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Bayesian Mixture Modelling in Geochronology
via Markov Chain Monte Carlo1

Ajay Jasra,2 David A. Stephens,2 Kerry Gallagher,3

and Christopher C. Holmes4,5

In this paper we develop a generalized statistical methodology for characterizing geochronological
data, represented by a distribution of single mineral ages. The main characteristics of such data are
the heterogeneity and error associated with its collection. The former property means that mixture
models are often appropriate for their analysis, in order to identify discrete age components in the
overall distribution. We demonstrate that current methods (e.g., Sambridge and Compston, 1994) for
analyzing such problems are not always suitable due to the restriction of the class of component
densities that may be fitted to the data. This is of importance, when modelling geochronological data,
as it is often the case that skewed and heavy tailed distributions will fit the data well. We concentrate
on developing (Bayesian) mixture models with flexibility in the class of component densities, using
Markov chain Monte Carlo (MCMC) methods to fit the models. Our method allows us to use any
component density to fit the data, as well as returning a probability distribution for the number of
components. Furthermore, rather than dealing with the observed ages, as in previous approaches, we
make the inferences of components from the “true” ages, i.e., the ages had we been able to observe
them without measurement error. We demonstrate our approach on two data sets: uranium-lead (U-
Pb) zircon ages from the Khorat basin of northern Thailand and the Carrickalinga Head formation of
southern Australia.

KEY WORDS: Bayesian statistics; mixture modelling; reversible jump Markov chain Monte Carlo;
geochronology.

INTRODUCTION

Radiometric dating of individual crystals or grains in rocks is an important pro-
cedure in geology, and the subdiscipline is known as geochronology. It relies on
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the measurement of the abundance of a parent isotope (I ), and its decay product
or daughter isotope (D) within a mineral or rock. As the decay rate (η) is effec-
tively constant under geological conditions, the ratio of the daughter to the parent
is indicative of the age (x). The ages are given by the following (generalized)
equation

x = 1

η
log

(
1 + D

I

)
(1)

The raw data are typically counts of the number of ions of a given mass (i.e., an
isotope) over a given time. The mean counts are estimated for each isotope and
the ratio (e.g., D/I as in Equation (1)) is then calculated. This ratio may then be
compared to a natural sample of a known age, i.e., a calibration standard. There
is measurable error involved in this procedure and it is estimated by using the
combination of the unknown sample and standard sample errors.

One of the most common dating methods is U-Pb dating of the mineral zircon,
where 238U decays to 206Pb, with η = 1.55 × 10−10 year−1, and 235U decays to
207Pb, with η = 9.85 × 10−10 year−1. This method is widely used because the two
decay schemes have half-lives similar to the age of the Earth and also is considered
relatively robust to geological perturbations, where the parent or daughter may be
preferentially lost or gained from the zircon during the geological history of the
host rock.

In practice, problems can arise due to sample and standard heterogeneity,
instrumental drift, and some gain or loss of U and/or Pb. However, the uncertainty
in the measurement of the Pb isotopes is dominated by the counting statistics, and
typical one standard deviation measurement errors are 1–3% (Stern and Amelin,
2003). Normally, many individual zircon grains will be analyzed from one rock
sample and the aim is to identify either the oldest or youngest grains, or to
characterize the distribution of different age components. The former situation
is important when ages vary due to some physical process such as thermally
activated diffusion which may cause preferential loss of either the daughter or
parent isotope, leading to anomalously young or old ages, respectively. The latter
situation, which we concentrate upon in this paper, is particularly useful when
dealing with sedimentary rocks, which are derived from the erosion of preexisting
rocks (known as source rocks), and so may inherit the age signature of the different
source regions, known as detrital ages. The extraction of these detrital ages is a
problem which is suitably dealt with using mixture modelling (see McLachlan
and Peel (2000) for an introduction).

Current statistical methodology for mixture modelling of geochronologi-
cal data, e.g., Galbraith and Green (1990), Brandon (1992), and Sambridge and
Compston (1994), focuses on the estimated age xi for sample i = 1, . . . , n and
the associated error (εi , assumed to be constant and known for each datum) de-
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scribed above. A mixture model is then formulated for the ages, with location-scale
component densities. The unknown age for a component is interpreted as the lo-
cation parameter (which is the mode for the densities chosen by Sambridge and
Compston (1994)) and the standard error for the data point nearest the mode as
the scale. The main drawback of using the standard error to construct the mixture
density is that to obtain estimates of the modes (for each component), it has to
be independent of the scale parameter. In some cases, densities which obey this
constraint may not fit the data well, even under transformation. A second problem
is that this approach does not provide a formal way to construct a density estimate
for the age distribution. This will mean that it is difficult to assess how well the
mixture has fitted the data. Other approaches for analyzing geochronological data
include graphical methods such as the radial plot (Galbraith (1988) and, loosely
linked to kernel density estimation, probability density plots (e.g., Brandon, 1996;
Ireland and others, 1998; Sircombe, 2004). We consider these methods as tools
for initial or exploratory data analysis, i.e., before any formal inferences are made.
However in this context, we also note the limitations with probability density plots
pointed out by Galbraith (1998), which include the fact that such plots combine
measurement error with true age variation and may mask the underlying signal. It
is therefore an important issue to construct new statistical models for the analysis
of geochronological problems.

This article is structured as follows. In the next section we demonstrate that
current methodology for geochronological data is not always appropriate; we use
two uranium-lead (U-Pb) zircon age data sets. We then present our approach for
mixture modelling as well as the simulation (MCMC) methods needed to perform
inference from these models. In the next two sections we present two detailed
examples of how to use our methodology. Finally, we conclude the paper with a
discussion.

EXISTING METHODOLOGY

Model

The approach of Sambridge and Compston (1994), following partly from
Galbraith and Green (1990), is as follows. The observed data, or calculated ages,
x1, . . . , xn are assumed independently distributed as

p(xi ; εi, θ , k) =
k∑

j=1

wjf (xi ; φj , εi) i = 1, . . . , n

where a generic probability mass/density function is denoted by p(·), f (·) is
denoted as the component density, the weights w = (w1, . . . , wk) are such that
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wj ≥ 0 ∀j = 1, . . . , k,
∑k

j=1 wj = 1, φj are the component specific parameters
(here location parameters), φ = (φ1, . . . , φk), and θ = (w, φ).

More specifically, Sambridge and Compston (1994) take f (·) to be (under a
slightly different parameterization) a member of the exponential power family:

f (xi ; φj , εi) ∝ exp

{
−1

2

∣∣∣∣∣xi − φj

εi

∣∣∣∣∣
q}

q ∈ [1, 2]

that is, q = 2 gives the normal distribution and q = 1 the double exponential
distribution (location φj , scale εi). The latter is often preferred as it is more robust
to outliers, and has higher probability in the tails than the normal distribution.
Sambridge and Compston (1994) seek to find the parameters, θ , which maximize
the log likelihood L(θ, k) = log{∏n

i=1 p(xi ; εi , θ , k)} for various k. To select the
number of components k they use, for example, a relative misfit criterion based
upon the optimized model for progressively increasing number of components. To
see that this approach does not always perform well, we consider two data sets.
Firstly, we describe the data, then secondly, we analyze them using the approach
of Sambridge and Compston (1994).

Carrickalinga Head Formation

The first data set considers 100 U-Pb ages from the Carrickalinga Head
formation, which is part of the Kanamantoo group in southern Australia. The ages
are quoted in Mega-Annum (Ma), or millions of years. The data are presented
in Ireland and others (1998). Figure 1 (a) demonstrates that there are possibly
three groups in the data: the samples aged up to 1000 Ma, the middle six data
points (approximately 1500 Ma), and the rest of the data. This is supported by the
histogram in Figure 2 (a).

Ireland and others (1998) constructed a kernel density estimate (with nor-
mal densities) with the standard error as the scale parameter and bandwidth as
1 Ma. They inferred that there were two major components, the Delamerian (500–
600 Ma) and Grenvillean (1000–1200 Ma).

Khorat Basin

The second data set relates to 251 U-Pb zircon ages from the Khorat Plateau
basin in northern Thailand. The data are reported in Carter and Moss (1999), and
Carter and Bristow (2003) who discuss its geological relevance. The main issue
was the likely geological age and original source region of these sediments.
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Figure 1. Plot of the U-Pb zircon age data analyzed in this paper. Plot (a) is a plot of
the error against ages for the Carrickalinga Head formation. Plot (b) is a plot of the error
against ages for the Khorat basin.

Figure 1 (b) illustrates the (fixed) errors that are provided with the data. From
Figure 1 (b) it does not appear that the measurement error is too severe, with
the error and variability of error broadly increasing with age. A histogram of the
data can be seen in Figure 2 (b), which shows the large number of modes in the
estimated data.
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Figure 2. Histogram of the U-Pb zircon age data analyzed in this paper. The data
is overlaid by a density estimate based upon the normal model ( ) and the double
exponential model (–·–) of Sambridge and Compston (1994).
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Carter and Bristow (2003) broke the data into four subgroups based on
the stratigraphic relationships of the host sediments and applied the method of
Sambridge and Compston (1994) to each group individually, then, using a some-
what ad-hoc procedure, recombined the data and inferred that there were five
mixture components in the data. Two other components were described as “lesser.”

Results Using Sambridge and Compston’s Approach

We now apply the method of Sambridge and Compston (1994) and demon-
strate some of the problems that can arise with this approach.

Normal and Double Exponential Components

For both data sets, we used either normal or double exponential component
densities, and considered an increasing number of components. To select the
optimal number of components we use a formal statistical procedure: the Bayesian
information criterion (BIC) (see McLachlan and Peel (2000)), as opposed to the
relative misfit criterion or detecting the number of components by eye as suggested
by Sambridge and Compston (1994).

The analysis of the Carrickalinga Head formation yielded optimal solutions
of 22 and 17 components (maximum number of components taken to be 30)
for the normal and double exponential models, respectively. A lower number
of components may be selected by choosing a smaller maximum number of
components (see Fig. 3 (a)). This is problematic, under the BIC criterion, since the
optimal solution will often be this maximal value; thus, by limiting the maximum
number of components to a relatively small value, in effect we are choosing the
number of components a priori, without considering competing models.

For the Khorat basin, the optimal number of components for the normal
model was found to be 29 and double exponential 22 (allowing a maximum of 30
in both cases). We note that if we use the number of components for which the
BIC flattens off (i.e., when increasing the number of components does not lead to
a significant reduction in BIC, known as the elbow) the solutions are 18 and 11
components, respectively (Fig. 3 (b)).

The optimal mixture densities for both data sets can be seen in Figure 2. It is
clear that a large number of the components fitted to the data appear to be spurious,
i.e., do not provide any additional explanation of the data. To construct the density
estimates in Figure 2 we took the optimal location parameters and the standard
error for the data point closest to it and then evaluated the density on a grid of 1000
equally spaced points on [0, 3500]. Since this procedure is unsatisfactory from a
statistical point of view, it is inadvisable to determine the number of components
from visual inspection of the density estimate.
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Figure 3. Plot of the BIC values for the U-Pb zircon age data analyzed in this paper. We
used the approach of Sambridge and Compston (1994) to fit the models. ( ) is the BIC for
the normal model and (–·–) for the double exponential model. The arrows mark the optimal
solutions according to the BIC criterion.
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Student-t Components

Under the BIC criterion, if the choice of component density is “incorrect,”
we will tend to fit too many components (McLachlan and Peel, 2000, p. 209).
It is probably the case that this occurred above, so to test this we use student-t
components. The t density allows heavy tailed behavior, which is likely to reduce
the number of components fitted to the data. This will occur when there are
apparent outliers (as a result of the measurement process or subtle geological
perturbations) as opposed to representing additional component age modes.

We fitted the student-t model using a trans-dimensional simulated annealing
algorithm (Brooks, Friel, and King, 2003), essentially the MCMC algorithm de-
scribed in the next section. The results can be seen in Figure 4. We used the same
method as above to obtain the density estimate.

For the student-t density we obtain an intuitively more reasonable solution
than for the normal or double exponential model. The optimal values of k were
3 and 6 for the Carrickalinga and Khorat data sets. However, from Figure 4, it is
difficult to ascertain how well the model fits the data, but it appears that neither
model is entirely appropriate in that some peaks in the histogram are not well
represented in the densities.

We feel that the restriction of the component density to those with modes
independent of the scale parameter (i.e., symmetrical), is the reason why these
models do not fit well (i.e., the inability to model skewness). Therefore, we now
focus on producing a more general statistical model.

NEW MIXTURE MODEL FOR GEOCHRONOLOGICAL DATA

Following the remarks made in the previous section, regarding the role of
standard errors in the mixture likelihood, we will model the actual, unknown
data y1, . . . , yn as a mixture. That is, the data we would have recorded had there
been no measurement error. In effect, we are considering the problem as a simple
form of image reconstruction (Besag, 1986), where the estimated data provide the
degraded image and the error suggests how close it is to the true image.

Likelihood Construction

We will use methods similar to those outlined in Richardson and others
(2002), that is:

xi |yi ; εi ∼ p(xi |yi ; εi)

yi |θ, k ∼
k∑

j=1

wjf (yi ; φj ).
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Figure 4. Density estimates of the U-Pb zircon age data analyzed in this paper. We
used the approach of Sambridge and Compston (1994) under student-t component
densities.

For simplicity we assume the following conditional independence structure

p(x, y|θ , k; ε) =
n∏

i=1

p(xi |yi ; εi)p(yi |θ, k).

We choose xi |yi ; εi to be N (yi, ε
2
i ), where N (yi, ε

2
i ) is the normal distribution,

mean yi , standard deviation εi . We allow the component densities, f (·), to be
either normally distributed or, to provide further flexibility, skew-t distributions
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(Jones and Faddy, 2003). In practice, allowing for skewness allows us to consider
distributions which may have been geologically disturbed to varying degrees
leading to differential loss or gain of the parent of daughter elements. This will
lead to greater dispersion in the data than expected for a single component age.

We denote a skew-t distribution as St(µ, λ, ν, ζ ), with location µ, inverse
scale λ, and skew/tail parameters ν and ζ . The skew-t density is:

f (y; µ, λ, ν, ζ ) ∝
{

1 + λ(y − µ)

(ν + ζ + (λ(y − µ))2)
1
2

}ν+ 1
2

×
{

1 − λ(y − µ)

(ν + ζ + (λ(y − µ))2)
1
2

}ζ+ 1
2

where the normalizing constant is cν,ζ = λ/(2ν+ζ−1B(ν, ζ )(ν + ζ )
1
2 ), y, µ ∈ R,

λ, ν, ζ ∈ R
+, and B(·, ·) is the beta function. If ν = ζ the density is the symmetric-

t density on 2ν degrees of freedom. When ν > ζ or ν < ζ f is negatively or
positively skew, respectively. The density is unimodal with mode

� = µ + (ν − ζ )
√

ν + ζ

λ
√

2ν + 1
√

2ζ + 1
.

Jones and Faddy (2003) report that high absolute values of skewness are associated
with small values of ν and ζ , as are heavy tails of f . A model with normal or
skew-t components is referred to as normal or skew-t model.

A Bayesian Model

To formally encode our prior beliefs about the geological problem at hand,
we construct a Bayesian model (see Robert (2001) and Appendix A for an intro-
duction). This requires the specification of prior distributions, which we take to
be similar to those adopted in Richardson and Green (1997).

The priors on the locations and inverse scales are taken to be i.i.d (indepen-
dently and identically distributed) for each component j = 1, . . . , k, with µj ∼
N (ξ, κ−1), λj |β ∼ Ga(α, β). We also assume β ∼ Ga(g, h) and w|k ∼ D(δ). Our
notation is such that Ga(α, β) is the gamma distribution, shape α, scale β, and
D(δ) is the symmetric Dirichlet distribution parameter δ. The prior on k is either a
truncated Poisson prior, p(k) ∝ τ k/k!, k = 1, . . . , kmax or uniform on the inte-
gers 1, . . . , kmax; See Richardson and Green (1997) for a detailed discussion of
this prior structure.
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For the skew-t density we consider two priors on the skew/tail parameters,
both assuming they are i.i.d given k.

Prior I

Firstly, a prior that can be considered weakly informative. We take νj |b ∼
U[a,b], a to be fixed, b ∼ Ex(ρ, a) and

p(ζj |νj , b) = 1

3
{I(νj = ζj ) + I(ζj < νj )U[a,νj ] + I(ζj > νj )U[νj ,b]}

where I(·) is the indicator function, U[a,b] is the uniform density on [a, b], and
Ex(ρ, a) is the exponential distribution parameter ρ, location a.

Prior II

Secondly, νj ∼ Ga(ψ,ω, a) (whereGa(ψ,ω, a) is a gamma distribution with
shape ψ scale ω and location parameter a) and

p(ζj |νj ) = 1

3

{
I(νj − ζj ) + I(ζj < νj )U[a,νj ] + I(ζj > νj )Ex(ρ, νj )

}
.

Discussion of Priors for Skew/Tail Parameters

We adopt the above priors from a pragmatic point of view, as they both provide
equal support for symmetric, positively and negatively skew-shaped densities, i.e.,
they are all equally probable a priori).

However, given that we may be dealing with a skewed distribution, the first
prior does not favor moderately or severely skewed densities, allowing us to
consider the range of support for the parameters (i.e., heavy or light tailed). This
behavior can be seen in Figure 5 (a). The settings of the hyperparameter are as for
the next example, and we can observe (in Fig. 5 (a)) the large number of heavy
tailed shapes permitted by the prior.

The second prior is constructed with the intention of favoring heavy tailed,
moderately or severely skewed component densities (given the skewness). That is
if νj is assumed to be small, then |νj − ζj | will be similarly small (for large ρ),
with most of the prior probability being focused on this region. Some densities
can be seen in Figure 5 (b). Here we see the extreme skewness allowed.

We constrain νj and ζj to be bigger than a to avoid fitting components that
have extremely heavy tails (as noted by Jones and Faddy (2003)). It also prevents
numerical errors in the code.
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Figure 5. Skew-t densities with skew/tail parameters drawn from the prior to demonstrate
the potential range of distributions. We show 10 densities plotted on [−125, 75] with location
parameter increasing by 18 from left to right and scale 1, (ν, ζ ) drawn from both priors with
specification of the relevant hyperparameters (a, ρ, as described for the two examples.
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Posterior

The posterior π (θ, y, β, k|x; ε) for the skew-t model under priors I and II are:

π (θ , y, β, k|x; ε) ∝
n∏

i=1

{p(xi |yi ; εi)p(yi |θ, k)}
k∏

j=1

{p(µj )p(λj |β)p(νj , ζj |b)}

×p(w|k)p(β)p(b)p(k)

π (θ , y, β, k|x; ε) ∝
n∏

i=1

{p(xi |yi ; εi)p(yi |θ, k)}
k∏

j=1

{p(µj )p(λj |β)p(νj , ζj )}

×p(w|k)p(β)p(k).

Simulation Details and Markov Chain Monte Carlo Inference

We are interested in calculating posterior expectations to estimate, for ex-
ample, the posterior probability that k = j , j = 1, . . . , kmax. To approximate
the appropriate integrals, we rely upon Monte Carlo integration via reversible
jump MCMC (Green, 1995). We provide a simple introduction to this approach
in Appendix B, for comprehensive details see, for example, Robert and Casella
(2004).

The reversible jump sampler for the skew-t model is now described, with
obvious modifications for normal component densities in terms of the prior distri-
butions and model parameters. We denote a proposed value of x (here a generic
random variable) by x ′ and w.p. means “with probability.” All updates are stan-
dard Metropolis–Hastings moves, involving either a single parameter or blocks of
parameters, unless otherwise stated.

1. Update y: We update yi individually, in the order of the indices. We use
an additive Cauchy/normal random walk via delayed rejection (Green and
Mira, 2001). Here we make an initial random walk proposal based upon
a large variance. If the move is rejected, make a second random walk
proposal with a smaller variance. We center both moves at the current
state of the chain.

2. Update the locations, µ: This is done in one block (i.e., (µ1, . . . , µk)) via
an additive Cauchy or normal random walk.

3. Update the inverse scale parameters, λ: Again, in one block via a multi-
plicative log-normal random walk.

4. Update the weights, w: In one block via an additive normal random walk
on the logit scale.
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5. Update β: We use a Gibbs kernel, full conditional Ga(g + kα, h

+ ∑k
j=1 λj ).

6. Update the skew/tail parameters, (ν, ζ ): We update (ν1, ζ1, . . . , νk, ζk) in
one block via a Metropolis–Hastings move. For prior I on (νj , ζj ), we
perform random walks on log{(νj − a)/(b − νj )} (similarly for ζj ) and
for prior II on log{νj − a}. If νj and ζj are currently equal w.p. υs we
propose them to be equal updating via a Cauchy or normal transformed
random walk, or w.p. 1 − υs that they are not equal, using a normal/Cauchy
transformed random walk. Similarly if νj and ζj are not equal, w.p. υa

we propose them not to be equal updating via a Cauchy or normal trans-
formed random walk, w.p. 1 − υa equal and a normal transformed random
walk.

7. Birth/Death of a component: This move largely follows Richardson and
Green (1997). For the birth in state k, selected with probability bk ,
propose from current state (µ,λ, w, ν, ζ , k) to (µ′,λ′, w′, ν ′, ζ ′, k +
1) (k = 1, . . . , kmax − 1) by setting the diffeomorphism (the function
and its inverse are differentiable) linking (µ,λ, w, µ, λ,w, ν, ζ, k) and
(µ′,λ′, w′, ν ′, ζ ′, k + 1) as the identity for all random variables other than
the weights, for which we set w′ = (w1(1 − w), . . . , wk(1 − w), w). The
extra random variables needed to match dimension (µ, λ, ν, ζ ) are drawn
from the prior and w ∼ Be(1, k) where Be(·, ·) is the beta distribution.
This move has acceptance probability min{1, A}, with

A = p(y|θ ′, k + 1)p(k + 1)

p(y|θ, k)p(k)
B(kδ, δ)−1wδ−1(1 − w)k(δ−1) (k + 1)!

k!

× dk+1

(k + 1)bk

(1 − w)k−1

Be(w; 1, k)

where p(y|θ, k) = ∏n
i=1 p(yi |θ , k), dk is the probability of proposing to

perform a death move in state k andBe(w; ·, ·) is the beta density evaluated
at w. The reverse death move is achieved by selecting a component with
uniform probability to die and inverting the jump function. The death
move is available for k = 2, . . . , kmax.

8. Update b: A normal random walk on the log(m − b) scale, m = maxj {ζj , νj }.

We perform the algorithm in a deterministic sweep in the order 1–6 followed by
the random choice of a birth or death. Step 8 is added if prior I on (νj , ζj ) is
used.

We now demonstrate our methodology on the two data sets we described
earlier. Note that the code is available from the first author on request.
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EXAMPLE I: CARRICKALINGA HEAD FORMATION

Firstly we consider the analysis of the Carrickalinga Head formation data.
For illustration we adopt skew-t densities with prior I on (νj , ζj ) and a uniform
prior on k.

In order to fix ξ, κ and h we define the following. Let R be the range
of the data defined to be R = maxi{xi + 2εi} − mini{xi − 2εi} and M be the
midpoint of the data defined to be M = [maxi{xi + 2εi} + mini{xi − 2εi}]/2. We
take ξ = M,κ = 1/R2, h = 10/R2. We also let α = 2, δ = 1, g = 0.2, kmax =
30 all these settings being consistent with Richardson and Green (1997). For ρ, we
set ρ = 1/10, which states that we prefer components with heavy tails—i.e. we
wish to avoid spurious components introduced by the light tails inherent in normal
distributions. Finally we set a = 0.01, which was not so small as to introduce
numerical errors into our code.

Performance of the Sampler

We ran our MCMC sampler for 200,000 sweeps taking the burn in to be
100,000 sweeps (see Robert and Casella (2004) for a discussion of convergence
issues in MCMC). The acceptance rates of all fixed dimensional moves were in the
range (0.3, 0.6). The birth/death move was accepted 10% of the time indicating
good mixing over k (the birth/death probabilities were uniform among the moves
allowed given the current state of the chain).

Simple convergence measures can be seen in Figure 6. In Figure 6 (a)
the occupancy probabilities can be seen (p(k ≤ j |x; ε)) every 100 sweeps of
the algorithm. This quantity quickly stabilizes, indicating the fast convergence
of the algorithm. Figure 6 (b) reiterates the rapid mixing of the algorithm: our
sampler is able to visit a large number of potential models with little difficulty.

Inference

Now that we are satisfied that our MCMC sampler has converged we now
seek to draw inference from our statistical model. This is complicated by the
label switching problem, see Stephens (2000) or Jasra, Holmes, and Stephens
(2005) for a review and our approach is described in detail below. In practice,
this is manifested as two parameters (e.g., 1 and 2) which might represent age
modes, swapping over so component 1 may become younger than component
2. The parameters associated with these age components also swap. Thus the
identifiability of parameters needs to be considered.
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Figure 6. Convergence of MCMC algorithm; Carrickalinga Head Formation. (a) displays the
cumulative occupancy probability (p(k ≤ j |x; ε)): the line at 0.4 is p(k ≤ 3|x; ε). (b) displays
the sampled k. Both (a) and (b) are recorded every 100 sweeps.
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Label Invariant Quantities

We firstly concentrate on inference which is not subject to label switching.
To find the posterior distribution for k, we use the Monte Carlo estimate:

p(k = j |x; ε) ≈ 1

N

N∑
t=1

I
(
k(t) = j

)

where N is the number of MCMC samples taken and k(t) are the (post burn-in)
sampled value of k at sweep t .

The posterior distribution for k can be seen in Table 1, column 1. We observe
that the maximal posterior probability is for k = 3; one more component than
described by Ireland and others (1998). We discuss this point later in this section

To compute a density estimate (denote this p(y|θ , k)) we use:

p(y|θ, k) ≈ 1

N

N∑
t=1

k(t)∑
j=1

w
(t)
j f

(
y; φ(t)

j

)

evaluated over a grid of 1000 equally spaced points on [0, 3500]. The estimate
can be seen in Figure 7 (a). It displays the three components represented in the
posterior distribution for k, and is significantly more smooth than the estimate
in Figure 2 (a). Comparing with the solution under the (symmetrical) student-t
model (Fig. 4 (a)), we can see that we have picked out modes in higher density
regions (e.g. the mode at 190 Ma in Fig. 4 (a)).

Table 1. Posterior Distribution for the Number of Components Using
Various Skew-t Models; Carrickalinga Formation

Distributions for the following values of ρ:

k ρ = 1/10 ρ = 1/20 ρ = 1/30 ρ = 1/40 ρ = 1/50

≤2 0.000 0.000 0.000 0.000 0.000
3 0.404 0.381 0.381 0.396 0.387
4 0.287 0.272 0.276 0.276 0.275
5 0.156 0.160 0.161 0.157 0.156
6 0.076 0.086 0.089 0.082 0.085
7 0.037 0.047 0.047 0.043 0.046
≥8 0.040 0.054 0.046 0.046 0.051
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Figure 7. Density estimate and classification probabilities; Carrickalinga Head Formation. For
plot (b), the crosses are data points and the lines are the probability that a data point is in the
component, for component 1 (—), 2 (· · ·) and 3 (–·–).
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Label Switching

The label switching problem occurs because the likelihood is invariant to per-
mutations of the labels of the parameters. If the prior exhibits this property, so will
the posterior distribution. As a consequence, the marginal posterior distribution for
the component specific parameters, given k, are identical for each component. This
phenomenon is demonstrated in Figure 8 (a), where we conditioned our MCMC
samples such that k = 3 (our samples were taken post burn-in, with a minimum of
five sample thinning). In this case it is simple to remove label switching by apply-
ing the constraint �1 < �2 < �3, as shown in Figure 8 (b) in which the constraint
is applied offline. We note that this not always appropriate, as these constraints
are not always effective in removing label switching; see Stephens (2000) for
example. The estimated modes with 95% credible intervals are: �1 = 556.660,
C0.95(�1) = (545, 744, 567.590), �2 = 881.543, C0.95(�2) = (779.013, 982.353)
and �3 = 2651.60, C0.95(�3) = (2473.680, 2818.540), where C0.95(·) denotes the
95% credible interval for a parameter.

If we are interested in classifying the data, i.e.. allocating which rock belongs
to a particular component, we can use the classification probabilities:

p(zi = j |x; ε) ≈ 1

Nk∗

N∑
t=1

I
(
k(t) = k∗) w

(t)
j f

(
y

(t)
i ; φ(t)

j

)
∑k

l=1 w
(t)
l f

(
y

(t)
i ; φ(t)

l

) (2)

where Nk∗ = ∑N
t=1 I(k(t) = k∗), zi is an allocation variable, i.e., zi = j if data

point i is in component j and k∗ is some selected value of k. The probabilities can
be seen in Figure 7 (b). We see that the model classifies the youngest data as being
in component 2 (on the basis of maximal classification probability), because it is
inconsistent with the first component (mode 556 Ma). That this occurs is of little
interest in terms of identifying age components since Ireland and others (1998)
state that this data is due to Pb loss. However, this does demonstrate that our
approach behaves gracefully in such situations, and potentially may be used to
identify such geological perturbations.

Comparison of Results With Inference of Ireland and Others (1998)

We now compare our inferences with those in Ireland and others (1998).
Ireland and others (1998) state that there is evidence for two major components,
which we find (component 1, 556 Ma, component 2, 881 Ma), we also find ev-
idence for a third component, mode 2651 Ma. Using our methodology we have
been able to precisely find an estimate of second mode at 881 Ma (compared to
the approximate 1000–1200 Ma quoted by Ireland and others (1998)). This is
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Figure 8. Sampled modes; Carrickalinga Head Formation. (a) displays the sampled modes as
returned by our MCMC algorithm. (b) are the sampled modes after permuting the samples by
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potentially of more use to a geologist when attempting to find sediment prove-
nance for example. Ireland and others (1998) do not infer the third component
indicated by our results. It may be that, while this component is of statistical im-
portance, it is of little interest to geologists. However, this latter inference is best
made having first recognized the statistically significant components. Similarly,
the inference of various age components (e.g., 881 Ma) needs to be rationalized
with other geological information, although this aspect is beyond the aims of this
paper.

Stability With Respect to the Prior

One aspect of particular importance in Bayesian mixture modelling is the
sensitivity of the posterior for the number of components, to changes in the value
of prior parameters (especially for the prior on the component specific parameters;
see Jennison (1997) for example).

Our model is based upon that of Richardson and Green (1997) and the
sensitivity of inferences related to the posterior distribution for k are investigated
there. They are as follows. In the limit as β → ∞, κ → 0, Jennison (1997) notes
that the posterior distribution for k starts to favor one component, which is a
form of Lindley’s paradox (Lindley, 1957) (that is, as we seemingly place less
prior information on the parameters, the prior becomes highly informative for the
dimensionality of the model, in that it puts more posterior weight on models with
fewer components). We found similar behavior for our model. Therefore, we only
investigate the sensitivity to changes in ρ; this can be seen in Table 1.

In Table 1, we can observe that, under a reasonable departure from the default
prior, the posterior inference for the number of components does not change
significantly (i.e., the relative probabilities of models with different numbers of
components is the same for different values of ρ). This is reassuring, as the only
part of our prior intended to be informative is that on (νj , ζj ) (in that we prefer
heavy tailed densities to take into account the measurement error in the data) and
the posterior for k is fairly robust to changes in this prior.

EXAMPLE II: KHORAT BASIN

For our second example we return to the Khorat basin data. We consider anal-
ysis of the data using both normal and skew-t (with prior II) component densities
and a truncated Poisson prior on k. We adopt an informative prior specification, in
that we favor shapes apparent in the data histogram. We do this both for illustration
and because the prior settings (for ν and ζ ) in the previous example did not appear
to fit the data well in this example.



Bayesian Mixtures in Geochronology 291

We set the prior parameters ξ, κ, α, δ, g, h, kmax as for Example I. For the
truncated Poisson prior, we set τ = 5, which gives prior expectation of k to be
approximately 5 (i.e., we center on the result of Carter and Bristow (2003)). The
prior parameters for the skew-t model are as follows. For νj the value of a is 0.05
(set so as to be low as possible while avoiding numerical errors in the code as a

tends to zero) and the prior mean (= ψ/ω + a) and variance (= ψ/ω2) are 0.5
and 5, respectively. To model ζj |νj we set ρ = 1/

√
5. This prior favors component

shapes that are moderately, positively skewed, and extremely negatively skewed—
with heavy tails. This specification is chosen since we found that the weakly
informative settings of the previous example, did not favor components with the
extreme skewness apparent in the histogram of the data (Fig. 2 (b)). See Figure 5
(b), to get an idea of the density shapes favored by this choice of prior.

MCMC Sampler Performance

For the normal model, we ran our MCMC sampler for 1 million sweeps and
used the last 250,000 samples for inference. That convergence takes longer than
the previous example is to be expected: We have a larger data set with more modes
and therefore a more complex target space.

The skew-t MCMC algorithm was run for 4 million sweeps after a burn-
in period of 500,000 sweeps. We found that such substantial sample numbers
were required to ensure that the sampler not only converged but that mixing was
acceptable.

Inference for k

We now consider the posterior distribution for the number of components
under the normal and skew-t models (Table 2).

Table 2. Posterior Distribution for
the Number of Components Using

Normal and Skew-t Models;
Khorat Basin

k Normal Skew-t

≤5 0.000 0.000
6 0.000 0.522
7 0.008 0.351
8 0.092 0.104
9 0.209 0.020
10 0.279 0.003
≥11 0.412 0.000
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In Table 2 we can observe that the normal model favors many more compo-
nents than for the skew-t model. We attribute this to the component shapes that
can be represented by the normal density. That is, the normal distribution produces
components that are symmetric and light tailed, which does not appear to be the
case in the estimated data (Fig. 2 (b)). As a result, the normal mixture requires
more components to fit the data, compared with the skew-t model.

The heavy tails and skewed component densities which we preferred in our
prior, for the skew-t model, has led to a more parsimonious representation of
the data than for the normal model. This illustrates the importance in being able
to subjectively specify heavy tailed, skew behavior for geochronological data,
especially when parsimony is of interest.

Inference Under the Skew-t Model

We conclude this example with some inferences using the skew-t model. We
used a Bayes factor to decide that the skew-t model was preferable to the normal
one. To deal with label switching, we use the method discussed in Appendix C.

We first consider the estimates of the modes and weights (Table 3). In keeping
with the trend of increasing error with age (Fig. 1 (b)) the width of the credible
intervals for the modes generally increases with the size of estimate (an exception
is component 5). For example, �4 = 165.285, |C0.95(�4)| = 10 Ma (where |C·(·)|
is the width of a credible interval) compared with �3 = 2475.847, |C0.95(�3)| =
78 Ma. Component 5 has the largest credible interval, since for some sweeps it
is a symmetric density, with different mode to when it is skewed thus increasing
the uncertainty of the estimate. In terms of the weights, component 2 (data around
1800 Ma) have largest contribution which is supported by the fact that most data
points are allocated to this class (under the maximal classification probability,
Fig. 9 (b). We note, in comparison to the solution using student-t densities that
(see Fig. 4 b), our estimates are not too dissimilar. However, under our approach,

Table 3. Posterior Estimates of the Modes and Weights With 95%
Credible Intervals Under the Skew-t Model; Khorat Basin

Component Mode Weight

1 253.054 (242.975, 263.295) 0.201 (0.147, 0.265)
2 1835.779 (1792.220,1873.010) 0.284 (0.219, 0.354)
3 2476.847 (2438.160, 2516.770) 0.128 (0.081, 0.182)
4 165.285 (160.103, 170.255) 0.110 (0.072, 0.157)
5 804.570 (742.722, 898.306) 0.159 (0.107, 0.218)
6 438.366 (426.888, 451.494) 0.117 (0.074, 0.169)
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Figure 9. Density estimate and classification probabilities under the Skew-t model; Khorat
Basin. The density estimate is for the six component skew-t model.
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we are reasonably satisfied with the fit of our model (i.e., we have some idea of
its validity).

The classification probabilities (Fig. 9 (b)) show a typical trend, that is, data
points that are similar in age are likely to be clustered together. It is interesting
that data points that are adjacent in terms of age are not allocated to different
groups (except at the break points of course), something which occurred in the
previous example. We observe that, while there is generally a clear allocation
of data point to component, at the break points between classes there is some
ambiguity with respect to class membership. One point of note are the outlying
observations at 3100 Ma. These data points do not seem to be entirely consistent
with the component they are allocated to. That is, these data are the only points
which have classification probability larger than 0.1 for more than one class.
Indeed if we observe Figure 2 (b) we see that the error associated with these points
is approximately 40 Ma; it may be that they warrant a separate component. While
it is not statistically unreasonable to fit another component, there are relatively
few data to justify this.

DISCUSSION

In this paper we have demonstrated that current statistical methodology for
mixture modelling of geochronological data does not always work well, often
fitting an unacceptably large number of components under the BIC criterion. We
constructed a new generalized approach and showed that it provided more reason-
able solutions for the examples considered. The method deals with nonsymmetric
(unimodal) component densities, which are likely to be an important factor in
mixture modelling for geochronology. Skewness is not be an entirely random
phenomenon of geochronological data, but can arise due to geological perturba-
tions, with an effect such as loss of the daughter isotope, the significance typically
depending on grain size and structure, for example.

While our model may be adopted using likelihood-based inference, the un-
boundedness of this quantity makes optimization methods difficult to implement
(in our experience). Our approach is best applied in the Bayesian context, where we
can explicitly introduce prior information into the problem, especially with respect
to heavy tailed and skewed behavior. The priors adopted for the normal model
and the skew-t model (prior I) can be considered as being geared toward explor-
ing heterogeneity (Richardson and Green, 1997) and, other than the influence of
Lindley’s paradox, is reasonably robust (with respect to inference for the number
of components) to the prior specification. Prior II is constructed so that a subjec-
tive data analysis may be performed, as for example II, which implied skewed
distributions. In this case we recommend simulating from the prior to determine
the component shapes which are most likely to occur. In terms of issues specific
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to Pb isotope data, a referee (KS) suggested that a measure of discordance such as

(
1 −

206Pb/238U
207Pb/206Pb

)
(3)

may be used to assess the likely skew in the data, which may arise due to some
disturbance to the isotope ratios, as mentioned above.

Throughout this paper we stated we generally seek to use heavy-tailed com-
ponent densities. We believe that this is appropriate in cases for which the measure-
ment error is quite large (as for the examples in this article). When the measurement
error is not too large, the approach of Sambridge and Compston (1994) is likely to
perform quite well. The determination of measurement error in geochronology is
somewhat subjective and beyond the scope of this paper (see Ireland and Williams
2003 for discussion). In general, the raw data can require corrections for varia-
tions in isotope ratios over time, inherited daughter element (e.g., common Pb),
uncertainties in standards, and decay constants. Typically, errors are combined in
quadrature (adding the variances) to produce an estimate of the error on the final
age. Overall, experience with our method with respect to the measurement error
shows that inferences can (as expected) become less exact when the measurement
error increases, that is, that credible intervals can be wider and classification prob-
abilities less discriminated between components. Clearly, when making inferences
as described here, it is important to understand the measurement error aspect of a
data set, which will differ for different analytical methods (e.g., using 206Pb/238U
and 207Pb/206Pb ages). In this paper, we have dealt with making inference from the
observed data as reported, under the assumption that the data are collected in an
unbiased manner. An issue which we have not explicitly considered is the number
of data (i.e., analyses) required to resolve an age component present in a given
proportion. This is potentially important for studies of sediment provenance and
stratigraphic dating. This aspect has been addressed in recent papers by Vermeesch
(2004) and Andersen (2005), who provide some guidelines for the sampling and
reporting strategies in this context.

We end with a short summary of what our methodology adds to the widely
used approach outlined by Sambridge and Compston (1994). The main advantages
are:

(A) Our method is more flexible, since we are able to use any component
density to model the data.

(B) Our method provides a formal way to construct a density estimate of the
data.

(C) Our method allows us to explicitly incorporate prior information (e.g.,
skewness, or the likely number of components. into the data analysis.
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(D) Our method provides a more satisfactory way to interpret model parameters
(e.g., age modes, number of components).

We have demonstrated (A) and (B) in examples I and II. Point (C), may be of
more interest to geologists who have a reasonable idea of what they expect from
their data, but would perhaps find it difficult to specify in practice. Point (D)
relates to the fact that all inferences under Sambridge and Compston’s approach
are related to the estimated data and not the actual data, had we been able to obtain
these. This, perhaps, appears only of interest from a conceptual point of view, but
helps to clarify that our approach is a formal statistical procedure. We feel that
the only drawback of using our methodology are the computational aspects (label
switching, prior sensitivity) associated with Bayesian mixture modelling.
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APPENDIX A: BAYESIAN STATISTICS

This appendix features a short introduction to Bayesian statistics; see Robert
(2001) for a thorough account.

Consider a typical statistical problem where we have observed data x =
(x1, . . . , xn) assumed to be drawn from some probability density p(x|θ ), where θ

is an unknown real-valued (vector) parameter (for example the mean rock age).
Bayesian statistics treats θ as a random variable and places a prior density π (θ )
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upon θ . All inferences on θ are then via the posterior density π (θ |x):

π (θ |x) ∝ p(x|θ )π (θ )

for example, to estimate θ we may use the posterior mean.
The prior π (θ ) encapsulates the beliefs that we have before seeing the data,

and the posterior can be thought of how those beliefs are changed given the data.
However, there is not often substantial information to construct a prior. As a result,
we often use a prior which minimally influences our posterior inferences.

APPENDIX B: MARKOV CHAIN MONTE CARLO

Introduction

In this appendix we briefly describe MCMC. Suppose that we wish to simu-
late from a highly complex multivariate probability density π (x), x ∈ E and that
conventional methods are not possible. Then the idea of MCMC is to construct
an ergodic Markov chain with stationary distribution π (·) (Robert and Casella,
2004).

Metropolis–Hastings and the Gibbs Sampler

The Metropolis-Hastings chain is as follows. Suppose that the current state
of the chain is x, and we wish to generate a new state so that in the long run our
samples are drawn from π ; this is achieved in the following way. Generate X′ ∼ q

where q is a proposal density, such that E ⊆ ∪x ∈E supp[q(x, ·)], then accept x ′

as the new value of the chain with probability min{1, A} where

A = π (x ′)q(x ′, x)

π (x)q(x, x ′)
.

An easy way to construct a proposal that will be accepted reasonably often
is the random walk move. That is, the additive and multiplicative random walks
are (for some specified σ )

x ′ = x + σu

x ′ = xσu
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where u ∼ f is a density chosen to ensure the proposal gives full support to the
target.

Typically x = (x1, . . . , xk), and it will often be difficult to find proposals over
large dimensional spaces to yield a reasonable acceptance rate. One way to avoid
such a difficulty is blocking the variables.

Suppose we choose any combination of the x1, . . . , xk e.g. x1, . . . , xl and
xl+1, . . . , xk , then a valid way to simulate from π (·) is to generate from the full
conditionals π (x1, . . . , xl |xl+1, . . . , xk) and π (xl+1, . . . , xk|x1, . . . , xl). If we can
generate exactly from the full conditional distributions then this is called the Gibbs
sampler, otherwise it is valid to use Metropolis–Hastings.

Reversible Jump MCMC

Suppose that the support π is of variable dimension, (k is unknown) then
none of the above methods can be used. One solution to this problem is that of
reversible jump MCMC Green (1995).

To move from xk in k dimensional space, propose to move to k + 1 dimen-
sional space in the following way. Generate U ∼ q from some density such that
k + dim(u) = k + 1 where dim(u) is the dimension of u. Then set xk+1 = g(xk, u),
where g(·) is the jump function (it has to be invertible and differentiable). We
suppose that the probability of proposing to jump up is rk,k+1(xk) and that the
probability of proposing the reverse move is rk+1,k(xk+1). Then xk+1 is accepted
with probability min{1, A}, where

A = π (xk+1)

π (xk)

rk+1,k(xk+1)

rk,k+1(xk)q(u)

∣∣∣∣∂g(xk, u)

∂(xk, u)

∣∣∣∣.
The reverse move from xk+1 to xk occurs in the following way. Solve for u and xk

from the jump function, via the inverse of g(·) and accept xk as the new state of
the chain with probability min{1, A−1}.

APPENDIX C: RELABELLING ALGORITHM

We briefly describe our relabelling algorithm, which is based upon the method
of Stephens (2000).

Using a short run of samples, for which no label switching is deemed to
have occurred (which we determine by eye), calculate the empirical classification
probabilities r̂ij (as in Eq. (2)). Now at sweep t of our MCMC algorithm, given
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that k(t) = k∗, choose the permutation of the labelling σt to minimize:

L(R, S) =
n∑

i=1

k∗∑
j=1

s
(t)
ij

{
σt

(
θ (t)

)} log

[
s

(t)
ij {σt (θ (t))}

r̂ij

]

where

s
(t)
ij (θ (t)) = w

(t)
j f

(
y

(t)
i ; φ(t)

j

)
∑k∗

l=1 w
(t)
l f

(
y

(t)
i ; φ(t)

l

)
and R and S represent the n × k∗ matrices (rij ) and (sij ), respectively. The algo-
rithm is performed online and the r̂ij are never updated; see Stephens (2000) for
discussion of this method.


