand, since dynamic data are not sensitive to individual local
values, it would not be very efficient to use the individual cell permeability as
parameters in any inverse formulation. A better way of parameterization is to use
some parameters that can create global or large-scale pattern changes, such as
the master point concept in the SSC formulation. This provides another expla-
nation to why SSC is so efficient on matching dynamic data compared to other
geostatistically-based inverse methods that use single point parameters.

Finally, it should be noted that we just use saturation changes to represent the
time-lapse seismic data. This may oversimplify the 4-D seismic integration. The
more sophistical way of integrating 4-D seismic data requires the direct matching
of forward modeled seismic responses (e.g., amplitude) with data. Nevertheless,
we might reasonably expect, under the conditions considered in this paper, that
4-D seismic responses through forward modeling could be matched as long as the
spatial variations of reservoir properties (e.g., permeability), as well as reservoir
pressure and water saturation are matched. The same framework presented in this
paper can be applied to directly match the forward modeled 4-D seismic, as well
as to account for the data inaccuracy and scale difference in 4-D seismic data.
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